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Abstract

A graph G is k-locally sparse if for each vertex v ∈ V (G), the subgraph induced
by its neighborhood contains at most k edges. Alon, Krivelevich, and Sudakov
showed that for f > 0 if a graph G of maximum degree ∆ is ∆2/f -locally-sparse,
then χ(G) = O (∆/ log f). We introduce a more general notion of local sparsity by
defining graphs G to be (k, F )-locally-sparse for some graph F if for each vertex
v ∈ V (G) the subgraph induced by the neighborhood of v contains at most k copies
of F . Employing the Rödl nibble method, we prove the following generalization
of the above result: for every bipartite graph F , if G is (k, F )-locally-sparse, then
χ(G) = O

(
∆/ log

(
∆k−1/|V (F )|)). This improves upon results of Davies, Kang,

Pirot, and Sereni who consider the case when F is a path. Our results also recover
the best known bound on χ(G) when G is K1,t,t-free for t ⩾ 4, and hold for list and
correspondence coloring in the more general so-called “color-degree” setting.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

All graphs considered are finite, undirected, and simple. A coloring of a graph G =
(V (G), E(G)) is a function φ : V (G) → N, and it is proper if φ(x) ̸= φ(y) whenever
xy ∈ E(G). The chromatic number of a graph G, denoted χ(G), is the smallest size
of a set C ⊆ N such that G has a proper coloring φ : V (G) → C. Determining χ(G)
for various classes of graphs has been a central topic in graph theory. In this paper, we
generalize and extend several results which bound χ(G) when G satisfies various local
sparsity conditions.

1.1 Preliminaries

For k ∈ R, we say G is k-locally-sparse if for each v ∈ V (G), the subgraph induced by
N(v) contains at most ⌊k⌋ edges (letting k ∈ R as opposed to k ∈ N permits us to state
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results more cleanly by allowing us to avoid taking floors). Molloy and Reed showed that
if a graph G is locally sparse, then χ(G) can be bounded from above as follows:

Theorem 1 ([32, Lemma 2]). For every δ > 0, there is ε > 0 such that for ∆ ∈ N
sufficiently large (in terms of δ and ε), if G is a (1−δ)

(
∆
2

)
-locally-sparse graph of maximum

degree ∆, then χ(G) ⩽ (1− ε)(∆ + 1).

Alon, Krivelevich, and Sudakov generalized this result, giving an asymptotic improve-
ment when the parameter f below is large (for example, when f = Θ(∆)1).

Theorem 2 ([4, Theorem 1.1]). There exists a constant C > 0 such that for ∆ ∈ N
sufficiently large and all f > 1, if G is a ∆2

f
-locally-sparse graph of maximum degree ∆,

then χ(G) ⩽ C∆/ log f .

In the same paper, they show the above is tight up to the value of C [4, Proposition
1.2]. Davies, Kang, Pirot, and Sereni proved Theorem 2 holds with C = 1/2+o(1), which
remains the best known bound for this problem [14, Theorem 5]; we note that this result
holds in the more general setting of correspondence coloring (see §1.2 for a description of
this setting).

For graphs F and G, a copy of F in G is a subgraph H ⊆ G (not necessarily induced)
which is isomorphic to F . We say a graph G is F -free if G contains no copies of F . As a
corollary to Theorem 2, Alon, Krivelevich, and Sudakov showed the following, where for
t ⩾ 1, K1,t,t is the complete triparite graph with set sizes 1, t, t:

Corollary 3 ([4]). Let t ⩾ 1. Fix an arbitrary graph F ⊆ K1,t,t. Then there exists a real
value cF > 0 such that if G is an F -free graph of maximum degree ∆, then

χ(G) ⩽ (cF + o∆(1))
∆

log∆
.

An outline of their proof goes as follows: if F ⊆ K1,t,t and G is F -free, then the
neighborhood of each vertex in G does not contain Kt,t as a subgraph. The celebrated
Kővári–Sós–Turán Theorem below then implies the neighborhood of each vertex contains
relatively few edges:

Theorem 4 (Kővári–Sós–Turán [28]; see also Hyltén-Cavallius [21]). Let G be a bipartite
graph with a bipartition V (G) = X ⊔ Y , where |X| = m, |Y | = n, and m ⩾ n. Suppose
that G does not contain a complete bipartite subgraph with s vertices in X and t vertices
in Y . Then

|E(G)| ⩽ s1/tm1−1/tn+ tm.

Thus when G is F -free, G is k-locally-sparse for k = Θt

(
∆2−1/t

)
, allowing Theorem 2

to be applied, completing the proof. This result led Alon, Krivelevich, and Sudakov to
conjecture that Corollary 3 holds for all graphs F , not just F ⊆ K1,t,t.

1Throughout this work, we use the standard asymptotic notation O(·), Ω(·), o(·), etc.
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Conjecture 5 ([4, Conjecture 3.1]). Fix an arbitrary graph F . Then there exists a real
value cF > 0 such that if G is F -free and has maximum degree ∆, then

χ(G) ⩽ (cF + o∆(1))
∆

log∆
.

This conjecture has spurred a large research effort; we summarize the progress toward
it in §2.1. In this paper, we introduce a more general notion of local sparsity:

Definition 6. Let F be a graph and let k ∈ R. A graph G is (k, F )-sparse if G contains
at most ⌊k⌋ copies of F (not necessarily vertex-disjoint). A graph G is (k, F )-locally-
sparse if, for every v ∈ V (G), the induced subgraph G[N(v)] is (k, F )-sparse.

As a graph G is k-locally-sparse if and only if it is (k,K2)-locally-sparse, this definition
generalizes the usual notion of local sparsity. The case of (k, Pt)-locally-sparse graphs
(where Pt is the path on t vertices) was investigated by Davies, Kang, Pirot, and Sereni.
While this result was not stated explicitly in their paper, they discuss the bound in section
4.

Theorem 7 ([13]). For every t ⩾ 2, ε > 0, there exist ∆0 ∈ N and C > 0 such that
whenever ∆ ⩾ ∆0, the following holds: Let k ⩾ 1/2 and let G be a (k, Pt)-locally-sparse
graph of maximum degree ∆. If k ⩽ ∆2/C, then

χ(G) ⩽ (1 + ε)
∆

log(∆/
√
k)
.

By taking t = 2, this bound matches their earlier result [14, Theorem 5] (which
improves upon the constant factor of Theorem 2). However, for constant t > 2, the
neighborhood of a vertex of a graph with maximum degree ∆ can contain Θt (∆

t) copies
of Pt. As ∆

2 ≪ ∆t for large t, there is wide room to improve the range of k in Theorem 7.
Our main theorem improves upon Theorem 7 in three ways: first, we consider all

bipartite graphs F rather than just paths Pt; second, we consider the range k ⩽ ∆|V (F )|/10,
which is an improvement for |V (F )| ⩾ 20; finally, we provide an asymptotic improvement
on the dependence of χ(G) on k. This improvement is stated below:

Theorem 8. For every ε > 0 and every bipartite graph F , the following holds for ∆ large
enough (in terms of ε and F ). Let 1/2 ⩽ k ⩽ ∆|V (F )|/10 and let C be defined as follows:

C :=

{
4 + ε, if k ⩽ ∆ε|V (F )|/200,
8, otherwise.

