
Myrvold’s Results on Orthogonal Triples of

10 × 10 Latin Squares: A SAT Investigation

Curtis Brighta Amadou Keitab Brett Stevensc

Submitted: Mar 13, 2025; Accepted: Jan 21, 2026; Published: Feb 13, 2026

©The authors. Released under the CC BY license (International 4.0).

Abstract
Ever since E. T. Parker constructed an orthogonal pair of 10× 10 Latin squares

in 1959, an orthogonal triple of 10 × 10 Latin squares has been one of the most
sought-after combinatorial designs. Despite extensive work, the existence of such an
orthogonal triple remains an open problem, though some negative results are known.
In 1999, W. Myrvold derived some highly restrictive constraints in the special case
in which one of the Latin squares in the triple contains a 4× 4 Latin subsquare. In
particular, Myrvold showed there were twenty-eight possible cases for an orthogonal
pair in such a triple, twenty of which were removed from consideration. We implement
a computational approach that quickly verifies all of Myrvold’s nonexistence results
and in the remaining eight cases finds explicit examples of orthogonal pairs—thus
explaining for the first time why Myrvold’s approach left eight cases unsolved. As a
consequence, the eight remaining cases cannot be removed by a strategy of focusing
on the existence of an orthogonal pair; the third square in the triple must necessarily
be considered as well.

Our approach uses a Boolean satisfiability (SAT) solver to derive the nonexistence
of twenty of the orthogonal pair types and find explicit examples of orthogonal pairs
in the eight remaining cases. To reduce the existence problem into Boolean logic we
use a duality between the concepts of transversal representation and orthogonal pair
and we provide a formulation of this duality in terms of a composition operation on
Latin squares. Using our SAT encoding, we find transversal representations (and
equivalently orthogonal pairs) in the remaining eight cases in under two hours of
computing on a large computing cluster.

Mathematics Subject Classifications: 05B15, 68R07

1 Introduction

A Latin square of order n is an n× n array filled with n distinct symbols, usually taken
to be {0, 1, . . . , n − 1}, such that each symbol appears exactly once in each row and

aSchool of Computer Science, University of Waterloo, Canada (cbright@uwaterloo.ca).
bDepartment of Mathematics and Statistics, University of Windsor, Canada (keitaa@uwindsor.ca).
cSchool of Mathematics and Statistics, Carleton University, Canada (brett@math.carleton.ca).

the electronic journal of combinatorics 33(1) (2026), #P1.30 https://doi.org/10.37236/13960

https://doi.org/10.37236/13960


exactly once in each column. A transversal of a Latin square of order n consists of n
cells of the square chosen so that there is exactly one cell from each row, exactly one cell
from each column, and exactly n distinct symbols all together. There are many ways
of representing a transversal, but we follow Myrvold [33] and represent a transversal by
listing the symbols in the transversal in each column from left to right. For example, the

highlighted transversal in
[
0 1 2
2 0 1
1 2 0

]
is represented by the row vector [2, 1, 0]. We call this

row vector the transversal’s row representation.
Two Latin squares A and B of order n are said to be orthogonal when all n2 possible

symbol pairs occur when the two squares are superimposed over each other. This happens
exactly when the n cell positions of the same symbol in A form a transversal in B (regardless
of the symbol chosen), thereby decomposing B into n non-overlapping transversals. A set of
Latin squares that are pairwise orthogonal to each other are known as mutually orthogonal
Latin squares (MOLS) and a set of k MOLS of order n are known as a kMOLS(n).
For each order n, let N(n) denote the largest value of k for which a kMOLS(n) exists.
Determining values of N(n) has a long history [1, Ch. III] and has been of intense interest
to mathematicians ever since Euler conjectured in 1782 that N(n) = 1 for n ≡ 2 (mod 4).
It is easily seen that N(2) = 1, and Tarry showed in 1900 that N(6) = 1 [39]. However, in
1959, Euler’s conjecture was shown to be false by the discovery of a 2MOLS(22) [6] and a
2MOLS(10) [35]. In fact, in 1960 it was shown that N(n) ⩾ 2 for all n > 6 [7]. It is also
known that N(n) = n− 1 if and only if a projective plane of order n exists. Projective
planes exist for all prime powers, so the first order for which the value of N(n) is uncertain
is n = 10. It is unknown if N(10) ⩾ 3, and determining the value of N(10) is one of the
most prominent unsolved problems concerning MOLS. In particular, finding a 3MOLS(10)
or proving its nonexistence is a longstanding open problem in combinatorial design theory.

Although it is not known if a 3MOLS(10) exists or not, there are several special
results known about this case. Mann [28] proved that a 10 × 10 Latin square with a
5× 5 Latin subsquare cannot belong to an orthogonal pair, let alone an orthogonal triple.
Parker [36] proved that two orthogonal 10× 10 Latin squares with orthogonal 3× 3 Latin
subsquares cannot be part of an orthogonal triple. Myrvold [33] considered a 10 × 10
Latin square L with a 4× 4 Latin subsquare. She showed that it is possible for L to be
part of an orthogonal pair, and further considered if L can be part of an orthogonal triple.
Myrvold showed that orthogonal mates of L can be classified into seven possible mate
pattern types. Furthermore, if L is in an orthogonal triple the other two squares in the
triple can be classified into twenty-eight mate pattern type pairs. Myrvold ruled out the
existence of twenty of the twenty-eight mate pattern type pairs, and this required only the
consideration of constraints arising from two of the three putative squares. Her work left
open the remaining eight cases:

The most obvious next step in extending the current work is to eliminate the
remaining eight cases from consideration. [33]

We provide a reason why Myrvold’s method was unable to rule out these eight cases, and
show any argument ruling out these cases must necessarily be more involved—because
orthogonal pairs in the remaining eight cases exist (though it is unclear if orthogonal

the electronic journal of combinatorics 33(1) (2026), #P1.30 2



triples in the remaining eight cases exist). Thus, any argument ruling out the remaining
eight cases must necessarily involve the triple as a whole, not only two of the three squares.
We give more background on Latin squares and the formulation of Myrvold’s twenty-eight
cases in Section 2.

Our approach uses a satisfiability (SAT) solver to explicitly construct a 2MOLS(10) in
each of the eight cases that Myrvold left open. Additionally, in under a second of compute
time the SAT solver shows the nonexistence of a 2MOLS(10) in the twenty cases solved
by Myrvold. To use a SAT solver, it is necessary to reduce the problem of searching for
the object in question to the problem of searching for a satisfying assignment to a formula
in Boolean logic representing Myrvold’s framework and cases.

We reduce the problem of finding a 2MOLS(10) in each of Myrvold’s twenty-eight
cases to SAT—see Section 4 for a description of our encoding. We develop a SAT encoding
of orthogonality that relies on an equivalence between the orthogonality of Latin squares
and what Myrvold calls a “transversal representation” Latin square [33]. Myrvold uses
this equivalence for “designing computer programs for exploring squares and their mates”.
We provide a precise duality relating these two concepts via a composition operation on
Latin squares and a generalization of Latin squares where only the columns (and not
necessarily the rows) contain all n symbols (see Section 3). This transversal representation
encoding allowed finding a 2MOLS(10) for all of Myrvold’s previously unsolved cases in a
reasonable amount of computation, even for a single desktop computer. By exploiting the
parallelization ability of a large computing cluster, we were able to solve the hardest of
the eight cases in less than two hours of real time—see Section 5 for more details.

2 Background

We define the notion of transversal representation and relate it to the orthogonality of Latin
squares in Section 2.1. Next, we explain the transversal representation types classified
by Myrvold [33] in Section 2.2, and give a brief description of satisfiability solving in
Section 2.3. Lastly, we give a summary of related work in Section 2.4, with a focus on
work applying automated reasoning tools to solve problems related to Latin squares.

2.1 Transversals and Orthogonality

It is well-known that a Latin square of order n has an orthogonal mate if and only if it
can be decomposed into n disjoint transversals [41]. From the n disjoint transversals, a
new Latin square can be formed by writing each transversal in its row representation
and stacking the rows together. We call such a square a transversal representation of the
original square. An example of a 4× 4 Latin square D with four disjoint transversals and
the associated transversal representation D′ is provided in Figure 1. The pair (D,D′) is
known as a transversal representation pair or TRP.

Although we are primarily interested in Latin squares, in the course of our investigations,
we found that it was helpful to consider the more general case of column-Latin squares.
A column-Latin square of order n is an n× n array filled with n distinct symbols and in

the electronic journal of combinatorics 33(1) (2026), #P1.30 3



1 2 0 3

0 3 1 2

2 1 3 0

3 0 2 1

D =

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

D′ =

Figure 1: A transversal representation pair of Latin squares of order four. Each transversal
of D is highlighted in a different colour, and the row representations of the transversals
are given in D′.

which each column contains distinct symbols (and is thus a permutation), but the rows
are not required to contain distinct symbols. Row-Latin squares are defined similarly:
the rows of the square must contain distinct entries, but the columns might not [24]. It
follows immediately that an n× n array filled with n distinct symbols is a Latin square if
and only if it is both row-Latin and column-Latin. For our purposes, the usefulness of
column-Latin squares stems from the fact that two column-Latin squares can be composed
in a sensible way to form a third column-Latin square which preserves structure related to
orthogonality (see Section 3). Thus, we state most of our results in terms of column-Latin
squares.

The concept of orthogonality of Latin squares translates directly to column-Latin
squares. However, the concept of transversal needs some modification. A generalized
transversal of a column-Latin square of order n must still be a selection of n entries from
each row and column, but the entries may not all be distinct. Figure 2 shows an example
of this generalization; note the generalized transversals highlighted in D1 contain duplicate
entries and therefore are not traditional transversals. However, the row representation
construction can still be used to construct the column-Latin square D′

1 and we refer to
the pair (D1, D

′
1) as a transversal representation pair of column-Latin squares.

0 1 3 2

1 3 2 0

3 2 1 1

2 0 0 3

D1 =

0 0 2 1

1 1 1 3

2 2 3 0

3 3 0 2

D′
1 =

Figure 2: A transversal representation pair of 4× 4 column-Latin squares. Note that the
highlighted entries of D1 are not transversals, but their row representations when placed
in a 4× 4 array do form a column-Latin square.

We now give purely logical definitions of orthogonal pair and transversal representation
and state the definitions in a way that highlights the similarity between the concepts.
Suppose [a0, . . . , an−1] is a row representing a generalized transversal of a column-Latin
square B. This means if i is a row index, j and j′ are two distinct column indices, and
B[i, j] = aj , then B[i, j′] ̸= aj′ (otherwise, both the jth and j′th entries of the generalized
transversal are in row i, which is not allowed in any transversal, generalized or not).

the electronic journal of combinatorics 33(1) (2026), #P1.30 4



Equivalently, if both B[i, j] = aj and B[i, j′] = aj′ , then the only possibility is that j = j′.
This motivates the following definition.

Definition 1. Let A and B be order n column-Latin squares. Row i of A represents a
transversal of B when A[i, j] = B[i′, j] and A[i, j′] = B[i′, j′] imply j = j′. The square A
is said to be a transversal representation of B when each row of A represents a transversal
of B, i.e., for all 0 ⩽ i, i′, j, j′ < n,

A[i, j] = B[i′, j] and A[i, j′] = B[i′, j′] imply j = j′.

Because Definition 1 is symmetric in A and B, A is a transversal representation of B if
and only if B is a transversal representation of A. As before, we say (A,B) is a transversal
representation pair or TRP.

On the other hand, if two column-Latin squares A and B are orthogonal this means
that if (i, j) and (i′, j′) are two distinct (row, column) pairs then (A[i, j], B[i, j]) ̸=
(A[i′, j′], B[i′, j′]). Equivalently, it means that if both A[i, j] = A[i′, j′] and B[i, j] = B[i′, j′],
the only possibility is that (i, j) = (i′, j′). This motivates the following definition.