Let G be a (k, F )-locally-sparse graph of maximum degree ∆. Then,

χ(G) ⩽
C∆

log (∆ k−1/|V (F )|)
.

We note that Theorem 8 holds in the more general so-called “color-degree” setting for
list coloring and correspondence coloring, which is new even for F = K2; see Theorem 13.
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1.2 List coloring, correspondence coloring, and the color-degree setting

Introduced independently by Vizing [39] and Erdős, Rubin, and Taylor [19], list coloring
is a generalization of graph coloring in which each vertex is assigned a color from its own
predetermined list of colors. Formally, L : V (G) → 2N is a list assignment for G, and
an L-coloring of G is a proper coloring φ : V (G) → N such that φ(v) ∈ L(v) for each
v ∈ V (G). When |L(v)| ⩾ q for each v ∈ V (G), where q ∈ N, we say L is q-fold. The list
chromatic number of G, denoted χℓ(G), is the smallest q such that G has an L-coloring
for every q-fold list assignment L for G.

It is often convenient to view list coloring from a different perspective. Given a graph
G and a list assignment L for G, we create an auxiliary graph H as follows:

V (H) := {(v, c) ∈ V (G)× N : c ∈ L(v)}
E(H) := {{(v, c), (u, d)} : vu ∈ E(G), c = d}}.

We call H a cover graph of G, and the pair (L,H) a list cover of G. An L-coloring of
G is then an independent set I in H which satisfies |I| = |V (G)|, and, for each vertex
v ∈ V (G), there exists c ∈ N such that (v, c) ∈ I. Thus I selects exactly one vertex of
the form (v, c) for each v ∈ V (G).

Correspondence coloring (also known as DP-coloring) is a generalization of list
coloring introduced by Dvořák and Postle [17] in order to solve a question of Borodin. Just
as in list coloring, each vertex is assigned a list of colors, L(v); in contrast to list coloring,
though, the identifications between the colors in the lists are allowed to vary from edge to
edge. That is, each edge uv ∈ E(G) is assigned a matching Muv (not necessarily perfect
and possibly empty) from L(u) to L(v). A proper correspondence coloring is a mapping
φ : V (G) → N satisfying φ(v) ∈ L(v) for each v ∈ V (G) and φ(u)φ(v) /∈ Muv for each
uv ∈ E(G). Formally, correspondence colorings are defined in terms of an auxiliary graph
known as a correspondence cover of G.

Definition 9 (Correspondence Cover). A correspondence cover of a graph G is a pair
H = (L,H), where H is a graph and L : V (G) → 2V (H) such that:

(CC1) The set {L(v) : v ∈ V (G)} forms a partition of V (H),

(CC2) For each v ∈ V (G), L(v) is an independent set in H, and

(CC3) For each u, v ∈ V (G), the edge set of H[L(u) ∪ L(v)] forms a matching, which
is empty if uv /∈ E(G).

We call the vertices of H colors . For c ∈ V (H), we let L−1(c) denote the underlying
vertex of c in G, i.e., the unique vertex v ∈ V (G) such that c ∈ L(v). If two colors c,
c′ ∈ V (H) are adjacent in H, we say that they correspond to each other and write
c ∼ c′.

An H-coloring is a mapping φ : V (G) → V (H) such that φ(v) ∈ L(v) for all v ∈
V (G). Similarly, a partial H-coloring is a partial mapping φ : V (G) 99K V (H) such
that φ(v) ∈ L(v) whenever φ(v) is defined. A (partial) H-coloring φ is proper if the
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image of φ is an independent set in H, i.e., if φ(u) ̸∼ φ(v) for all u, v ∈ V (G) such that
φ(u) and φ(v) are both defined. Notice, then, that the image of a proper H-coloring of
G is exactly an independent set I ⊆ V (H) with |I ∩ L(v)| = 1 for each v ∈ V (G).

A correspondence cover H = (L,H) is q-fold if |L(v)| ⩾ q for all v ∈ V (G). The
correspondence chromatic number of G, denoted by χc(G), is the smallest q such
that G admits a proper H-coloring for every q-fold correspondence cover H.

Note that a list cover (L,H) of G is a correspondence cover of G, where each matching
Muv is such that (u, c) matches with (v, c) for each c ∈ N. As classical coloring is the special
case of list coloring in which all lists are identical, it follows that χ(G) ⩽ χℓ(G) ⩽ χc(G).

When considering locally sparse graphs, a correspondence coloring version of Theo-
rem 7 was proven by Davies, Kang, Pirot, and Sereni, albeit for a smaller range of k.
Once again, while they do not explicitly state this result, they discuss it in section 4 of
[13].

Theorem 10 (Correspondence Coloring version of Theorem 7, [13]). For every t ⩾ 2, ε >
0, there exists ∆0 ∈ N such that whenever ∆ > ∆0, the following holds: let k ⩾ 1/2 and
let G be a (k, Pt)-locally-sparse graph of maximum degree ∆. If k ⩽ ∆2/(log∆)2/ε, then

χc(G) ⩽ (1 + ε)
∆

log(∆/
√
k)
.

A curious feature of correspondence coloring is that structural constraints can be
placed on the cover graph H instead of on the underlying graph G. For instance, if
H = (L,H) is a correspondence cover of a graph G, then ∆(H) ⩽ ∆(G), so an upper
bound on ∆(H) is a weaker assumption than the same upper bound on ∆(G), and there
exist a number of results in list and correspondence coloring in which the number of
available colors given to each vertex is a function of ∆(H) as opposed to ∆(G). This
framework, often referred to as the color-degree setting , was pioneered by Kahn [25],
Kim [27], Johansson [24, 23], and Reed [35], among others. For a selection of a few more
recent examples, see [8, 36, 29, 2, 12, 26, 20, 6, 5] (see, also, §2.2). Similarly, as a result of
condition (CC3), if G is (k, F )-locally-sparse, then so is H. However, the same does not
hold for (k, F )-sparsity. For example, consider a q-fold list cover where all the lists are
the same. Then for any graph F , each copy of F in G corresponds to at least q copies of
F in H. Thus G may contain just one copy of F , while H contains many. Even for F -free
graphs G, there can exist a cover H of G which contains F . For instance, in Fig. 1, the
graph G is C6-free, though its cover contains a C6. Nevertheless, appropriate conditions
exist that ensure whenever G is F -free, then so is any cover H of G. We summarize our
observations in the following proposition (see §A for the proof):

Proposition 11. Let F and G be graphs and let H = (L,H) be a correspondence cover
of G. For k ∈ R, the following holds:

(S1) If G is (k, F )-locally-sparse, then so is H.