Definition 2. Let A and B be order n column-Latin squares. A is said to be orthogonal
to B if for all 0 ⩽ i, i′, j, j′ < n,

A[i, j] = A[i′, j′] and B[i, j] = B[i′, j′] imply j = j′.

Note that the equality of j and j′ in Definition 2 also implies the equality of i and i′

because A and B are column-Latin squares. The consequent in Definition 2 thus could
equivalently have been written as the more typical (i, j) = (i′, j′), but we use the simpler
j = j′ in order to highlight the striking similarity between Definitions 1 and 2.

2.2 Transversal Representation Types

We now review Myrvold’s results [33] on the possible transversal representation types of a
10× 10 Latin square L containing a 4× 4 Latin subsquare Ω. Without loss of generality,
we assume the subsquare appears in the bottom-right of L, i.e., in the rows and columns
labeled 6 to 9. We also assume L consists of the symbols from the set {0, 1, 2, . . . , 9} and
Ω consists of symbols from the set {0, 1, 2, 3}. We partition the other regions of L into ∆
(lower-left), Γ (upper-right), and Σ (upper-left) as shown in Figure 3. Since the subsquare
Ω is a Latin square containing symbols from the set {0, 1, 2, 3}, the rectangles ∆ and Γ
must take symbols only from the set {4, 5, 6, . . . , 9} and each row and column of Σ must
contain exactly 6− 4 = 2 symbols from the set {4, 5, 6, . . . , 9}.

Suppose the cells with symbols in {0, 1, 2, 3} are coloured white. A transversal of L
can be of five possible forms depending on how many white cells it takes from the Latin
subsquare Ω. A transversal containing i white cells from Ω (i.e., in its last four columns)
is said to be of form pi (see Figure 3). Since any transversal will contain exactly four
white cells in total, it must contain 4− i white cells in its first six columns. Consider the
entries of pi that were chosen from the first six rows of L (i.e., Σ or Γ). We have 4 − i

the electronic journal of combinatorics 33(1) (2026), #P1.30 5



Ω∆

ΓΣ
p0:

p1:

p2:

p3:

p4:

Figure 3: The Latin square L (left) and its possible transversal types (right). White cells
represent symbols in {0, 1, 2, 3}, light cells represent symbols in the rectangles ∆ and Γ,
and dark cells represent the symbols {4, 5, . . . , 9} in Σ. The cells of Σ are not shown in
absolute positions; in actuality, each row and column of Σ has exactly two dark cells.
Similarly, the transversal types are shown up to a permutation of the first six entries and
the last four entries.

white entries (all from Σ) and 4− i entries from the last four columns of L (i.e., from Γ),
so there are 6− 2(4− i) = 2i− 2 remaining entries. The only possibilities for these are
the nonwhite entries of Σ, and we colour these entries dark. This results in the following
lemma.

Lemma 3 ([33, Lemma 3.1]). A transversal of type pi contains exactly 2i− 2 dark entries.

A simple corollary of Lemma 3 is that p0 is not a possible type, as it would have to contain
−2 dark entries.

Let ni be the number of transversals of type pi in a transversal representation of
L. Simple counting arguments give that the values {n1, n2, n3, n4} satisfy the following
Diophantine linear system.

ni ⩾ 0 nonnegativity of the counts,

n1 + n2 + n3 + n4 = 10 ten total transversals,

n1 + 2n2 + 3n3 + 4n4 = 16 sixteen total symbols in Ω.

There are seven possible solutions to this linear system and correspondingly seven transver-
sal representation types of L. These types are denoted R, S, T, U, V, W, and X by
Myrvold. Table 1 gives the transversal type counts of each case.

Up to ordering, there are
(
7
2

)
= 21 ways of choosing a pair with two different types,

and 7 ways of choosing a pair with matching types, for a total of 28 possible transversal

the electronic journal of combinatorics 33(1) (2026), #P1.30 6



Type n1 n2 n3 n4

R 8 0 0 2
S 7 0 3 0
T 7 1 1 1
U 6 2 2 0
V 6 3 0 1
W 5 4 1 0
X 4 6 0 0

Table 1: A summary of Myrvold’s seven possible transversal types of L.

representation pair combinations. Under the assumption that L is part of an orthogonal
triple, Myrvold [33, Thm 4.4] showed that the only possible pair types that could potentially
be transversal representations of L simultaneously are (S,X), (U,U), (U,W), (U,X), (V,X),
(W,W), (W,X), and (X,X).

2.3 Satisfiability Solving

In this section, we provide some basic preliminaries on Boolean logic and satisfiability
(SAT) solving. A SAT solver is a program that can determine if a Boolean logic formula
can be satisfied—that is, if there is a truth assignment under which the formula becomes
true. In practice, the formulas provided to SAT solvers must be written in conjunctive
normal form (CNF). Formulas in CNF only contain the Boolean connective operators ∧
(and), ∨ (or), and ¬ (not). These operators have meanings similar to those in everyday
English: the formula x∧ y is true if and only if both x and y are true; the formula x∨ y is
true if and only if x or y (or both) are true; and the formula ¬x is true if and only if x is
false.

A literal is a Boolean variable or its negation, i.e., a formula of the form x or ¬x where
x is a Boolean variable. A clause is a disjunction of literals, i.e., a formula of the form
l1 ∨ · · · ∨ lk where l1, . . . , lk are literals. Finally, a formula is in conjunctive normal form
when it is a conjunction of clauses, i.e., a formula of the form c1 ∧ · · · ∧ ck where c1, . . . ,
ck are clauses.

When A is a conjunction of literals and B is a disjunction of literals, we use the notation
A→B as shorthand for ¬A∨B. By basic logic equivalences, the formula (¬

∧
i ai)∨

∨
i bi

is equivalent to
∨

i ¬ai ∨
∨

i bi, which (after applying the simplification ¬¬x ≡ x to any
doubly negated literal) is a clause. Thus, we consider the notation A→B to be shorthand
for a clause when B is a clause and A is a conjunction of literals.

Although there is no guarantee that SAT solvers can solve the SAT problem in a
feasible amount of time, modern SAT solvers are highly effective at solving many kinds of
problems arising in practice [40], including mathematical problems such as the Boolean
Pythagorean triples problem [18] and Lam’s problem of proving the nonexistence of a
projective plane of order ten [10]. Although these problems at first seem unconnected to
logic, they can be reduced to SAT due to the versatility of Boolean logic [11]. Another

the electronic journal of combinatorics 33(1) (2026), #P1.30 7



advantage of using a SAT solver is that they offer a higher amount of confidence in a
computational search. It is typically less error-prone to write a SAT encoding than it
is to write optimized search code, and moreover, the SAT solver itself does not need to
be trusted because it produces a proof certificate which can be later checked by simpler
and independently-written software. This is particularly relevant when purporting to
demonstrate the nonexistence of a mathematical object, such as in Lam’s problem of
proving projective planes of order ten do not exist [22].

Lam’s problem was resolved in 1989 using a massive computer search by Lam, Thiel,
and Swiercz [23]. In 2011, the search was independently performed by Roy [37]. Although
these works are amazing achievements, they both crucially rely on highly optimized
computer code that is essentially impossible to verify for correctness, and the programmers
of the search code were upfront that the code may contain bugs. Indeed, discrepancies
in the results of these searches were later found: a SAT-based search of Bright et al. [10]
found inconsistencies in the intermediate counts provided by Lam et al., implying a small
number of missing subcases in the proof. Also, the independent confirmation of Roy [37]
was based in part on the nonexistence of a partial projective plane later determined to
actually exist [9]. There is no formal proof that Bright et al.’s SAT-based resolution of
Lam’s problem is without error—because the SAT encoding itself is unverified—but it
does have the advantage that no search code has to be trusted.

2.4 Related Work

Extensive searches for a 3MOLS(10) have been performed, and some important cases have
been ruled out. For example, it is known that any such triple must only contain Latin
squares with trivial symmetry groups [30]. Independent computer searches [10, 23, 37]
have revealed that there is no projective plane of order ten, and because a projective
plane of order n is equivalent to a (n− 1)MOLS(n) [8, 32], these searches imply that no
9MOLS(10)s exist or equivalently that N(10) < 9. Together with a result of Bruck [13],
this implies that N(10) ⩽ 6 which is currently the best upper bound known on N(10).

Egan and Wanless [16] enumerate MOLS of small orders, providing counts of orthogonal
mates and classifications up to various equivalence notions for orders n ⩽ 9. They also
present a set of three Latin squares L1, L2, L3 of order 10 that is the closest known to
forming a complete set of MOLS: L1 is orthogonal to both L2 and L3, and 91 out of the
100 symbol pairs are different when L2 and L3 are superimposed. They also showed that
L2 and L3 have seven common disjoint transversals.

Numerous studies have leveraged SAT solving, integer programming, and constraint
programming in order to search for Latin squares of various forms. Appa, Magos, and
Mourtos [2, 3] integrated integer programming and constraint programming to tackle
the problem of searching for mutually orthogonal Latin squares. Their comparative
study against traditional constraint and integer programming algorithms revealed the
effectiveness of combining integer and constraint programming in searching for 2MOLS(n)
for n ⩽ 12 and 3MOLS(n) for n ⩽ 9. Rubin et al. [38] formulated a symmetry breaking
method and also provided an alternative constraint programming encoding based on a
theorem of Mann [27] which performed much better in their search for pairs of orthogonal

the electronic journal of combinatorics 33(1) (2026), #P1.30 8



Latin squares. The SAT encoding that we use in our work can be viewed as a reformulation
of their constraint programming encoding into Boolean satisfiability.

Ma and Zhang [26] use a general-purpose model searching program to find MOLS.
They show a kMOLS(n) exists if and only if there exists a Latin square of order n which
has k − 1 transversal matrices T1, . . . , Tk−1 with any two transversal matrices Ti and
Tj (i ̸= j) being transversal matrices of each other [26, Prop 1]. As a result, instead
of searching for kMOLS(n), they searched for k Latin squares L, T1, . . . , Tk−1 that are
mutual transversal matrices of each other. The initial Latin square L was defined as a
function f : R× C → D on row indices R, column indices C, and symbol set D. Similarly,
the ith transversal matrix Ti (1 ⩽ i ⩽ k − 1) was defined as a function fi : Di × C → R,
where Di is the symbol set of Li, the Latin square represented by the transversal matrix
Ti. The formulae they used for encoding a kMOLS(n) then consist of three types:

1. Formulae to specify that f and fi are Latin squares:

f(x1, y) = f(x2, y)→ x1 = x2, f(x, y1) = f(x, y2)→ y1 = y2,

fi(t1, y) = fi(t2, y)→ t1 = t2, fi(t, y1) = fi(t, y2)→ y1 = y2.

2. Formulae to specify that fi is a transversal matrix of f :

f(fi(t, y1), y1) = f(fi(t, y2), y2)→ y1 = y2.

3. Formulae to ensure that Li and Lj are orthogonal by stating that Ti and Tj are a
transversal representation pair:(

fi(t1, y1) = fj(t2, y1) ∧ fi(t1, y2) = fj(t2, y2)
)
→ y1 = y2.

Our encoding of a transversal representation pair uses formulae that are similar to their first
two types, though our encoding is purely represented as a Boolean satisfiability problem
which does not natively support expressions like f(fi(t, y1), y1). Constraints of type 3
could theoretically be replaced by constraints like those of type 2 (e.g., fi(fj(t, y1), y1) =
fi(fj(t, y2), y2)→ y1 = y2), though it is unclear if this encoding variant was tried by Ma
and Zhang. Our experience suggests that (at least for a SAT solver) it is preferable to
encode a transversal representation pair using constraints of type 2 instead of constraints
of type 3.