(S2) If F satisfies

∀u, v ∈ V (F ), uv /∈ E(F ) =⇒ NF (u) ∩NF (v) ̸= ∅,
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(a) A C6-free graph G. (b) A 2-fold cover of G containing a
C6.

Figure 1: A C6-free graph with a 2-fold cover containing a C6.

then if G is F -free, H is as well.

For any graph F , there is a complete χ(F )-partite graph F ′ such that F ⊆ F ′ and
|V (F )| = |V (F ′)|. If G is F -free, then it is F ′-free as well. Note that any complete
r-partite graph F for r ⩾ 2 satisfies the conditions of (S2). Therefore, we obtain the
following corollary:

Corollary 12. Let G be an F -free graph for some F satisfying χ(F ) = q ⩾ 2 and let φ
be a proper q-coloring of F . Define F ′ to be the complete q-partite graph with partitions
V1, . . . , Vq satisfying |Vi| = |φ−1(i)|. For any correspondence cover H = (L,H) of G, the
cover graph H is F ′-free.

1.3 Main results

We are ready to present our main results. We begin with a color-degree version of Theo-
rem 8 for correspondence coloring.

Theorem 13. There exists a constant α > 0 such that for every ε > 0, there is d∗ ∈ N
such that the following holds. Suppose that d, s, t ∈ N, and k ∈ R satisfy

d ⩾ d∗, 1 ⩽ t ⩽ s, st ⩽
α ε log d

log log d
, and 1/2 ⩽ k ⩽ d(s+t)/10.

Define C as follows:

C :=

{
4 + ε if k ⩽ dε(s+t)/200,
8 otherwise.

If G is a graph and H = (L,H) is a correspondence cover of G such that:

(i) H is (k,Ks,t)-locally-sparse,

(ii) ∆(H) ⩽ d, and

(iii) |L(v)| ⩾ C d/ log
(
dk−1/(s+t)

)
for all v ∈ V (G),

the electronic journal of combinatorics 33(1) (2026), #P1.31 6



then G admits a proper H-coloring.

We note that both the local sparsity and the degree constraints are on the cover graph
H as opposed to G, which is a weaker assumption as a result of Proposition 11. This
is new even for s = t = 1.2 We also remark that the upper bound k ⩽ d(s+t)/10 can be
relaxed slightly while increasing the value C, however, our approach does not work for
k = Θ(ds+t). We discuss this further in §3.

Note that for any bipartite graph F , a (k, F )-locally-sparse graph is (k,Ks,t)-locally-
sparse for appropriate s, t ∈ N satisfying s + t = |V (F )|. Therefore, by treating s and t
as constants we immediately obtain the following corollary:

Corollary 14. For every ε > 0 and bipartite graph F , the following holds for d large
enough. Let 1/2 ⩽ k ⩽ d|V (F )|/10 and let C be defined as follows:

C :=

{
4 + ε if k ⩽ dε|V (F )|/200,
8 otherwise.

Let G be a graph and H = (L,H) be a correspondence cover of G such that:

1. H is (k, F )-locally-sparse,

2. ∆(H) ⩽ d, and

3. |L(v)| ⩾ C d/ log
(
dk−1/|V (F )|) for all v ∈ V (G),

then G admits a proper H-coloring.

Setting d = ∆(G) together with Proposition 11 yields the following corollary:

Corollary 15. For every ε > 0 and bipartite graph F , the following holds for ∆ large
enough. Let 1/2 ⩽ k ⩽ ∆|V (F )|/10 and let C be defined as follows:

C :=

{
4 + ε, if k ⩽ ∆ε|V (F )|/200,
8, otherwise.

Let G be a (k, F )-locally-sparse graph of maximum degree ∆. Then,

χc(G) ⩽
C∆

log (∆k−1/|V (F )|)
.

As χ(G) ⩽ χc(G), this clearly implies Theorem 8, and, for F = P2, recovers Theo-
rem 10 up to a constant (albeit with a stricter bound on k). More importantly, for t ⩾ 3,
our results asymptotically improve the bound in Theorem 10 (i.e., k−1/t as opposed to
k−1/2). Observe as well that for t ⩾ 20, our results hold for an asymptotically larger range
of k than Theorem 10.

2This special case was further investigated in follow-up work of the second named author of this
manuscript with a focus on algorithmic implications [16].
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We conclude this section with a summary of the results contained in this manuscript.
Primarily, we introduce a generalized notion of local sparsity, allowing us to rephrase the
results of Alon, Krivelevich, and Sudakov [4] and Davies, Kang, Pirot, and Sereni [14] as
theorems about (k, F )-locally-sparse graphs for when F is an edge or a path, respectively.
Our theorem considers arbitrary bipartite graphs F , thereby recovering and improving
upon both of these results. In addition, we consider the more general setting of placing
sparsity and degree constraints on the cover graph H rather than on the underlying graph
G. This is the first color-degree version of Theorem 2, even for list coloring. We also
recover a result of [6] (which we discuss further in subsequent sections; see Theorem 19),
which to date is the best known bound on χ(G) for the largest class of graphs known to
satisfy Conjecture 5.

Structure of the paper

The rest of the paper is structured as follows. In §2, we discuss related works in the graph
coloring literature to better place our results in context. In §3, we provide an informal
overview of our proof techniques. In §4, we will formally describe a coloring procedure
we employ in our proof and prove a key lemma regarding its output. In §5, we apply this
key lemma iteratively to prove Theorem 13. Finally, in §6, we discuss potential avenues
for future research.

2 Discussion of previous work

In this section, we discuss related works in the graph coloring literature. Specifically, we
survey results related to Conjecture 5 and the color-degree setting, and compare our proof
techniques to other approaches in the area.

2.1 History of the Alon–Krivelevich–Sudakov conjecture

A trivial upper bound on χ(G) comes from a greedy coloring, which shows χ(G) ⩽
∆(G) + 1, where ∆(G) is the maximum degree of G. Brooks improved this bound to
χ(G) ⩽ ∆(G) when ∆(G) ⩾ 3 and G contains no cliques of size ∆(G) + 1 [10]. Reed
improved upon this, showing that χ(G) ⩽ ∆(G) − 1 for sufficiently large ∆(G) when
G contains no cliques of size ∆(G) [34]. Conjecture 5 is a natural extension of these
results, i.e., can the theorems of Brooks and Reed be improved by forbidding subgraphs
F other than cliques? Johansson [23] showed that for any graph F , if G is F -free and has
maximum degree ∆, then

χ(G) = O

(
∆ log log∆

log∆

)
,

where the O(·) is with respect to ∆ and hides constants that may depend on F . This result
was never published, however, employing a result of Shearer [38], both Molloy [30] and
Bernshteyn [7] provide a proof of this result in the more general settings of list coloring
and correspondence coloring, respectively. In [24], Johansson removed the log log∆ factor
for F = K3 (see Molloy and Reed’s book [31, Chapter 13] for a textbook presentation of
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this proof), and in 1999, Alon, Krivelevich, and Sudakov extended this result to almost-
bipartite graphs , i.e., subgraphs of K1,t,t for some t (see Corollary 3), leading them to
pose Conjecture 5.

To date, almost-bipartite graphs remain the largest class of connected graphs for
which Conjecture 5 is known to hold, and generalizing this result to a larger class of
graphs remains a tantalizing open problem. However, as long as F contains a cycle, the
bound in Conjecture 5 is best possible up to the value of cF , since there exist ∆-regular
graphs G of arbitrarily high girth with χ(G) ⩾ (1/2)∆/ log∆ [9] (when F is acyclic, a
simple degeneracy argument shows χ(G) = O(1)). Therefore, much research has focused
on improving upper bounds on the value of cF in an attempt to try to close the gap
between the known upper and lower bounds. We highlight progress in Table 1 for the
interested reader. (Note that analogues of all these results hold for list and correspondence
coloring.)

F cF References

forest 0 Follows from degeneracy
not forest ⩾ 1/2 Bollobás [9]

K3

finite Johansson [24]
⩽ 4 Pettie–Su [33]
⩽ 1 Molloy [30]

cycle/fan ⩽ 1 Davies–Kang–Pirot–Sereni [14, §5.2, §5.5]
bipartite ⩽ 1 Anderson–Bernshteyn–Dhawan [5]

K1,t,t

O(t) Alon–Krivelevich–Sudakov [4]
⩽ t Davies–Kang–Pirot–Sereni [14, §5.6]
⩽ 4 Anderson–Bernshteyn–Dhawan [6]

Table 1: Known bounds on cF .

In particular, Davies, Kang, Pirot, and Sereni proved cF ⩽ 1 for cycles and fans
[14, §5.2, §5.5], and in the same paper, improved upon the result of Alon, Krivelevich,
and Sudakov by showing cF ⩽ t for F = K1,t,t [14, §5.6]. The first two authors of this
paper, together with Bernshteyn, showed cF ⩽ 1 when F is bipartite [5]; and, in addition,
showed cF ⩽ 4 when F ⊆ K1,t,t, thereby making the bound for cF independent of t [6].
This improves the bounds of Davies, Kang, Pirot, and Sereni when t ⩾ 5. We note that
when we set k < 1, Theorem 8 recovers the aforementioned result of [6].

2.2 The color-degree setting

Recall from §2.1 the result of Johansson that χ(G) = O(∆/ log∆) for K3-free graphs
G having maximum degree ∆ sufficiently large. Alon and Assadi extended Johansson’s
result in the list coloring setting by placing degree restrictions on the cover graph H as
opposed to G.
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Theorem 16 ([2, Proposition 3.2]). The following holds for d sufficiently large. Let G be
a K3-free graph and let H = (L,H) be a list cover of G satisfying the following:

|L(v)| ⩾ 8 d

log d
, ∆(H) ⩽ d.

Then, G admits a proper H-coloring.

Alon, Cambie, and Kang were able to prove a similar bound in the color-degree set-
ting for bipartite graphs G with an improved constant of 1 + o(1) as opposed to 8 [3].
In subsequent work, Cambie and Kang extended these results on bipartite graphs to
correspondence coloring, where they show the following:

Theorem 17 ([12, Corollary 1.3]). For all ε > 0, the following holds for d sufficiently
large. Let G be a bipartite graph and let H = (L,H) be a correspondence cover of G
satisfying the following:

|L(v)| ⩾ (1 + ε)
d

log d
, ∆(H) ⩽ d.

Then, G admits a proper H-coloring.

Cambie and Kang conjectured that Theorem 17 holds for K3-free graphs as well, i.e.,
a color-degree version of Bernshteyn’s result mentioned earlier.

Conjecture 18 ([12, Conjecture 1.4]). For all ε > 0, the following holds for d sufficiently
large. Let G be a K3-free graph and let H = (L,H) be a correspondence cover of G
satisfying the following:

|L(v)| ⩾ (1 + ε)
d

log d
, ∆(H) ⩽ d.

Then, G admits a proper H-coloring.

This is still an open problem, however, the first two authors of this manuscript along
with Bernshteyn made progress towards it in [6], achieving a bound of (4 + ε)d/ log d.
They also generalized the result from triangle-free graphs G to F -free covers H when F
is almost-bipartite:

Theorem 19 ([6, Corollary 1.11]). Let F be an almost-bipartite graph. For all ε > 0,
the following holds for d sufficiently large. Let G be a graph and let H = (L,H) be a
correspondence cover of G satisfying the following:

• H is F -free,

• ∆(H) ⩽ d, and

• |L(v)| ⩾ (4 + ε)d/ log d.

Then G admits a proper H-coloring.

As K3 is an almost-bipartite graph, Theorem 19 along with Corollary 12 constitutes
progress toward Conjecture 18. We remark that it is not known if Conjecture 18 holds
even for list covers.
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2.3 Comparison of proof techniques with prior work

In this section, we compare our techniques to earlier approaches in related works. A
core component of our proof is a result showing that (k,Ks,t)-locally-sparse graphs are k

′-
locally-sparse for appropriate k′ (see Proposition 22). We prove Theorem 13 by combining
this result with the “Rödl nibble method” for graph coloring, an iterative procedure to
construct the desired coloring. We provide a detailed overview in §3.

The astute reader may wonder why Proposition 22 together with Theorem 10 for t = 2
cannot be used to prove Corollary 15. The bound obtained by this method would be as

follows for k⋆ = (s+t)2 ∆s+t−1

2 ss tt
:

χc(G) =


O

(
s t∆

log∆

)
if k ⩽ k⋆;

O

(
s t∆

(s+ t) log (∆ k−1/(s+t))

)
if k > k⋆.

(2.1)

Note that our result falls in the setting where k ⩽ k⋆. Our approach not only yields
an improved dependence on k, but also achieves a constant factor independent of s and
t. Additionally, our result is significantly stronger in the regime st = ω(1). Indeed,
while Corollary 15 is not stated as such, one can deduce from Theorem 13 that the result
holds for all s, t satisfying st = O(log∆/ log log∆). Clearly, Corollary 15 outperforms
the bound from (2.1) in this regime. Finally, we recall that our result yields the first
color-degree proof of Theorem 2 as a special case. In fact, the proof strategies of both
Theorem 2 and Theorem 10 fail in this setting, which is considered the benchmark in the
graph coloring literature.

We remark that a similar distinction in approach is evident when comparing the
works [14] and [6] regarding the value of cK1,t,t . In [14], the authors observe that every
K1,t,t-free graph satisfies e(G[N(v)]) = Ot(∆

2−1/t) to deduce their bound cK1,t,t ⩽ t from
Theorem 10. In contrast, the first two authors of this manuscript along with Bernshteyn
prove the bound cK1,t,t ⩽ 4 in [6] (see Theorem 19) through a stronger observation: every
K1,t,t-free graph satisfies e(G[S]) = Ot(|S|2−1/t) for any v ∈ V (G) and S ⊆ N(v). This
allows them to take advantage of the local sparsity through the iterations of the nibble
method and improve the bound of cK1,t,t for t > 4.