A Latin square that is orthogonal to its transpose is known as self-orthogonal and if it is
additionally orthogonal to its anti-diagonal transpose it is known as doubly self-orthogonal.
For orders n ≡ 2 (mod 4), the existence of doubly self-orthogonal Latin squares is unknown
for n > 10. In 2011, Lu et al. [25] proved the nonexistence of a doubly self-orthogonal
Latin square of order ten. They encoded the existence of a doubly self-orthogonal Latin
square of order ten as a SAT problem and proved the nonexistence by showing the resulting
SAT instance was unsatisfiable. To describe their encoding, let A be a self-orthogonal
Latin square of order n, let AT denote the transpose of A, and let A∗ denote the transpose
across the anti-diagonal of A, i.e., AT [x, y] = A[y, x] and A∗[x, y] = A[n− 1− y, n− 1− x]

the electronic journal of combinatorics 33(1) (2026), #P1.30 9



where 0 ⩽ x, y < n. In addition to the properties of a Latin square, they generated the
constraints

(A[x1, y1] = A[x2, y2] ∧ A[y1, x1] = A[y2, x2])

→ (x1 = x2 ∧ y1 = y2), i.e., orthogonality of A and AT , and

(A[x1, y1] = A[x2, y2] ∧ A[n− 1− y1, n− 1− x1] = A[n− 1− y2, n− 1− x2])

→ (x1 = x2 ∧ y1 = y2), i.e., orthogonality of A and A∗.

A Costas array of order n is an n×n grid with n dots and n2−n empty cells, with one
dot in every row and column, and with no two dots sharing the same relative horizontal,
vertical, or diagonal displacement. A Costas Latin square is a Latin square in which the
cells for each symbol form a Costas array; see Figure 4 for an example. Jin et al. [20]

0 1 2 3

1 0 3 2

3 2 1 0

2 3 0 1

Figure 4: An example 4× 4 Costas Latin square.

used SAT solvers to search for Costas Latin squares. They established new existence
and nonexistence results for various types of Costas Latin squares of even orders n ⩽ 10
including orthogonal pairs of Costas Latin squares. In their encoding, they define from
the square A a new square TA by the rule A[i, j] = k → TA[k, j] = i. This makes TA the
(3, 2, 1)-parastrophe of A (the Latin square obtained by swapping the meaning of rows and
symbols), though they refer to TA as a transversal matrix. To encode orthogonality of
(A,B), they impose the constraints

x ̸= y → (TA[u, x] ̸= TB [v, x] ∨ TA[u, y] ̸= TB [v, y]) for 0 ⩽ x, y, u, v < n.

The (3, 2, 1)-parastrophe is also called the column inverse since it can also be obtained by
treating each column as a permutation of [0, . . . , n− 1] and replacing each column with its
inverse [21]. In the rest of this paper, we will use the notation A−1 for the column inverse
of A (see Section 3.1).

A Latin square of order n is idempotent when its diagonal consists of the entries 0,
1, . . . , n − 1 in order, and is symmetric when it is equal to its own transpose. A golf
design of order n is a collection of n− 2 idempotent symmetric Latin squares of order n
that are mutually disjoint, meaning that any two Latin squares in the collection share no
common symbols in any cell (except for the cells along their diagonals). Two golf designs
are orthogonal if every Latin square in one design has an orthogonal mate in the other
design.

Huang et al. [19] investigated the existence of orthogonal golf designs via constraint
programming and satisfiability testing. They reformulated the orthogonal mate finding

the electronic journal of combinatorics 33(1) (2026), #P1.30 10



problem as a transversal finding problem. They constructed the transversal matrix T of a
Latin square L with the constraints

(y1 = y2 ∨ L[T [x, y1], y1] ̸= L[T [x, y2], y2]) for 0 ⩽ x, y1, y2 < n,

and additionally used constraints specifying that T is a Latin square.
Latin squares are known as diagonal if they feature distinct symbols along both the

main and back diagonals. Zaikin and Kochemazov [42] constructed SAT encodings to
discover pairs of orthogonal diagonal Latin squares of order ten and pseudotriples of
orthogonal diagonal Latin squares. A pseudotriple refers to a set of three Latin squares
that nearly form an orthogonal triple, but the orthogonality condition is only required to
hold on a subset of the cells of the Latin squares. They discovered a triple of diagonal
Latin squares of order ten for which the orthogonality condition holds across 73 cells (the
same 73 cells in each Latin square in the triple).

An extended self-orthogonal diagonal Latin square is a diagonal Latin square that is
orthogonal to a diagonal Latin square in its main class—the main class of a Latin square
being the set of Latin squares produced by application of row permutations, column
permutations, symbol permutations, or interchanging the roles of rows, columns, and
symbols. Extended self-orthogonal diagonal Latin squares generalize the notion of self-
orthogonal diagonal Latin squares, since the transpose of a Latin square is always a
member of its main class (obtained by interchanging the roles of rows and columns).
Zaikin, Vatutin, and Bright [43] use a SAT solver to enumerate all extended self-orthogonal
diagonal Latin squares up to order ten and show that in order ten no such squares are part
of an orthogonal triple. Their SAT encoding for orthogonality is based off of the one we
present in this paper relying on a consequence of Mann’s theorem described in Section 3.1.

In a separate recently published paper [12], we use a SAT encoding for orthogonality
based on the one described in Section 4.2 in order to enumerate 2MOLS(10) whose
incidence matrices have at least two nontrivial linear dependencies. This enumeration
had been previously completed using custom-written search code of Delisle [14] and
was motivated by work of Dukes and Howard [15] which classified the kinds of linear
dependencies that could occur in the incidence matrix of a hypothetical set of 4MOLS(10).
Dukes and Howard also showed that the incidence matrix of a 4MOLS(10) must have at
least two nontrivial linear dependencies. Based on a later computational search of Gill
and Wanless [17], it is now known that the incidence matrix of any pair of squares in a
3MOLS(10) must only have trivial linear dependencies. Consequently, the rank of the
linear code generated by any pair of squares in a 3MOLS(10) must be exactly 37.

3 Composition and Duality

In this section, we describe a duality between the concepts of orthogonality and transversal
representation. First, in Section 3.1 we define a composition operation on column-Latin
squares. Then in Section 3.2 we use the composition operation to concisely characterize
the duality.

the electronic journal of combinatorics 33(1) (2026), #P1.30 11



3.1 Composition of Column-Latin Squares

A column-Latin square of order n can be represented by (c0, c1, . . . , cn−1) where cj is the
permutation of [0, . . . , n−1] formed by the jth column. For any two permutations f and g
on the same set, the composition fg is another permutation where (fg)(i) = f(g(i)), i.e.,
applying g then f . The composition of two column-Latin squares F = (f0, . . . , fn−1) and
G = (g0, . . . , gn−1) is defined as

FG = (f0g0, . . . , fn−1gn−1).

The (i, j)th entry of FG is then fjgj(i) = F [G[i, j], j]. The column inverse of a column-
Latin square F , denoted F−1, is the column-Latin square in which each column is the
inverse permutation of the corresponding column of F .

Let e denote the identity column permutation with e(i) = i for 0 ⩽ i < n and
E = (e, . . . , e) the column-Latin square of order n formed by n copies of e. The following
two lemmas appear in Laywine and Mullen [24, pp. 98–99], except stated in terms of
row-Latin squares instead of column-Latin squares.

Lemma 4. Let C be a column-Latin square. Then (C,E) is an orthogonal pair if and
only if C is a Latin square.

Lemma 5. If {C1, C2, . . . , Cm} is a set of mutually orthogonal column-Latin squares, then
for any column-Latin square G, the set {C1G,C2G, . . . , CmG} comprises a set of mutually
orthogonal column-Latin squares.

The next proposition provides criteria establishing a necessary and sufficient condition
for the orthogonality of two column-Latin squares. In particular, the existence of a Latin
square of a certain form guarantees the orthogonality of the two column-Latin squares.
The biconditional statement in the proposition was proven by Mann [27] and also appears
in Norton [34, Thm. 2] and Laywine–Mullin [24, Thm. 6.6], though we strengthen the
proposition by showing that when the squares are Latin (not just column-Latin) the square
providing the guarantee of orthogonality arises as a transversal representation of one of
the original two squares.

Proposition 6. Let C and F be column-Latin squares. Then (C,F ) is an orthogonal pair
if and only if there is a Latin square Z such that ZC = F . Moreover, if in addition, C is
a Latin square, then (Z, F ) is a TRP.

Proof. Suppose Z is a Latin square and ZC = F for column-Latin squares C and F . By
Lemma 4, (Z,E) is an orthogonal pair. By Lemma 5, (ZC,EC) is an orthogonal pair.
Since ZC = F and EC = C, it follows that (F,C) is an orthogonal pair.

Conversely, suppose (C,F ) is an orthogonal pair. Let Z = FC−1 (i.e., ZC = F ). Since
(C,F ) is an orthogonal pair, by Lemma 5, (Z,E) is an orthogonal pair (since FC−1 = Z
and CC−1 = E). By Lemma 4, Z is a Latin square.

We now show that if C is a Latin square and F is a column-Latin square such that
(C,F ) is an orthogonal pair, then (Z, F ), which is equal to (Z,ZC), is a TRP. Suppose

the electronic journal of combinatorics 33(1) (2026), #P1.30 12



that (Z, F ) is not a TRP. Then there exist i, i′, j, j′ ∈ {0, 1, 2, . . . , n− 1} where j ̸= j′

with

Z[i, j] = ZC[i′, j] = Z[C[i′, j], j], and

Z[i, j′] = ZC[i′, j′] = Z[C[i′, j′], j′].

Since Z is a Latin square, the symbols in each of its columns are distinct. Thus, considering
the entries of column j of Z, we must have C[i′, j] = i and C[i′, j′] = i, but C[i′, j] = C[i′, j′]
is a contradiction because the rows of C (in particular, row i′) are permutations, implying
j = j′. Thus (Z, F ) is a TRP.

3.2 Orthogonal Pair / Transversal Representation Duality

We now state a duality between orthogonality and transversal representations. This duality
was already used by Myrvold [33, Thm 1.1], but we show how the duality can be concisely
formulated in terms of the composition operation on column-Latin squares—a convenient
viewpoint that we were unable to find in the literature. Roughly speaking, Lemmas 7
and 8 are the analogue of Lemmas 4 and 5 with “orthogonal pair” replaced by “transversal
representation pair”.

Lemma 7. Let C be a column-Latin square. Then (C,E) is a TRP if and only if C is a
Latin square.

Proof. Let C be a column-Latin square and (C,E) be a TRP. It is enough to show that
rows of C are each an n-permutation. Assume, for a contradiction, that this is not the case.
Then for some 0 ⩽ i, j, j′, k < n with j ̸= j′, C[i, j] = k = C[i, j′]. Since E is a transversal
representation of C, row i of C has its t-th symbol from column t of E. Therefore, the
symbol k is on two different rows of E, which contradicts the definition of E. Therefore,
rows of C are each an n-permutation, and consequently, C is a Latin square.

Conversely, suppose C is a Latin square. Since all symbols are distinct on each row of
C and the same on each row of E, then each row of C takes symbols from distinct rows
and columns of E and the t-th symbol on each row is from column t of E. Thus E is a
transversal representation of C. It follows that (C,E) is a TRP.

Lemma 8. Let {C1, C2, . . . , Cm} be a set of mutual TRPs of column-Latin squares, then
for any column-Latin square G, the set {GC1, GC2, . . . , GCm} comprises mutual TRPs.

Proof. It is enough to prove this statement for a set of two column-Latin squares. The
columns of GC1 and GC2 are compositions of two permutations, therefore GC1 and GC2

are column-Latin squares. Assume, for a contradiction, that this is not the case. Suppose
there exist i, i′, j, j′ ∈ {0, 1, 2, . . . , n− 1} where j ̸= j′ with

GC1[i, j] = GC2[i
′, j] and GC1[i, j

′] = GC2[i
′, j′].