We remark that we employ a similar observation in our proof: every (k,Ks,t)-locally-
sparse graph satisfies G[S] is (k,Ks,t)-sparse for any v ∈ V (G) and S ⊆ N(v). In fact,
our approach is inspired by that of [6] and we apply a number of their arguments in a
black box manner (we discuss this further in §3).

We conclude this section with a brief discussion of the bipartiteness of F . The version
of the nibble method that we employ can be adapted to any F -free graph where F satisfies
ex(n, F ) = o(n2). Indeed, by the celebrated Erdős–Stone Theorem [18], bipartite graphs
are the only graphs for which this is true. It is, therefore, unclear how to extend our
result to arbitrary graphs F .3

3In follow-up work, the second named author of this manuscript considers the case F = Kr for r ⩾ 3;
the results obtained are far weaker than those in this paper [15].
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3 Proof overview

Let G be a graph and let H = (L,H) be a correspondence cover of G satisfying the
conditions of Theorem 13. In order to find a proper H-coloring of G, we use a variant
of the well-known “Rödl Nibble method”, in which we randomly color a small fraction
of vertices and repeat the procedure on the uncolored vertices. In particular, we use
a coloring procedure developed by Kim [27], based on a technique of Rödl in [37]. A
version of Kim’s procedure was further developed by Molloy and Reed [31], which they
call the Wasteful Coloring Procedure. We specifically employ the version generalized to
correspondence coloring by the first two authors and Bernshteyn in [6] (see §4.1 for a
detailed description). At each step of the procedure, we start with a graph G and a
correspondence cover H of G, and randomly construct a partial H-coloring φ of G and
lists L′(v) ⊆ L(v) satisfying certain properties. In particular, let Gφ be the graph induced
by the uncolored vertices under φ. For a vertex v ∈ V (Gφ) and a color c ∈ L(v), it is
possible φ cannot be extended by coloring v with c, as there may be a vertex u ∈ NG(v)
such that c ∼ φ(u). We therefore define Lφ(v) to be the set of available colors for v, i.e.,

Lφ(v) := {c ∈ Lφ(v) : NH(c) ∩ im(φ) = ∅}.

It seems natural that the lists L′(·) produced by the Wasteful Coloring Procedure should
satisfy L′(v) = Lφ(v); however, in actuality L′(v) is potentially a strict subset of Lφ(v)
(hence the “wasteful” in the name; see the discussion in [31, Chapter 12.2.1] for the utility
of such “wastefulness”).

Let us define a cover H′ for the graph Gφ by letting

H ′ := H

 ⋃
v∈V (Gφ)

L′(v)

 .
Let ℓ := min |L(v)|, ℓ′ := min |L′(v)|, d := ∆(H), and d′ := ∆(H ′). We say φ is
“good” if the ratio d′/ℓ′ is considerably smaller than d/ℓ. If indeed the output of the
Wasteful Coloring Procedure produces a “good” coloring, then we may repeatedly ap-
ply the procedure until we are left with a cover (L̃, H̃) of the uncolored vertices such
that min |L̃(v)| ⩾ 8∆(H̃). At this point, we can complete the coloring by applying the
following proposition:

Proposition 20. Let H = (L,H) be a correspondence cover of G. If there is an integer ℓ
such that |L(v)| ⩾ ℓ and degH(c) ⩽ ℓ/8 for each v ∈ V (G) and c ∈ V (H), then G admits
a proper H-coloring.

This proposition is a rather standard application of the Lovász Local Lemma (Theo-
rem 23 below), and one can find the first use of this proposition (for list colorings) in [34],
and its correspondence coloring version in [7, Appendix].

Therefore, we spend considerable effort showing that the output of the Wasteful Col-
oring Procedure is “good”. The first step in showing this is to compute bounds on the
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expected values of the list sizes |L′(v)| and degrees of colors degH′(c). In fact, we can
show that

E[degH′(c)]

E[|L′(v)|]
≈ uncolor

d

ℓ
,

where uncolor < 1 is a certain quantity defined precisely in §4.1. With this in hand,
the next step would be to show that the above expression holds with high probability as
we may then apply the Lovász Local Lemma to conclude there exists a “good” partial
coloring φ. Unfortunately, the random variable degH′(c) may not be concentrated about
its expected value if the neighbors of c have many common neighbors. In particular, the
events {c′ ∈ V (H ′)} for c′ ∈ NH(c) may be strongly correlated, increasing the variance
of degH′(c). An idea of Jamall [22], which was developed further by Pettie and Su [33],
Alon and Assadi [2], and the first two authors and Bernshteyn [6] allows one to overcome
this issue. Specifically, instead of considering the maximum color-degree we consider the
average color-degree for each v ∈ V (G):

degH(v) :=
1

|L(v)|
∑

c∈L(v)

degH(c).

Roughly speaking, the average color-degree is easier to concentrate than the maximum
color-degree because the probability that the event described above occurs for all c in
a list is relatively small. For a further discussion of why considering the average color-
degree is useful, see the discussion by Pettie and Su in [33, §1]. Once we show degH′(v) is
concentrated, we remove any color c ∈ L′(v) satisfying degH′(c) ⩾ 2degH′(v). In this way,
we have an upper bound on ∆(H ′) as desired. We remark that at this step we remove
possibly up to half the vertices in L′(v), which is why we require C > 4 in Theorem 13.

A curious aspect of the analysis of this coloring procedure is that the local sparsity
is only employed in the computation of E[degH′(v)]. In particular, as H is (k,Ks,t)-
locally-sparse, the subgraph induced by NH(c) contains “few” edges. As a result, the
event {c ∈ V (H ′)} and the random variable degH′(c) are “nearly independent.” This
is somewhat surprising as for most applications of the Wasteful Coloring Procedure, the
concentration is considered to be the “harder” part of the analysis.

In the proof of Theorem 7, Davies, Kang, Pirot, and Sereni obtained an upper bound
on the number of edges in G[NG(v)] for a (k, Pt)-locally-sparse graph G and a vertex
v ∈ V (G). In fact, the bound follows from the following more general statement:

Fact 21. Let G be a (k, F )-locally-sparse graph. For any v ∈ V (G), we have

e(G[N(v)]) ⩽ k + ex(degG(v), F ),

where ex(n, F ) is the maximum number of edges in an n-vertex F -free graph.

The proof of the above statement follows from the fact that one can make the subgraph
G[N(v)] F -free by removing at most k edges. Note that the bound provided by Fact 21
is only useful when k ≪ deg(v)2. This contributes to the necessary upper bound on k in
Theorems 7 and 10. We remark that Fact 21 in conjunction with Theorem 4 is sufficient
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to prove Theorem 13 when C = 4 + ε and k ⩽ dε/200. The following result allows us to
provide a sufficient bound on e(G[N(v)]) for larger values of k when C = 8.

Proposition 22. Let G be an n-vertex (k,Ks,t)-sparse graph. For k⋆ = (s+t)2 ns+t−1

2 ss tt
, we

have

|E(G)| ⩽

{
4n2−1/(st) if k ⩽ k⋆;

2 s1/t t1/s k1/st n2−1/s−1/t if k > k⋆.

We remark that we always apply the above proposition with k ⩽ k⋆, however, we
include the case k > k⋆ for completeness. Alon considered the case that s, t = Θ(1)
in order to prove a supersaturation-type result. In fact, for this range of s and t, the
contrapositive of [1, Corollary 2.1] implies Proposition 22 for k = Θ(ns+t). Our proof
follows a similar strategy to that of [1, Corollary 2.1] (see §B for the details).

Once we are able to prove concentration, it remains to show that a “good” partial
coloring φ exists. To do so, we employ the symmetric version of the Lovász Local Lemma.

Theorem 23 (Lovász Local Lemma; [31, §4]). Let A1, A2, . . . , An be events in a proba-
bility space. Suppose there exists p ∈ [0, 1) such that for all 1 ⩽ i ⩽ n we have P[Ai] ⩽ p.
Further suppose that each Ai is mutually independent from all but at most d other events
Aj, j ̸= i for some d ∈ N. If 4pd ⩽ 1, then with positive probability none of the events
A1, . . . , An occur.

In their proof of Theorem 19, the first two authors and Bernshteyn provided a frame-
work for applying this version of the Wasteful Coloring Procedure, i.e., the version for
correspondence coloring in the color-degree setting. Many of the arguments, particularly
certain computational ones, can therefore be applied in a “black box” manner. The main
differences in the statements of Theorems 19 and 13 are the structural constraints on the
cover graph H, and the sizes of the lists defined by L. It turns out these assumptions
appear in two key steps of the proof: first, the computation of E

[
degH′(v)

]
; second, the

inductive application of the procedure, i.e., ensuring the list sizes are not too small when
we reach the stage where we may apply Proposition 20. The heart of our argument lies
in the proofs of these two steps, which appear in §4.3 and §5, respectively.

We conclude this subsection with a discussion on the bound k ⩽ d(s+t)/10 in Theo-
rem 13. When applying Proposition 22, we require k to be asymptotically smaller than
ds+t. If not, it could be the case that NH(c) induces a very dense graph in H. The
events {c′ ∈ V (H ′)}, {c ∈ V (H ′)} for c′ ∈ NH(c) would then be strongly correlated. As a
result, the bound on E[degH′(v)] would not be sufficient to apply the nibble method with
the desired list size |L(v)|. We note that we require k ≪ ds+t

i , where di is the relevant
parameter during the i-th application of the method. For C > 4, we are able to compute
a lower bound di ⩾ dγ for some appropriate γ := γ(C) > 0. As a result, it is enough to
have k ⩽ dr(s+t) for some positive r := r(γ) < 1. We set r = 1/10 and C = 8 purely for
computational ease. We remark that we may decrease C by decreasing r to get a better
bound on the chromatic number, however, we must have C > 4.
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4 The Wasteful Coloring Procedure

This section will be split into three subsections. In the first, we provide a description of
our coloring procedure and state a key lemma at the heart of our proof of Theorem 13.
In the second, we prove this result modulo a technical lemma, which we prove in the final
subsection.

4.1 Algorithm overview

In this section, we formally describe our coloring procedure and introduce a key lemma
at the heart of our proof of Theorem 13. Roughly speaking, the lemma below will allow
us to, in §5, inductively color our graph until a point at which Proposition 20 can be
applied. As mentioned earlier, we will utilize the Wasteful Coloring Procedure (described
formally in Algorithm 1) in order to prove the lemma. We first introduce some notation.

Recall from §3 for a fixed vertex v ∈ V (G), its average color-degree is

degH(v) =
1

|L(v)|
∑

c∈L(v)

degH(c),

and the list of available colors for v with respect to a partial coloring φ is as follows:

Lφ(v) = {c ∈ L(v) : NH(c) ∩ im(φ) = ∅},

where im(φ) is the image of φ, i.e., the colors assigned to colored vertices in G. The main
component of the proof of Theorem 13 is the following lemma, which shows that under
certain conditions on G and its correspondence cover, there exists a partial coloring such
that the uncolored graph has desirable properties.

Lemma 24. There are d̃ ∈ N, α̃ > 0 such that the following holds. Suppose η ∈ R, d, ℓ,
s, t ∈ N, and k ∈ R satisfy:

(L1) d is sufficiently large: d ⩾ d̃,

(L2) k is not too large: 1/2 ⩽ k ⩽ d(s+t)/5,

(L3) ℓ is bounded below and above in terms of d: 4η d < ℓ < 100d,

(L4) s and t are bounded in terms of d: 1 ⩽ t ⩽ s and st ⩽
α̃ log d

log log d
, and

(L5) η is bounded below and above in terms of d, k, s, and t:
1

log5(d)
< η <

1

log(dk−1/(s+t))
.

Let G be a graph with a correspondence cover H = (L,H) such that for some β satisfying
d−1/(200st) ⩽ β ⩽ 1/10,

(L6) H is (k,Ks,t)-locally-sparse,
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(L7) ∆(H) ⩽ 2d,

(L8) the list sizes are roughly between ℓ/2 and ℓ: (1− β)ℓ/2 ⩽ |L(v)| ⩽ (1 + β)ℓ for all
v ∈ V (G),

(L9) average color-degrees are smaller for vertices with smaller lists of colors:

degH(v) ⩽

(
2− (1− β)

ℓ

|L(v)|

)
d for all v ∈ V (G).

Then there exists a proper partial H-coloring φ of G and an assignment of subsets L′(v) ⊆
Lφ(v) to each v ∈ V (G) \ dom(φ) with the following properties. Let

G′ := G [V (G) \ dom(φ)] and H ′ := H
[⋃

v∈V (G′) L
′(v)
]
.

Define the following quantities:

keep :=
(
1− η

ℓ

)2d
,

uncolor :=
(
1− η

ℓ

)keep ℓ/2
,

ℓ′ := keep ℓ,

d′ := keep uncolor d,
β′ := (1 + 36η)β.

Let H′ := (L′, H ′), so H′ is a correspondence cover of G′. Then for all v ∈ V (G′):

(i) |L′(v)| ⩽ (1 + β′)ℓ′,

(ii) |L′(v)| ⩾ (1− β′)ℓ′/2,

(iii) ∆(H ′) ⩽ 2d′,

(iv) degH′(v) ⩽
(
2− (1− β′) ℓ′

|L′(v)|

)
d′.

(v) H ′ is (k,Ks,t)-locally-sparse.