Thus by equality of the symbols

G[C1[i, j], j] = G[C2[i
′, j], j] and G[C1[i, j

′], j′] = G[C2[i
′, j′], j′].

the electronic journal of combinatorics 33(1) (2026), #P1.30 13



Since G is a column-Latin square, the uniqueness of symbols in its columns provides that

C1[i, j] = C2[i
′, j] and C1[i, j

′] = C2[i
′, j′].

Since (C1, C2) is a TRP, we have j = j′. This contradicts our assumption. Thus (GC1, GC2)
is a TRP. Therefore, the set consists of mutual TRPs.

Proposition 9. Let C and F be column-Latin squares. Then (C,F ) is a TRP if and only
if there is a Latin square Z such that CZ = F . Moreover, if C is a Latin square, then Z
is orthogonal to F .

Proof. Assume there exists a Latin square Z such that CZ = F . By Lemma 7, (Z,E) is a
TRP. By Lemma 8, (C,F ), which is equal to (CE,CZ), is a TRP.

Conversely, assume (C,F ) is a TRP. Let Z = C−1F . Since (C,F ) is a TRP and
(C−1C,C−1F ) = (E,Z), by Lemma 8, (E,Z) is a TRP. Thus (E,Z) is a TRP. We have
that Z is a Latin square by Lemma 7.

Now we prove that if C is a Latin square, Z and F are orthogonal. Assume, for a
contradiction, that (Z, F ) (where F = CZ) is not an orthogonal pair, i.e., there exist i, i′,
j, j′ ∈ {0, 1, 2, . . . , n− 1} with j ̸= j′ for which

Z[i, j] = Z[i′, j′] and F [i, j] = F [i′, j′].

The second equation implies C[Z[i, j], j] = C[Z[i′, j′], j′] an equality between two symbols
in rows j and j′ of C, which, after using the first equation, yields C[Z[i, j], j] = C[Z[i, j], j′].
Since C is a Latin square, its rows are permutations, which implies j = j′ and contradicts
the assumption that j ̸= j′. Therefore, (Z, F ) must be an orthogonal pair.

The following result describes the equivalence between a set of mutually orthogonal
column-Latin squares and a set of mutually TRPs. The correctness of our SAT encoding
relies on this equivalence.

Theorem 10 (cf. [33]). Let C denote a set {C1, . . . , Cr} of r column-Latin squares of
order n.

(a) If C contains mutually orthogonal squares, then the set

{Z1, . . . , Zr : Z1 = C1, Zt = C1C
−1
t for 2 ⩽ t ⩽ r }

contains mutual TRPs.

(b) If C consists of mutual TRPs, then the set

{Y1, . . . , Yr : Y1 = C1, Yt = C−1
t C1 for 2 ⩽ t ⩽ r }

contains mutually orthogonal pairs.

the electronic journal of combinatorics 33(1) (2026), #P1.30 14



Proof. For (a), suppose the set {Ci : 1 ⩽ i ⩽ r } consists of mutually orthogonal column-
Latin squares of order n. Construct a set of r squares {Zi : 1 ⩽ i ⩽ r } by letting
Z1 = C1 and Zt = C1C

−1
t for 2 ⩽ t ⩽ r. Proposition 6 gives that each Zt, 2 ⩽ t ⩽ r is

a Latin square; further it ensures that (Z1, Zt) is a TRP. Observe that ZtCtC
−1
s = Zs

for 2 ⩽ t, s ⩽ r where t ≠ s. Since both Ct and C−1
s are column-Latin squares, their

composition is a column-Latin square. Thus (Zt, Zs) for 2 ⩽ t, s ⩽ r where t ̸= s, being a
TRP also follows from Proposition 6.

For (b), suppose the set {Ci : 1 ⩽ i ⩽ r } consists of column-Latin squares of order n
such that any two squares form a TRP. Construct a set of r squares {Yi : 1 ⩽ i ⩽ r }
by letting Y1 = C1 and Yt = C−1

t C1 for 2 ⩽ t ⩽ r. Proposition 9 gives that each Yt,
2 ⩽ t ⩽ r is a Latin square; and that Y1 and Yt are orthogonal. Observe that C−1

s CtYt = Ys

for 2 ⩽ t, s ⩽ r where t ≠ s. Since both C−1
s and Ct are column-Latin squares, their

composition is a column-Latin square. Therefore, Yt being orthogonal to Ys for 2 ⩽ t, s ⩽ r
where t ̸= s also follows from Proposition 9.

4 Encoding and Implementation

In this section we describe our encoding of the problem of constructing transversal
representation pairs (TRPs) into a Boolean satisfiability problem and how we use our
encoding to search for TRPs for each of Myrvold’s 28 possible types described in Section 2.2.
Recall that Myrvold’s 28 types describe TRPs (P,Q) for which P and Q are each transversal
representations of a Latin square L of order n = 10 containing a 4× 4 Latin subsquare.

To reduce the existence of the n× n square P into Boolean logic, we use n3 Boolean
variables Pi,j,k (for 0 ⩽ i, j, k < n) with Pi,j,k denoting the fact that the (i, j)th entry of P
is k. Similarly, another n3 Boolean variables Qi,j,k for 0 ⩽ i, j, k < n represent the entries
of the square Q.

Once these variables have been defined, we need to specify constraints that P and Q are
Latin squares (see Section 4.1), are a transversal representation pair (see Section 4.2), and
conform to one of Myrvold’s 28 types (see Section 4.3). Additionally, we ensure that the
white entries in the last four columns of P and Q appear in a way that is consistent with a
4× 4 Latin subsquare Ω being in a square L having mutual transversal representations P
and Q (see Section 4.4). We also describe a method of symmetry breaking which reduces
the size of the search space by adding additional constraints which hold without loss of
generality (see Section 4.5). Finally, once we have found a collection of TRPs, we run a
postprocessing step on them, ensuring that the TRPs are pairwise inequivalent and that
they cannot be extended to a set of three mutual TRPs (see Section 4.6). Our encoding
scripts are written in Python and are freely available at doi.org/10.5281/zenodo.18130631.

4.1 Latin Square Constraints

First, we need to describe constraints on the variables Pi,j,k (meaning that P [i, j] = k)
asserting that P is a Latin square. Direct methods for doing this from the definition of a
Latin square are well known and widely used; e.g., see (10.1)–(10.4) in Zhang’s survey [44].

the electronic journal of combinatorics 33(1) (2026), #P1.30 15

https://doi.org/10.5281/zenodo.18130631


The direct method asserts that every cell of P contains at least one symbol and at most
one symbol, i.e.,∨

0⩽i<n

Pp,q,i and
∧

0⩽i<j<n

(¬Pp,q,i ∨ ¬Pp,q,j) for all 0 ⩽ p, q < n.

Additionally, every column of P contains n distinct symbols,∨
0⩽i<n

Pi,q,r and
∧

0⩽i<j<n

(¬Pi,q,r ∨ ¬Pj,q,r) for all 0 ⩽ q, r < n,

and similarly every row of P contains n distinct symbols,∨
0⩽i<n

Pp,i,r and
∧

0⩽i<j<n

(¬Pp,i,r ∨ ¬Pp,j,r) for all 0 ⩽ p, r < n.

This encoding uses what is known as the binomial or pairwise encoding of the exactly
one predicate [29] and uses 3n2

((
n
2

)
+ 1

)
clauses in total. While this encoding gave good

performance, in our experiments we got slightly better performance with the cardinality
constraint encoding of Bailleux and Boufkhad [4]. Their encoding reduces a constraint like
x1 + · · ·+ xn = r (where r is a fixed integer between 0 and n and we think of the Boolean
xis as {0, 1} variables) into conjunctive normal form. Using this encoding we specify that
P is a Latin square with the cardinality constraints∑

0⩽i<n

Pp,q,i = 1,
∑
0⩽i<n

Pi,p,q = 1,
∑
0⩽i<n

Pp,i,q = 1 for all 0 ⩽ p, q < n,

and a similar encoding can be used to specify that Q is also a Latin square.

4.2 Transversal Representation Constraints

The direct encoding that (P,Q) is a TRP using the contrapositive of Definition 1 would be

(Pi,j,k ∧ Pi,j′,k′ ∧Qi′,j,k)→¬Qi′,j′,k′ for all 0 ⩽ i, i′, j, j′, k, k′ < n with j < j′.

This is because if row i of P has its jth entry as k and its (j′)th entry as k′, then in
whatever row of Q which has its jth entry as k (one such row must exist since Q is a
Latin square) that row cannot have its (j′)th entry as k′, or that row wouldn’t represent a
transversal. However, this encoding uses n4

(
n
2

)
= Θ(n6) clauses of length 4 which is not

ideal in practice. Instead, our encoding that (P,Q) is a TRP will assert the existence
of the Latin square Z = P−1Q and by Proposition 9 this implies that P and Q are a
transversal representation pair.

As before, the entries of the square Z are encoded via n3 new variables Zi,j,k (with
0 ⩽ i, j, k < n) and Z is enforced to be a Latin square using the same encoding described
in Section 4.1. Now we need to enforce the relationship Q = PZ, which means that the

the electronic journal of combinatorics 33(1) (2026), #P1.30 16



(i, j)th entry of Q is equal to the (i′, j)th entry of P , where i′ = Z[i, j]. Letting k represent
the (i, j)th entry of Q, this gives the constraints

(Zi,j,i′ ∧ Pi′,j,k)→Qi,j,k for all 0 ⩽ i, i′, j, k < n.

Moreover, because P = QZ−1 and Z = P−1Q, we similarly derive the constraints

(Zi,j,i′ ∧Qi,j,k)→ Pi′,j,k for all 0 ⩽ i, i′, j, k < n,

(Pi′,j,k ∧Qi,j,k)→ Zi,j,i′ for all 0 ⩽ i, i′, j, k < n.

These last two kinds of constraints are technically redundant, but we found that they
tended to improve the performance of the solving in practice.

Thus, our encoding that (P,Q) is a TRP uses 3n4 clauses and the 3n2 cardinality
constraints

∑
i Zi,j,k =

∑
i Zj,k,i =

∑
i Zj,i,k = 1 for all 0 ⩽ j, k < n. Altogether, this TRP

encoding uses Θ(n4) clauses of length at most 3, and in practice this is preferable to the
Θ(n6) clauses of length 4 used by the direct encoding.

A similar Θ(n4) clause encoding was previously derived by Zhang (see [44, Lemma 2]),
for ensuring the orthogonality of a pair (A,B) of Latin squares of order n. Zhang’s
encoding for orthogonality uses a new predicate Φ(i, j, k) introduced via a clever trick
and Zhang mentions that “It is a challenge to develop a method which can automatically
generate the predicates like Φ. . . ” [45]. Zhang does not view Φ as a square, but viewing
Φ(i, j, k) as asserting that Φ[i, j] = k, Zhang uses constraints saying that Φ’s columns have
distinct symbols and that the entries of A and B determine Φ’s entries. Following our
notation, Zhang uses constraints of the form

(Ai,j,k ∧Bi,j,ℓ)→ Φ(i, k, ℓ), for all 0 ⩽ i, j, k, ℓ < n.

In light of the above and Proposition 6, this means that not only is Φ itself a Latin
square, it can be naturally viewed as a transversal representation of one of the original
Latin squares and conveniently expressed via a composition square.1 Viewing Φ as a
composition square, one can derive additional constraints on Φ using this extra structure
(e.g., the entries of A and Φ determine the entries of B). As previously mentioned, such
constraints are technically redundant, but tended to help the efficiency of the solver in our
experiments.