Note that condition (v) holds automatically as H ′ ⊆ H. Also note that conditions
(i)–(iv) are similar to the conditions (L6)–(L9), except that the former uses β′, η′, ℓ′. This
will help us to apply Lemma 24 iteratively in §5 to prove Theorem 13. For the rest of this
section, we define keep, uncolor, d′, ℓ′, β′ as above.

Let us now describe the Wasteful Coloring Procedure as laid out by the first two
authors and Bernshteyn in [6] for correspondence colorings (the color-degree version for
list coloring appeared in [2]).

Algorithm 1 Wasteful Coloring Procedure

Input: A graph G with a correspondence cover H = (L,H) and parameters η ∈ [0, 1]
and d, ℓ > 0.
Output: A proper partial H-coloring φ and subsets L′(v) ⊆ Lφ(v) for all v ∈ V (G).
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1. Sample A ⊆ V (H) as follows: for each c ∈ V (H), include c ∈ A independently with
probability η/ℓ. Call A the set of activated colors, and let A(v) := L(v) ∩ A for
each v ∈ V (G).

2. Let {eq(c) : c ∈ V (H)} be a family of independent random variables with distribu-
tion

eq(c) ∼ Bernoulli

(
keep

(1− η/ℓ)degH(c)

)
.

(We discuss why this is well defined below). Call eq(c) the equalizing coin flip
for c.

3. Sample K ⊆ V (H) as follows: for each c ∈ V (H), include c ∈ K if eq(c) = 1 and
NH(c) ∩A = ∅. Call K the set of kept colors, and V (H) \K the removed colors.
For each v ∈ V (G), let K(v) := L(v) ∩K.

4. Construct φ : V (G) 99K V (H) as follows: if A(v) ∩K(v) ̸= ∅, set φ(v) to any color
in A(v) ∩K(v). Otherwise set φ(v) = blank.

5. Call v ∈ V (G) uncolored if φ(v) = blank, and define

U :=
{
c ∈ V (H) : φ

(
L−1(c)

)
= blank

}
.

(Recall that L−1(c) denotes the underlying vertex of c in G.)

6. For each vertex v ∈ V (G), let

L′(v) := {c ∈ K(v) : |NH(c) ∩K ∩ U | ⩽ 2 d′} .

Note that if G and H satisfy assumption (L7) of Lemma 24, i.e. degH(c) ⩽ 2d, then

0 ⩽
keep

(1− η/ℓ)degH(c)
=
(
1− η

ℓ

)2d−degH(c)

⩽ 1

and hence the equalizing coin flips are well defined. Furthermore, if we assume that the
assumptions of Lemma 24 hold on the input graph of the Wasteful Coloring Procedure,
then keep is precisely the probability that a color c ∈ V (H) is kept, and uncolor is roughly
an upper bound on the probability that a vertex v ∈ V (G) is uncolored.

4.2 Proof of Lemma 24

In this section, we prove Lemma 24 under the assumption that a subsequently introduced
lemma, Lemma 27, is true. Indeed, Lemma 27 is the key lemma in our argument; it is
the part of the proof that relies on the local sparsity condition; and the bulk of the work
in proving Lemma 24 comes from proving Lemma 27, which we will do in §4.3.

The rest of the proof of Lemma 24 follows the strategy employed by the first two
authors and Bernshteyn to prove [6, Lemma 3.1], which is similar to Lemma 24. Indeed,
the assumptions of [6, Lemma 3.1] and Lemma 24 differ in only four ways:
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1. the assumption that H is K1,s,t-free is replaced by the weaker assumption that H is
(k,Ks,t)-locally-sparse,

2. the assumption that η < 1
log d

is replaced by the assumption that η < 1

log(dk−1/(s+t))
,

3. the bounds s ⩽ d1/10 and t ⩽
α̃ log d

log log d
are replaced by st ⩽

α̃ log d

log log d
, and

4. the assumption d−1/(200t) ⩽ β ⩽ 1/10 is replaced by d−1/(200st) ⩽ β ⩽ 1/10.

However, several of the lemmas used in the proof of [6, Lemma 3.1] do not rely on
either of these assumptions, and thus the same proofs can be used for our lemmas here.
Furthermore, as our upper bound on st matches that of t in [6, Lemma 3.1], the proofs
requiring the lower bound on β follow by replacing t with st at the relevant steps. This
essentially allows us to use these proofs in a “black box” manner towards proving Lemma
24. We therefore follow the strategy of the proof of [6, Lemma 3.1], and indeed, this
section follows similar notation to that of [6, §4].

Assume parameters η, d, ℓ, s, t, k, β, and a graph G with correspondence cover
H = (L,H) satisfy the assumptions of Lemma 24. We may assume that ∆(G) ⩽ 2(1+β)ℓd
by removing the edges of G whose corresponding matchings in H are empty. Let the
quantities keep, uncolor, d′, ℓ′, and β′ be defined as in the statement of Lemma 24. Suppose
we have carried out the Wasteful Coloring Procedure with these G and H. As in the
statement of Lemma 24, we let

G′ := G [V (G) \ dom(φ)] , H ′ := H
[⋃

v∈V (G′) L
′(v)
]
, and H′ := (L′, H ′).

For each v ∈ V (G), we define the following quantities:

ℓ(v) := |L(v)| and deg(v) := degH(v),

as well as the following random variables:

k(v) := |K(v)|, ℓ′(v) := |L′(v)|, and d(v) :=
1

ℓ′(v)

∑
c∈L′(v)

|NH(c) ∩ V (H ′)|.

By definition, if v ∈ V (G′), then d(v) = degH′(v). Our goal is to verify that statements
(i)–(iv) in Lemma 24 hold for every v ∈ V (G′) with positive probability. We follow an
idea of Pettie and Su [33] (which was also used in [2, 6]) by defining the following auxiliary
quantities:

λ(v) :=
ℓ(v)

ℓ
, λ′(v) :=

ℓ′(v)

ℓ′
,

δ(v) := λ(v) degH(v) + (1− λ(v)) 2d, δ′(v) := λ′(v) d(v) + (1− λ′(v)) 2d′.

Note that, by (L8), we have (1 − β)/2 ⩽ λ(v) ⩽ 1 + β. When λ(v) ⩽ 1, we can think
of δ(v) as what the average color-degree of v would become if we added ℓ − ℓ(v) colors
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of degree 2d to L(v). (We remark that in both [33] and [2], the value λ(v) is artificially
capped at 1. However, as noted by the first two authors and Bernshteyn in [6], it turns
out that there is no harm in allowing λ(v) to exceed 1, which moreover makes the analysis
simpler.) The upper bound on deg(v) given by (L9) implies that

δ(v) ⩽ (1 + β)d. (4.1)

As demonstrated in [6, Lemma 4.1], an upper bound on δ′(v) suffices to derive statements
(ii)–(iv) in Lemma 24:

Lemma 25. If δ′(v) ⩽ (1 + β′)d′, then conditions (ii)–(iv) of Lemma 24 are satisfied.