4.3 Colour Constraints

We now describe how we encode that the square P is one of Myrvold’s eight types described
in Table 1; an identical encoding is used for Q. In order to do this, we need to be able to
specify the colour of each cell in the square P to be either white, light, or dark. Let w and
d represent fixed symbols that are not in our symbol set {0, . . . , n− 1}.
1The constraints used by Zhang causes the columns of Φ to represent transversals of B and for Φ to
be the composition square BA−1 where the composition and inverse are defined row-wise instead of
column-wise like in the rest of this paper.

the electronic journal of combinatorics 33(1) (2026), #P1.30 17



We let the Boolean variable Pi,j,w represent that the (i, j)th entry of P is white, and let
the Boolean variable Pi,j,d represent that the (i, j)th entry of P is dark. Otherwise, if both
Pi,j,w and Pi,j,d are false, then the (i, j)th entry of P will be light. Note that dark variables
are only necessary in the first six columns, since no dark entries appear in the last four
columns (see Figure 3). Additionally, the position of the dark cells in the first six columns
completely determines the position of the white cells in the first six columns—the whites
containing the symbols {4, . . . , 9} not darkly coloured—making the variables Pi,j,w only
necessary for j ⩾ 6. Altogether, we introduce n2 new variables encoding the colours of P .

To ensure the symbols {0, . . . , 3} are coloured white, we use the clauses

Pi,j,r → Pi,j,w for all 0 ⩽ i < n, 6 ⩽ j < n, and 0 ⩽ r < 4,

and conversely to ensure that only symbols {0, . . . , 3} are coloured white we use Pi,j,w →∨
0⩽r<4 Pi,j,r for all 0 ⩽ i < n and 6 ⩽ j < n. Similarly, to ensure that only symbols

{4, . . . , 9} are coloured dark, we use the clauses

Pi,j,d →
∨

4⩽r<n

Pi,j,r for all 0 ⩽ i < n and 0 ⩽ j < 6.

Recall that a transversal is said to be of type pk when it has k whites in its last four
entries. By Lemma 3, transversals of type pk will also have 2k − 2 dark entries in its first
six entries. Thus, in order to specify that row i in P is of type pk, we use the constraints∑

0⩽j<6

Pi,j,d = 2k − 2 and
∑

6⩽j<n

Pi,j,w = k.

Here, like in Section 4.1, we think of Boolean variables as taking {0, 1} values and encode
the cardinality constraints with the encoding of Bailleux and Boufkhad [4]. We also know
that each of the first six columns of P contain exactly two dark entries, so we use the
cardinality constraints ∑

0⩽i<n

Pi,j,d = 2 for all 0 ⩽ j < 6.

Similarly, we also use n2 Boolean variables Qi,j,w and Qi,j,d to represent the colours
of the square Q and add similar constraints to those above (using the Qi,j,w and Qi,j,d

variables in place of the Pi,j,w and Pi,j,d variables). We now have specified a coloured TRP
(P,Q) with each of P and Q conforming to any of Myrvold’s types R, S, . . . , X selected
in advance. However, because P and Q are both transversal representations of the same
coloured square L, it is important that their colours be consistent between themselves. In
particular, the two entries coloured dark in each of the first six columns of P must match
the two entries coloured dark in each of the first six columns of Q. (The white colours
always match as they correspond exactly to the symbols {0, 1, 2, 3}, so if the dark colours
match then so must the light colours.)

Suppose the (i, j)th entry of P has symbol k and is coloured dark. Then, in order for
the colouring to be consistent, the entry of Q in the jth column having symbol k must
also be coloured dark. The symbol k must exist in the jth column of Q because Q is a

the electronic journal of combinatorics 33(1) (2026), #P1.30 18



Latin square, so say this happens in row i′. Then to express the consistency of the colours
in P and Q we use the constraints

(Pi,j,k ∧ Pi,j,d ∧Qi′,j,k)→Qi′,j,d for all 0 ⩽ i, i′ < n, 0 ⩽ j < 6, and 4 ⩽ k < n.

Although not strictly necessary, we also add constraints deriving the colour of cell (i, j) in
P from the colour of cell (i′, j) in Q, giving the constraints

(Pi,j,k ∧Qi′,j,d ∧Qi′,j,k)→ Pi,j,d for all 0 ⩽ i, i′ < n, 0 ⩽ j < 6, and 4 ⩽ k < n.

4.4 Consistency with the 4 × 4 Subsquare Ω

Recall Myrvold’s seven transversal representation types of a Latin square L are under the
assumption that L has a 4× 4 Latin subsquare Ω. As described in Section 2.2, we assume
that the subsquare Ω contains the symbols {0, 1, 2, 3} and appears in the lower-right of L.
There are two possibilities for Ω up to isotopism, where two Latin squares are isotopic if
one can be transformed into the other by row, column, or symbol permutations [30]. The
two possibilities for Ω up to isotopism are the Cayley tables of Z4 and Z2 × Z2, and we
assume that Ω is either

Ω1 :=

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

, or Ω2 :=

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

.

Since we are searching for Latin squares P and Q that are both transversal representations
of L, this restricts the possible locations for the white entries in the last four columns of
P and Q. For example, if either Ω1 or Ω2 is the lower-right subsquare of L, then since P
is a transversal representation of L, it cannot be the case that P [i, 6] = 0 and P [i, 7] = 1,
regardless of the row i chosen. This is because the 0 in column 6 of L and the 1 in column 7
of L appear in the same row and therefore cannot appear in the same transversal.

Noting that the first row of Ω1 and Ω2 are both [0, 1, 2, 3], we add the clauses

Pi,j,j−6 →¬Pi,j′,j′−6 for all 0 ⩽ i < n and 6 ⩽ j < j′ < n,

and use similar clauses for Q. Generalizing this, let ω1 be a Boolean variable that is true
when Ω1 is to be used in L, and let ω2 be a Boolean variable that is to be true when Ω2 is
to be used in L. We add the clauses

(ω1 ∧ Pi,j,Ω1[i′,j−6])→¬Pi,j′,Ω1[i′,j′−6]

(ω2 ∧ Pi,j,Ω2[i′,j−6])→¬Pi,j′,Ω2[i′,j′−6]

for all 0 ⩽ i < n, i′ ∈ {1, 2, 3}, and 6 ⩽ j < j′ < n, and use similar clauses for Q.
Specifying either Ω1 or Ω2 is to be used in L is done with the clause ω1∨ω2. If a particular
subsquare Ω1 or Ω2 is desired, it can be enforced with either the unit clause ω1 or the unit
clause ω2.

the electronic journal of combinatorics 33(1) (2026), #P1.30 19



4.5 Symmetry Breaking

The ordering of rows of a transversal representation square is arbitrary in the sense that if
P is a transversal representation of Q, then the rows of P can be freely permuted while
preserving the fact that it is a transversal representation of Q. Similarly, the rows of Q
may also be permuted. Columns may not be permuted independently, but if (P,Q) is a
TRP and the same permutation of columns is applied to both P and Q simultaneously,
then the resulting new pair will also be a TRP. Similarly, the same permutation of symbols
applied to both squares in a TRP maintains the property of the pair being a TRP. Since
we have already supposed that the symbols in the lower-right 4× 4 submatrix of L are in
{0, 1, 2, 3}, in order to not disturb this structure all permutations on symbols will operate
on {0, 1, 2, 3} and {4, . . . , 9} independently. Similarly, we only use permutations of the
first six and last four columns when transforming a TRP into the normal form defined
below.

By a coloured TRP we mean one whose cells have been assigned the colours {white, light,
dark} corresponding to Myrvold’s types from Section 2.2. If (P,L) is a coloured TRP
where L has been coloured corresponding to Figure 3, then permutations of the rows of P
will also permute the colour positions in P . Similarly, permutations of the columns of P
and L simultaneously will permute the colour positions in (P,L), whereas permuting the
symbols {4, . . . , 9} or {0, 1, 2, 3} in (P,L) will not permute the colour positions in (P,L).

Row permutations of P , row permutations of Q, column permutations of the first six or
last four columns of (P,Q), and symbol permutations of the first four or last six symbols
of (P,Q) generate a group G of size 10!2 · 6!2 · 4!2 ≈ 4 · 1021. We call two coloured TRPs
equivalent if one can be transformed to the other using operations in G. The large size of
G means that our search space contains a large number of TRPs that are equivalent. This
artificially increases the size of the search space, and we would like to constrain the search
space in order to limit the search to as few representatives from each equivalence class as
possible—this is known as symmetry breaking. We are able to remove many representatives
from the search by only searching for TRPs in the normal form defined below.

Definition 11. A coloured TRP (P,Q) is in normal form if the rows of each square are
sorted by transversal type (i.e., if row i has type pk and row i′ ⩾ i has type pk′ then
k ⩽ k′), all the rows of the same transversal type are sorted in increasing lexicographic
order, and the first row of P is one of

0 1 2 4 5 6 3 7 8 9 ,

0 1 3 4 5 6 2 7 8 9 , or

0 2 3 4 5 6 1 7 8 9 .

In Theorem 13, we demonstrate that every equivalence class of TRPs of the kind we
are looking for contains at least one TRP in normal form. First, we prove a simple lemma
used in the proof of Theorem 13.

the electronic journal of combinatorics 33(1) (2026), #P1.30 20



Lemma 12. Suppose Ω is a Latin square of order 4. Then Ω is isotopic to either Ω1

or Ω2. In either case, Ω can be transformed into Ω1 or Ω2 without permuting column 0 or
symbol 0.

Proof. There are exactly two Latin squares of order 4 up to isotopy (Ω1 and Ω2) and a
total of four reduced Latin squares of order 4 (i.e., with entries in the first row and column
appearing in sorted order) [30]. The two additional reduced Latin squares of order four
are both isotopic to Ω1 and are given by

Ω3 :=

0 1 2 3

1 0 3 2

2 3 1 0

3 2 0 1

, and Ω4 :=

0 1 2 3

1 3 0 2

2 0 3 1

3 2 1 0

.

If Ω is isotopic to Ω2, it can be transformed into reduced form by using row permutations
to put 0 in the upper-left corner, then symbol permutations of {1, 2, 3} to make the first
row [0, 1, 2, 3], and then permuting the last three rows to transform the first column into
[0, 1, 2, 3]. Since there is only one reduced Latin square of order 4 isotopic to Ω2, this must
transform Ω to Ω2.

Otherwise, if Ω is isotopic to Ω1, use row and symbol permutations as above to
transform it into reduced form, thereby transforming it into Ω1, Ω3, or Ω4. To transform
Ω3 into Ω1, swap columns 1 and 2, rows 1 and 2, and symbols 1 and 2. To transform Ω4

into Ω1, swap columns 2 and 3, rows 2 and 3, and symbols 2 and 3.

Theorem 13. Suppose (P,Q), (P,L), and (Q,L) are coloured TRPs where L contains
a 4× 4 Latin subsquare and is coloured according to Figure 3. Then (P,Q) is equivalent
to a coloured TRP in normal form and the lower-right 4× 4 Latin subsquare in L can be
taken to be either Ω1 or Ω2.

Proof. Let (P,Q) be a coloured TRP satisfying the preconditions of the theorem that we
want to transform to a pair in normal form. First, permute the rows of P to put together
rows of the same transversal type pi (for i ∈ {1, 2, 3, 4}) such that all rows of type pk come
before all rows of type pk′ when k < k′. Next, permute the rows of Q in a similar fashion
so the rows of Q are also sorted by transversal type.

Since all square types contain transversals of type p1, and none contain transversals of
type p0, the above sorting process implies the first row of P is of type p1. Now use column
permutations of the first six columns (and the last four columns) to position the colours of
the first row of P in the following order: 3 white, 3 light, 1 white, 3 light. Following this,
if the symbol of P in the upper-left corner is not symbol 0, use a symbol permutation to
make it 0.

By Lemma 12, we can now use symbol permutations of {1, 2, 3}, simultaneous permu-
tations of the last three columns of (P,Q, L), and row permutations in L to ensure that
the lower-right 4× 4 subsquare of L is either Ω1 or Ω2. Row permutations of L, symbol
permutations of {1, 2, 3}, and column permutations of the last three columns will not
disturb the colouring of the first row of P or the fact P [0, 0] = 0.

the electronic journal of combinatorics 33(1) (2026), #P1.30 21



Afterward, apply permutations of the symbols {4, . . . , 9} to P , Q, and L simultaneously
to put the light entries of the first row of P into normal form. If P [0, 1] and P [0, 2] are not
in ascending order, use a column permutation to sort them. As a result, the first three
entries of the first row of P are now [0, 1, 2], [0, 1, 3], or [0, 2, 3], so the first row of P is in
one of the three cases given in Definition 11.

Finally, within each subset of rows of the same transversal type of P (and independently
Q), permute the rows so they appear in increasing lexicographic order. The first row of P
already begins with the symbol 0, so it will not be moved.

Thus, without loss of generality we can assume the TRP we are searching for is in
normal form and so we add extra constraints into our encoding to enforce this. Fixing the
lightly coloured entries in the first row of P and the (0, 0)th symbol of P can be done by
adding appropriate unit clauses (clauses of length 1), namely,

P0,0,0 ∧
∧

3⩽j⩽5

P0,j,j+1 ∧
∧

7⩽j⩽9

P0,j,j.

The remaining entries in the first row of P are determined by the value of P [0, 6], giving
the constraints

P0,6,3 → (P0,1,1 ∧ P0,2,2), P0,6,2 → (P0,1,1 ∧ P0,2,3), and P0,6,1 → (P0,1,2 ∧ P0,2,3).

Each constraint x→ (y ∧ z) is broken into two clauses of length two (x→ y and x→ z).
Although not strictly necessary, clauses for other facts about the white entries in the first
row of P , such as P0,1,2 → P0,2,3, are also included.

Enforcing the fact that rows are sorted by transversal type is done with the cardinality
constraints discussed in Section 4.3, as these constraints allow us to fix which rows are of
which types. For example, suppose that P is of type R, meaning that P consists of eight
transversals of type p1 and two transversals of type p4. Then we would enforce the first
eight rows of P to be of type p1 with Pi,6,w + · · ·+ Pi,9,w = 1 and Pi,0,d + · · ·+ Pi,5,d = 0 for
0 ⩽ i < 8, and the last two rows of P to be of type p4 with Pi,6,w + · · · + Pi,9,w = 4 and
Pi,0,d + · · ·+ Pi,5,d = 6 for i = 8 and 9.

Finally, we enforce that rows with the same transversal type in P are sorted in
lexicographic order by ensuring their initial entries are increasing. For example, suppose
rows i and i + 1 of P have the same transversal type. Then we add the constraint
Pi,0,k →¬Pi+1,0,l for all 0 ⩽ l < k < n, which says that the initial entry of row i+ 1 of P
cannot be smaller than the initial entry of row i. We add the same constraints for Q as
well.

4.6 Postprocessing

As we will describe in Section 5, the encoding presented thus far successfully found
many TRPs (P,Q) corresponding to Myrvold’s eight unsolved cases. We performed some
postprocessing on these pairs to check if they were extendable to a triple of mutual
transversal representations and also to check the pairs for equivalence.

the electronic journal of combinatorics 33(1) (2026), #P1.30 22



First, we used a SAT solver to check all pairs (P,Q) for extendability to a triple. This
was done by creating new SAT instances for each pair encoding both squares P and Q,
along with a new Latin square L, and then asserting that (L, P ) is a TRP and (L,Q)
is a TRP by using the encoding described in Section 4.2 twice. The entries of P and
Q were specified using unit clauses; i.e., if P [i, j] = k then the clause Pi,j,k was added
to the SAT instance. Because of the presence of so many unit clauses these instances
were highly constrained and in all cases were shown by the SAT solver to be unsatisfiable
within 0.1 seconds. Thus, no pairs we found were extendable to a triple. However, this
does not eliminate the possibility that there might exist a triple (P,Q, L) corresponding
to some of Myrvold’s cases, because we did not exhaustively enumerate all (P,Q)s for any
of Myrvold’s unsolved types.

Finally, we checked all the TRPs (P,Q) that we found to see if any were equivalent to
each other. This was done by converting the TRP into its orthogonal pair representation
(P−1Q,Q), reducing the orthogonal pair to a graph using the reduction given by Egan and
Wanless [16], and finally checking the graphs for equivalence using the graph isomorphism
tool nauty [31].

Precisely, the reduction from a (k − 2)MOLS(n) to a graph is described using what is
known as an orthogonal array. An orthogonal array for a (k − 2)MOLS(n) is a matrix O
of size n2 × k, with entries in {0, . . . , n− 1}, with every possible pair of symbols appearing
exactly once in any two columns of O. Define an undirected graph GO corresponding to
O. The vertices of GO are of three types:

• k type 1 vertices that correspond to the columns of O,

• kn type 2 vertices that correspond to the symbols in each of the columns of O, and

• n2 type 3 vertices that correspond to the rows of O.

Each type 1 vertex is joined to the n type 2 vertices that correspond to the symbols in its
column. Each type 3 vertex is connected to the k type 2 vertices that correspond to the
symbols in its row. Vertices are coloured according to their type so that isomorphisms are
not allowed to change the type of a vertex.

After forming the graphs corresponding to all TRPs (P,Q) we found, nauty determined
that no two graphs were isomorphic. Thus, we have confirmation that the SAT solver is
indeed exploring different parts of the search space and that multiple inequivalent TRPs
exist corresponding to Myrvold’s unsolved cases. However, we did not attempt to perform
an exhaustive search for TRPs in any of Myrvold’s unsolved cases. Given the enormity of
the search space, and the fact that no solutions were repeated even after several hundred
solutions had already been found, we suspect that an exhaustive search would require
a huge amount of additional computational resources or at least some more restrictive
properties that could be applied to Myrvold’s unsolved cases.

the electronic journal of combinatorics 33(1) (2026), #P1.30 23



5 Results

We now discuss the results of our computational investigation into Myrvold’s results. The
computations were performed using the SAT solver Kissat 4.0.4 [5] run on AMD EPYC
Zen 5 processors running at 2.7 GHz and equipped with 1 GiB of memory.

Recall Myrvold showed [33, Thm 4.4], if P and Q are both transversal representations
of a Latin square of order ten containing a subsquare of order four, then up to ordering
there are twenty-eight possible cases for P and Q and twenty of these cases can be ruled
out. The eight possible cases Myrvold left remaining are (S,X), (U,U), (U,W), (U,X),
(V,X), (W,W), (W,X), and (X,X).

We used our SAT encoding to generate twenty-eight SAT instances, one for each of
Myrvold’s cases. The twenty cases ruled out by Myrvold were each found to be unsatisfiable
in under 0.2 seconds. The eight cases left open by Myrvold were all considerably harder
to solve, but each was found to be satisfiable, explaining why Myrvold was unable to
eliminate these eight cases from consideration. Kissat stops solving as soon as it finds
a satisfying assignment of the provided instance, and we use the satisfying assignment
reported by Kissat to form a coloured TRP in each of the eight cases (see the Appendix
for explicit examples of TRPs in each case).

Because the satisfiable cases were significantly more difficult than the unsatisfiable
cases, we found it useful to exploit parallelization when solving the satisfiable instances.
We started 49 independent Kissat processes for each satisfiable case and each process was
run on one processor core for up to one week. Each process was provided with a different
random seed, so no two copies of Kissat would make the same choices during the solving
process. Each process was terminated if Kissat did not find a solution within a week.
Results from these searches are available in Table 2, and a scatterplot of the running times
is given in Figure 5. There is a significant amount of variance in the running times, but in
general the case (U,U) was the easiest to solve and the case (X,X) was the hardest to
solve.

We summarize some statistical information about the TRPs we found in Table 3. In
particular, for each pair type we provide the number of TRPs found that are compatible
with the 4×4 subsquares Ω1 and Ω2 in L. In case (V,X), the solver was able to show there
are no TRPs consistent with the choice Ω1 in under 0.2 seconds. This can be explained by
the fact that the square Ω1 has no transversals—it follows that Ω1 is inconsistent with
square type V, because the white entries in a row of type p4 must represent a transversal
in Ω.

Usually the TRPs we found were consistent with only one of Ω1 or Ω2, but two TRPs
were consistent with both choices of Ω simultaneously. Both were of type (X,X) and one
of these TRPs is provided as the example (X,X) pair in the appendix. Also listed in
Table 3 are the minimum and maximum number of transversals and mates in each of the
squares in the TRPs we found. It also reports on the number of common transversals in
the TRPs (i.e., transversals of both squares in the TRP whose row representation is the
same in both). Most TRPs had no common transversals, and none had more than two
common transversals. This is an indication that the TRPs we found are not very close

the electronic journal of combinatorics 33(1) (2026), #P1.30 24



to extending to a triple of mutual TRPs, since for (P,Q) to extend to a triple of mutual
TRPs, P and Q must have at least n common transversals.

pair type mean median min max
(U,U) 31102.1 19619.4 748.6 98009.2
(S,X) 58780.5 38453.2 2282.4 175005.1
(U,W) 75043.9 56171.4 2659.8 399428.7
(W,W) 139198.5 97661.6 1662.1 timeout
(V,X) 147169.2 114191.0 2567.7 timeout
(U,X) 140560.4 117378.6 327.8 timeout
(W,X) 222515.7 176970.4 527.3 timeout
(X,X) 429809.6 580524.5 6747.1 timeout

Table 2: A summary of the running times (in seconds) of the instances for each of the
eight pair types with solutions. Each pair type had 49 independently-solved SAT instances
and were run with a one week timeout. The timeouts were included in the computation of
each statistic and counted as running for a full week.

pair type # solved #Ω1 #Ω2 transversals mates common trans.
(U,U) 49 9 40 776–900 1–6 0–1
(S,X) 49 27 22 768–948 1–7 0–1
(U,W) 49 19 30 744–912 1–5 0–0
(W,W) 48 25 23 764–900 1–5 0–1
(V,X) 48 0 48 756–940 1–8 0–2
(U,X) 48 20 28 724–924 1–6 0–1
(W,X) 46 23 23 772–924 1–9 0–2
(X,X) 25 13 14 772–912 1–5 0–1

Table 3: A summary of the TRPs we found using 49 independently-solved SAT instances
for each pair type. The table includes the number of solved SAT instances, the number of
TRPs compatible with the 4× 4 subsquares Ω1 and Ω2, and the minimum and maximum
number of transversals, mates, and common transversals appearing in the TRPs.

6 Conclusion

In this paper we use a satisfiability (SAT) solver to investigate Myrvold’s nonexistence
results [33] on orthogonal triples of Latin squares of order ten. The SAT solver almost
instantaneously rules out the cases that Myrvold ruled out, and more significantly, the SAT
solver provides explicit examples of Latin square pairs in each of the cases that Myrvold
was unable to rule out—providing an explanation for why Myrvold was unable to rule out

the electronic journal of combinatorics 33(1) (2026), #P1.30 25



UU SX UW WW VX UX WX XX
Pair Type

0

20

40

60

80

100

120

140

160

Ti
m

e 
in

 H
ou

rs

Running Times of Instances Solved

Figure 5: A scatterplot of the solver’s running time for each pair type. The median running
time is shown as a solid black line. Timeouts are not plotted but are used in determining
the median.

these cases and determining a negative resolution to the following question left open by
Myrvold:

Possibly, with a bit more ingenuity, the remaining cases can be eliminated.

We show that pairs exist in the remaining cases, and so eliminating the remaining cases
with “a bit more ingenuity” is probably not achievable—at the very least, any argument
required to eliminate the remaining cases would need to be more sophisticated in having
to rely on the existence of the third square, L. We were also able to show that requiring
compatibility with the 4× 4 Latin subsquare in L is not by itself sufficient to rule out any
of the remaining cases. It would be interesting to know if some of the remaining cases
could be ruled out by considering additional structure in L, but we leave this as future
work.

In order to derive a concise and effective SAT encoding for our search we make use of a
duality between orthogonal Latin squares and transversal representation pairs. Although
such a duality has long been used in searches for Latin squares, we also give an explicit
formulation of how this duality arises via a composition operation on Latin squares. We
found this viewpoint useful when deriving our encoding and surprisingly we were not able
to find it expressed in prior literature.

Acknowledgements

We thank the reviewers for their detailed feedback which improved the paper. In particular,
a reviewer pointed out the possibility of adding constraints enforcing that the transversal
representation pair is consistent with the 4×4 Latin subsquare in L. We also thank Tanbir
Ahmed for his help during the editing process.

the electronic journal of combinatorics 33(1) (2026), #P1.30 26



References

[1] Abel, R.J.R., Colbourn, C.J., Dinitz, J.H.: Mutually orthogonal Latin squares
(MOLS). In: Handbook of Combinatorial Designs, pp. 186–218. Chapman and
Hall/CRC (2006). doi:10.1201/9781420010541

[2] Appa, G., Magos, D., Mourtos, I.: Searching for mutually orthogonal Latin squares
via integer and constraint programming. European Journal of Operational Research
173(2), 519–530 (2006). doi:10.1016/j.ejor.2005.01.048

[3] Appa, G., Mourtos, I., Magos, D.: Integrating constraint and integer program-
ming for the orthogonal Latin squares problem. In: Van Hentenryck, P. (ed.)
Principles and Practice of Constraint Programming - CP 2002. Lecture Notes
in Computer Science, vol. 2470, pp. 17–32. Springer Berlin Heidelberg (2002).
doi:10.1007/3-540-46135-3_2

[4] Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality constraints.
In: Rossi, F. (ed.) Principles and Practice of Constraint Programming – CP 2003.
Lecture Notes in Computer Science, vol. 2833, pp. 108–122. Springer Berlin Heidelberg
(2003). doi:10.1007/978-3-540-45193-8_8

[5] Biere, A., Fleury, M.: Gimsatul, IsaSAT and Kissat entering the SAT competition
2022. Proc. of SAT Competition: Solver and Benchmark Descriptions, 2022 pp. 10–11
(2022), https://helda.helsinki.fi/handle/10138/359079

[6] Bose, R.C., Shrikhande, S.S.: On the falsity of Euler’s conjecture about the non-
existence of two orthogonal Latin squares of order 4t+ 2. Proceedings of the National
Academy of Sciences 45(5), 734–737 (1959). doi:10.1073/pnas.45.5.734

[7] Bose, R.C., Shrikhande, S.S., Parker, E.T.: Further results on the construction of
mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Canadian
Journal of Mathematics 12, 189–203 (1960). doi:10.4153/cjm-1960-016-5

[8] Bose, R.C.: On the application of the properties of Galois fields to the problem of
construction of Hyper-Græco-Latin squares. Sankhyā: The Indian Journal of Statistics
3(4), 323–338 (1938), http://www.jstor.org/stable/40383859

[9] Bright, C., Cheung, K., Stevens, B., Roy, D., Kotsireas, I., Ganesh, V.: A nonexistence
certificate for projective planes of order ten with weight 15 codewords. Applicable
Algebra in Engineering, Communication and Computing 31(3–4), 195–213 (2020).
doi:10.1007/s00200-020-00426-y

[10] Bright, C., Cheung, K.K.H., Stevens, B., Kotsireas, I., Ganesh, V.: A SAT-based
resolution of Lam’s problem. Proceedings of the AAAI Conference on Artificial
Intelligence 35(5), 3669–3676 (2021). doi:10.1609/aaai.v35i5.16483

[11] Bright, C., Gerhard, J., Kotsireas, I., Ganesh, V.: Effective problem solving using
SAT solvers. In: Gerhard, J., Kotsireas, I. (eds.) Maple in Mathematics Education and
Research. Communications in Computer and Information Science, vol. 1125, pp. 205–
219. Springer International Publishing (2020). doi:10.1007/978-3-030-41258-6_15

the electronic journal of combinatorics 33(1) (2026), #P1.30 27

https://doi.org/10.1201/9781420010541
https://doi.org/10.1016/j.ejor.2005.01.048
https://doi.org/10.1007/3-540-46135-3_2
https://doi.org/10.1007/978-3-540-45193-8_8
https://helda.helsinki.fi/handle/10138/359079
https://doi.org/10.1073/pnas.45.5.734
https://doi.org/10.4153/cjm-1960-016-5
http://www.jstor.org/stable/40383859
https://doi.org/10.1007/s00200-020-00426-y
https://doi.org/10.1609/aaai.v35i5.16483
https://doi.org/10.1007/978-3-030-41258-6_15


[12] Bright, C., Keita, A., Stevens, B.: Orthogonal Latin squares of order 10 with two
relations: A SAT investigation. Discrete Mathematics, Algorithms and Applications
(2025). doi:10.1142/s1793830925501563, to appear

[13] Bruck, R.H.: Finite nets. II. Uniqueness and imbedding. Pacific Journal of Mathe-
matics 13(2), 421–457 (1963). doi:10.2140/pjm.1963.13.421

[14] Delisle, E.: The Search for a Triple of Mutually Orthogonal Latin Squares of Order
Ten: Looking Through Pairs of Dimension Thirty-Five and Less. Master’s thesis,
University of Victoria (2010), http://hdl.handle.net/1828/2964

[15] Dukes, P., Howard, L.: Group divisible designs in MOLS of order ten. Designs, Codes
and Cryptography 71(2), 283–291 (2012). doi:10.1007/s10623-012-9729-8

[16] Egan, J., Wanless, I.M.: Enumeration of MOLS of small order. Mathematics of
Computation 85(298), 799–824 (2015). doi:10.1090/mcom/3010

[17] Gill, M.J., Wanless, I.M.: Pairs of MOLS of order ten satisfying non-
trivial relations. Designs, Codes and Cryptography 91(4), 1293–1313 (2023).
doi:10.1007/s10623-022-01149-6

[18] Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) Theory and Applications of Satisfiability Testing – SAT 2016. Lecture Notes in
Computer Science, vol. 9710, pp. 228–245. Springer International Publishing (2016).
doi:10.1007/978-3-319-40970-2_15

[19] Huang, P., Liu, M., Ge, C., Ma, F., Zhang, J.: Investigating the existence of orthogonal
golf designs via satisfiability testing. In: Proceedings of the 2019 International
Symposium on Symbolic and Algebraic Computation. pp. 203–210. ISSAC ’19, ACM
(2019). doi:10.1145/3326229.3326232

[20] Jin, J., Lv, Y., Ge, C., Ma, F., Zhang, J.: Investigating the existence of Costas
Latin squares via satisfiability testing. In: Li, C.M., Manyà, F. (eds.) Theory
and Applications of Satisfiability Testing – SAT 2021. Lecture Notes in Com-
puter Science, vol. 12831, pp. 270–279. Springer International Publishing (2021).
doi:10.1007/978-3-030-80223-3_19

[21] Keedwell, A.D., Dénes, J.: Latin Squares and their Applications, Second Edition.
Elsevier (2015). doi:10.1016/c2014-0-03412-0

[22] Lam, C.W.H.: The search for a finite projective plane of order 10. The American Math-
ematical Monthly 98(4), 305–318 (1991). doi:10.1080/00029890.1991.12000759

[23] Lam, C.W.H., Thiel, L., Swiercz, S.: The non-existence of finite projective
planes of order 10. Canadian Journal of Mathematics 41(6), 1117–1123 (1989).
doi:10.4153/cjm-1989-049-4

[24] Laywine, C.F., Mullen, G.L.: Discrete Mathematics Using Latin Squares, vol. 49.
John Wiley & Sons (1998)

[25] Lu, R., Liu, S., Zhang, J.: Searching for doubly self-orthogonal Latin squares. In:
Lee, J. (ed.) Principles and Practice of Constraint Programming – CP 2011. Lecture

the electronic journal of combinatorics 33(1) (2026), #P1.30 28

https://doi.org/10.1142/s1793830925501563
https://doi.org/10.2140/pjm.1963.13.421
http://hdl.handle.net/1828/2964
https://doi.org/10.1007/s10623-012-9729-8
https://doi.org/10.1090/mcom/3010
https://doi.org/10.1007/s10623-022-01149-6
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1145/3326229.3326232
https://doi.org/10.1007/978-3-030-80223-3_19
https://doi.org/10.1016/c2014-0-03412-0
https://doi.org/10.1080/00029890.1991.12000759
https://doi.org/10.4153/cjm-1989-049-4


Notes in Computer Science, vol. 6876, pp. 538–545. Springer Berlin Heidelberg (2011).
doi:10.1007/978-3-642-23786-7_41

[26] Ma, F., Zhang, J.: Finding orthogonal Latin squares using finite model
searching tools. Science China Information Sciences 56(3), 1–9 (2011).
doi:10.1007/s11432-011-4343-3

[27] Mann, H.B.: The construction of orthogonal Latin squares. The Annals of Mathemat-
ical Statistics 13(4), 418–423 (1942). doi:10.1214/aoms/1177731539

[28] Mann, H.B.: On orthogonal Latin squares. Bulletin of the American Mathematical
Society 50(4), 249–257 (1944). doi:10.1090/s0002-9904-1944-08127-5

[29] Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints.
In: Bessière, C. (ed.) Principles and Practice of Constraint Programming – CP 2007.
Lecture Notes in Computer Science, vol. 4741, pp. 483–497. Springer Berlin Heidelberg
(2007). doi:10.1007/978-3-540-74970-7_35

[30] McKay, B.D., Meynert, A., Myrvold, W.: Small Latin squares, quasigroups, and loops.
Journal of Combinatorial Designs 15(2), 98–119 (2006). doi:10.1002/jcd.20105

[31] McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal of Symbolic
Computation 60, 94–112 (2014). doi:10.1016/j.jsc.2013.09.003

[32] Moore, E.H.: Tactical memoranda I-III. American Journal of Mathematics 18(3),
264 (1896). doi:10.2307/2369797

[33] Myrvold, W.: Negative results for orthogonal triples of Latin squares of or-
der 10. Journal of Combinatorial Mathematics and Combinatorial Computing
29, 95–106 (1999), https://combinatorialpress.com/article/jcmcc/Volume%

20029/vol-029-paper%207.pdf

[34] Norton, D.: Groups of orthogonal row-latin squares. Pacific Journal of Mathematics
2(3), 335–341 (1952). doi:10.2140/pjm.1952.2.335

[35] Parker, E.T.: Orthogonal Latin squares. Proceedings of the National Academy of
Sciences 45(6), 859–862 (1959). doi:10.1073/pnas.45.6.859

[36] Parker, E.: On orthogonal Latin squares. 1960 Institute on Finite Groups 6, 43–36
(1962). doi:10.1090/pspum/006/0132704

[37] Roy, D.J.: Confirmation of the Non-existence of a Projective Plane of Order 10.
Master’s thesis, Carleton University (2011). doi:10.22215/etd/2011-09202

[38] Rubin, N., Bright, C., Cheung, K., Stevens, B.: Improving integer and con-
straint programming for Graeco–Latin squares. In: 2021 IEEE 33rd Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI). IEEE (2021).
doi:10.1109/ictai52525.2021.00096

[39] Tarry, G.: Le problème des 36 officiers. Association Française pour l’Avancement des
Sciences: Compte Rendu de la 29me session en Paris 1900 2, 170–203 (1901)

[40] Vardi, M.Y.: Boolean satisfiability: theory and engineering. Communications of the
ACM 57(3), 5 (2014). doi:10.1145/2578043

the electronic journal of combinatorics 33(1) (2026), #P1.30 29

https://doi.org/10.1007/978-3-642-23786-7_41
https://doi.org/10.1007/s11432-011-4343-3
https://doi.org/10.1214/aoms/1177731539
https://doi.org/10.1090/s0002-9904-1944-08127-5
https://doi.org/10.1007/978-3-540-74970-7_35
https://doi.org/10.1002/jcd.20105
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.2307/2369797
https://combinatorialpress.com/article/jcmcc/Volume%20029/vol-029-paper%207.pdf
https://combinatorialpress.com/article/jcmcc/Volume%20029/vol-029-paper%207.pdf
https://doi.org/10.2140/pjm.1952.2.335
https://doi.org/10.1073/pnas.45.6.859
https://doi.org/10.1090/pspum/006/0132704
https://doi.org/10.22215/etd/2011-09202
https://doi.org/10.1109/ictai52525.2021.00096
https://doi.org/10.1145/2578043


[41] Wanless, I.: Transversals in Latin squares: A survey. In: Chapman, R. (ed.)
Surveys in Combinatorics 2011. pp. 403–437. Cambridge University Press (2011).
doi:10.1017/cbo9781139004114.010

[42] Zaikin, O., Kochemazov, S.: The search for systems of diagonal Latin squares using
the SAT@home project. International Journal of Open Information Technologies
3(11), 4–9 (2015), http://injoit.org/index.php/j1/article/view/239

[43] Zaikin, O., Vatutin, E., Bright, C.: Enumerating extended self-orthogonal diagonal
Latin squares of order up to 10. Journal of Integer Sequences 28(7) (2025), https:
//cs.uwaterloo.ca/journals/JIS/VOL28/Zaikin/zaikin4.html, article 25.7.4

[44] Zhang, H.: Specifying Latin square problems in propositional logic. In: Veroff, R.
(ed.) Automated reasoning and Its Applications: Essays in Honor of Larry Wos. pp.
115–146. MIT Press, Cambridge, Massachusetts (1997), https://dl.acm.org/doi/
10.5555/271101.271124

[45] Zhang, H.: Combinatorial designs by SAT solvers. In: Handbook of Satisfiability. pp.
819–858. IOS Press (2021). doi:10.3233/faia201005

the electronic journal of combinatorics 33(1) (2026), #P1.30 30

https://doi.org/10.1017/cbo9781139004114.010
http://injoit.org/index.php/j1/article/view/239
https://cs.uwaterloo.ca/journals/JIS/VOL28/Zaikin/zaikin4.html
https://cs.uwaterloo.ca/journals/JIS/VOL28/Zaikin/zaikin4.html
https://dl.acm.org/doi/10.5555/271101.271124
https://dl.acm.org/doi/10.5555/271101.271124
https://doi.org/10.3233/faia201005


Appendix

In this appendix we provide eight explicit pairs we found which prove the existence of
TRPs for Myrvold’s eight unresolved cases [33].

0 1 3 4 5 6 2 7 8 9

1 6 9 2 3 4 0 8 5 7

3 8 2 1 7 5 6 4 9 0

4 2 7 0 1 8 3 9 6 5

5 0 8 9 2 3 7 1 4 6

7 3 0 5 9 1 4 6 2 8

8 5 1 6 0 2 9 3 7 4

2 4 5 7 6 9 8 0 3 1

6 9 4 3 8 7 1 5 0 2

9 7 6 8 4 0 5 2 1 3

type S

2 6 1 4 7 3 5 9 0 8

4 9 3 5 2 0 6 8 7 1

7 1 2 9 0 4 8 5 6 3

8 0 5 3 1 6 4 2 9 7

0 5 7 8 3 9 1 4 2 6

1 4 6 0 9 5 7 3 8 2

3 7 9 6 8 1 2 0 4 5

5 3 4 2 6 8 9 7 1 0

6 8 0 7 4 2 3 1 5 9

9 2 8 1 5 7 0 6 3 4

type X

0 1 2 4 5 6 3 7 8 9

1 7 8 0 4 2 5 9 3 6

2 9 7 1 8 3 0 4 6 5

3 5 0 7 2 4 6 8 9 1

4 2 6 3 0 9 7 1 5 8

9 6 1 2 3 7 8 5 0 4

5 8 3 6 9 1 4 0 2 7

8 3 4 9 1 5 2 6 7 0

6 0 9 5 7 8 1 2 4 3

7 4 5 8 6 0 9 3 1 2

type U

0 3 6 1 9 7 5 8 4 2

2 5 1 8 0 6 4 9 7 3

3 0 4 6 8 2 7 5 1 9

6 9 2 0 1 4 8 3 5 7

8 7 0 3 5 1 9 2 6 4

9 2 3 7 4 0 1 6 8 5

1 6 5 4 7 3 2 0 9 8

7 1 8 5 3 9 6 4 2 0

4 8 9 2 6 5 0 7 3 1

5 4 7 9 2 8 3 1 0 6

type U

the electronic journal of combinatorics 33(1) (2026), #P1.30 31



0 2 3 4 5 6 1 7 8 9

1 4 6 0 9 2 3 8 5 7

2 3 5 9 0 8 7 4 6 1

5 6 7 1 3 0 8 2 9 4

6 0 1 2 8 5 4 9 7 3

7 5 0 3 4 1 9 6 2 8

8 7 2 5 1 9 6 3 4 0

9 1 4 8 2 7 0 5 3 6

3 8 9 7 6 4 2 0 1 5

4 9 8 6 7 3 5 1 0 2

type U

0 3 7 2 4 9 5 8 1 6

1 5 3 7 2 8 6 9 0 4

3 7 1 6 5 2 0 4 9 8

5 0 4 9 1 3 2 6 8 7

9 2 6 3 8 0 7 1 4 5

2 4 8 1 6 5 9 7 3 0

6 1 5 0 7 4 8 3 2 9

7 9 2 8 3 6 4 0 5 1

8 6 9 4 0 1 3 5 7 2

4 8 0 5 9 7 1 2 6 3

type W

0 1 2 4 5 6 3 7 8 9

1 3 8 2 6 4 7 5 9 0

2 8 9 5 3 1 4 0 7 6

5 9 0 1 2 7 8 6 3 4

7 0 4 3 1 9 2 8 6 5

9 5 3 7 0 2 6 1 4 8

3 4 7 6 8 0 5 9 2 1

6 7 1 0 4 8 9 3 5 2

4 6 5 8 9 3 0 2 1 7

8 2 6 9 7 5 1 4 0 3

type U

0 5 9 1 8 3 7 4 6 2

3 2 1 5 6 7 0 8 4 9

5 3 6 4 1 0 9 2 7 8

6 4 0 8 3 2 1 7 9 5

1 9 3 6 4 5 2 0 8 7

2 7 8 3 9 6 5 1 0 4

4 8 2 0 7 9 6 5 3 1

7 1 5 9 0 4 8 3 2 6

8 6 4 7 2 1 3 9 5 0

9 0 7 2 5 8 4 6 1 3

type X

0 2 3 4 5 6 1 7 8 9

1 3 7 5 0 9 4 8 2 6

3 0 2 9 6 8 5 1 4 7

4 6 1 8 2 0 7 9 5 3

5 1 0 3 9 7 2 4 6 8

7 5 4 0 1 3 8 6 9 2

2 7 8 6 3 4 9 0 1 5

6 8 9 2 7 1 3 5 0 4

9 4 5 1 8 2 6 3 7 0

8 9 6 7 4 5 0 2 3 1

type V

0 3 4 9 8 1 7 2 6 5

1 5 0 8 6 2 9 7 3 4

2 6 3 0 9 8 4 5 7 1

4 1 5 2 3 9 0 6 8 7

3 8 7 6 2 5 1 4 9 0

5 9 2 4 7 0 8 3 1 6

6 4 8 7 0 3 2 1 5 9

7 0 6 1 5 4 3 9 2 8

8 2 9 5 1 7 6 0 4 3

9 7 1 3 4 6 5 8 0 2

type X

the electronic journal of combinatorics 33(1) (2026), #P1.30 32



0 2 3 4 5 6 1 7 8 9

1 3 7 6 2 9 4 0 5 8

2 7 1 5 0 4 8 9 3 6

3 5 4 0 8 1 7 6 9 2

8 0 2 3 9 7 5 1 6 4

4 1 6 8 3 5 9 2 0 7

5 8 9 7 1 2 6 3 4 0

6 9 0 1 7 8 3 4 2 5

9 4 5 2 6 3 0 8 7 1

7 6 8 9 4 0 2 5 1 3

type W

0 3 5 8 1 7 2 4 9 6

2 0 6 1 5 9 7 8 4 3

5 9 3 2 4 1 8 0 6 7

6 1 2 5 8 0 4 3 7 9

9 7 0 4 3 2 5 6 1 8

1 5 8 3 6 4 9 7 2 0

3 8 1 9 7 6 0 2 5 4

4 2 7 0 9 8 6 5 3 1

8 6 4 7 2 3 1 9 0 5

7 4 9 6 0 5 3 1 8 2

type W

0 1 3 4 5 6 2 7 8 9

1 5 0 2 7 9 8 6 4 3

2 6 9 0 8 1 3 4 7 5

3 2 5 7 0 4 1 8 9 6

7 9 1 8 2 3 5 0 6 4

4 0 7 5 6 2 9 3 1 8

5 4 2 3 9 8 6 1 0 7

6 7 8 9 1 0 4 5 3 2

8 3 6 1 4 5 7 9 2 0

9 8 4 6 3 7 0 2 5 1

type W

6 1 7 2 0 8 3 9 5 4

7 3 0 5 9 1 4 2 8 6

8 7 2 0 3 4 5 6 1 9

9 0 5 1 8 3 6 7 4 2

0 2 4 8 6 9 7 1 3 5

1 6 8 4 2 5 0 3 9 7

2 8 1 7 4 6 9 5 0 3

3 4 6 9 5 2 8 0 7 1

4 5 9 3 1 7 2 8 6 0

5 9 3 6 7 0 1 4 2 8

type X

0 1 3 4 5 6 2 7 8 9

1 7 6 3 2 8 5 9 4 0

2 9 1 5 6 3 7 8 0 4

6 2 9 8 3 1 4 0 7 5

3 6 0 7 8 4 9 2 5 1

4 5 2 9 7 0 3 1 6 8

5 8 4 0 1 7 6 3 9 2

7 0 5 2 4 9 8 6 1 3

8 4 7 1 9 2 0 5 3 6

9 3 8 6 0 5 1 4 2 7

type X

0 7 2 8 1 5 9 6 3 4

3 2 5 4 0 8 7 1 9 6

6 8 0 2 7 3 1 5 4 9

8 9 3 0 4 1 5 2 6 7

1 0 4 7 9 6 3 8 2 5

2 6 9 3 5 7 0 4 1 8

4 3 7 5 2 9 6 0 8 1

5 4 1 6 8 0 2 9 7 3

7 1 8 9 6 2 4 3 5 0

9 5 6 1 3 4 8 7 0 2

type X

the electronic journal of combinatorics 33(1) (2026), #P1.30 33


	Introduction
	Background
	Transversals and Orthogonality
	Transversal Representation Types
	Satisfiability Solving
	Related Work

	Composition and Duality
	Composition of Column-Latin Squares
	Orthogonal Pair / Transversal Representation Duality

	Encoding and Implementation
	Latin Square Constraints
	Transversal Representation Constraints
	Colour Constraints
	Consistency with the 44 Subsquare 
	Symmetry Breaking
	Postprocessing

	Results
	Conclusion