Proof. The proof is the same as the proof of [6, Lemma 4.1].

Therefore, to prove Lemma 24, it suffices to show that, with positive probability, the
outcome of the Wasteful Coloring Procedure satisfies δ′(v) ⩽ (1+β′)d′ and ℓ′(v) ⩽ (1+β′)ℓ′

for all v ∈ V (G). We shall now prove some intermediate results. Before we do so, consider
the following inequality, which will be useful for proving certain bounds and follows for
small enough α̃:

ηβ ⩾ d−1/(200st)/ log5 d ⩾ d−1/(100st). (4.2)

In the next lemma, we show that k(v) is concentrated around its expected value,
which we then use to show condition (i) in Lemma 24 is satisfied with high probability.
The proof follows by a rather standard application of Talagrand’s inequality (a powerful
concentration tool). We omit the proof here as it is identical to the one of [6, Lemma 4.2].

Lemma 26. P[|k(v)− keep ℓ(v)| ⩾ ηβ keep ℓ(v)] ⩽ exp
(
−d1/10

)
.

Proof. The proof is the same as the proof of [6, Lemma 4.2].

Since ℓ′(v) ⩽ k(v), we have the following with probability at least 1− exp
(
−d1/10

)
:

ℓ′(v) ⩽ (1 + ηβ) keep ℓ(v)

⩽ (1 + ηβ) (1 + β) keep ℓ

⩽ (1 + β′) ℓ′.

This implies that condition (i) is met with probability at least 1− exp(−d1/10).
In order to analyze the average color-degrees in the correspondence coverH′, we define:

EK(v) := {cc′ ∈ E(H) : c ∈ L(v), c′ ∈ NH(c), and c, c
′ ∈ K},

EU(v) := {cc′ ∈ E(H) : c ∈ L(v), c′ ∈ NH(c), and c
′ ∈ U},

dK∩U(v) :=
|EK(v) ∩ EU(v)|

k(v)
.
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Note that dK∩U(v) is what the average color-degree of v would be if instead of removing
colors with too many neighbors on step 6 of the Wasteful Coloring Procedure, we had
just set L′(v) = K(v). The only place in our proof that relies on H being (k,Ks,t)-locally-
sparse is the following lemma, which gives a bound on the expected value of |EK(v) ∩
EU(v)|. As mentioned in §3, this lemma is one of the major differences between our proof
and that of [6].

Lemma 27. E[|EK(v) ∩ EU(v)|] ⩽ keep2 uncolor ℓ(v) degH(v)(1 + 6ηβ).

Proof. See §4.3.

The next lemma establishes that with high probability the quantity |EK(v) ∩ EU(v)|
is not too large. The proof is identical to that of [6, Lemma 4.4], and thus we omit the
technical details here. However, we describe the main idea of the proof below for the
unfamiliar reader.

The simplest approach to concentrate |EK(v) ∩ EU(v)| is to use a suitable version of
Chernoff’s inequality (see [2, Claims A.6, A.7], [33, Lemmas 6, 7]). This approach fails for
correspondence colorings as in this setting two colors from the same list can be connected
by a path, and thus events defined on those colors are no longer independent. To deal
with this, one can apply Talagrand’s inequality, a powerful concentration tool for random
variables satisfying certain Lipschitz-like constraints. Unfortunately, the Lipschitz param-
eter of the random variable |EK(v) ∩ EU(v)| is too large to apply Talagrand’s inequality
directly. Instead, the authors show that with sufficiently high probability |EU(v)| is not
much larger than its expected value, and |EU(v) \ EK(v)| is not much smaller than its
expected value. The identity |EK(v) ∩ EU(v)| = |EU(v)| − |EU(v) \ EK(v)| then implies
the desired concentration bound.

While considering the random variable |EU(v)|, it turns out that the Lipschitz param-
eter is still too large to apply Talagrand’s inequality. However, the events that drive up
the value of this parameter occur with very low probability. Concentration can therefore
be achieved by employing a variation of Talagrand’s Inequality, which can handle such
exceptional events, developed by Bruhn and Joos [11, Theorem 3.1].

For the quantity |EU(v) \ EK(v)|, we cannot apply this result of Bruhn and Joos
directly, i.e., the Lipschitz parameter is still too large. To circumvent this problem, the
authors employ a random partitioning technique developed in their earlier work [5]. The
idea is to find a partition {X1, . . . , Xτ} of the edge set ∪c∈L(v)EH(c) such that |(EU(v) \
EK(v))∩Xi| has a sufficiently small Lipschitz parameter for each i. It turns out a random
partition satisfies this condition with high probability for an appropriate choice of τ . The
proof now follows by applying the exceptional version of Talagrand’s inequality to each
part separately and then taking a union bound.

The result of the lemma is stated below, where dmax := max{d7/8,∆(H)}.

Lemma 28. P[|EK(v) ∩ EU(v)| ⩾ keep2 uncolor ℓ(v)(degH(v) + 8ηβ dmax)] ⩽ d−100.

Proof. The proof is the same as the proof of [6, Lemma 4.4].
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The next two lemmas are purely computational, using the results of Lemmas 26 and
28. As the calculations are identical to those in [6, Section 4], we omit them here. First,
we show that dK∩U(v) is not too large with high probability.

Lemma 29. P[dK∩U(v) > keep uncolor degH(v) + 15ηβ keep uncolor dmax] ⩽ d−75.

Proof. The proof is the same as the proof of [6, Lemma 4.5].

We can now combine the results of this section to prove the desired bound on δ′(v).
Again, the proof is purely computational, and so we refer to [6, Lemma 4.6].

Lemma 30. P [δ′(v) ⩽ (1 + β′)d′] ⩾ 1− d−50.

Proof. The proof is the same as the proof of [6, Lemma 4.6].

We are now ready to finish the proof of Lemma 24 (modulo Lemma 27).

Proof of Lemma 24. This proof is the same as the proof of [6, Lemma 3.1], but is included
here for completeness. We perform the Wasteful Coloring Procedure on G and H and
define the following random events for each v ∈ V (G):

1. Av := {ℓ′(v) ⩽ (1 + β′)},

2. Bv := {δ′(v) ⩾ (1 + β′)d′}.

We now use the Lovász Local Lemma (Theorem 23). By Lemmas 26 and 30, we have:

P[Av] ⩽ exp
(
−d1/10

)
⩽ d−50, P[Bv] ⩽ d−50.

Let p := d−50. Note that the events Av, Bv are mutually independent from the events of the
form Au, Bu, where u ∈ V (G) is at distance more than 4 from v. Since ∆(G) ⩽ 2(1+β)ℓd,
there are at most 2(2(1 + β)ℓd)4 ⩽ d10 events corresponding to the vertices at distance
at most 4 from v. So we let d := d10 and observe that 4pd = 4d−40 < 1. By the
Lovász Local Lemma, with positive probability none of the events Av, Bv occur. By
Lemma 25, this implies that, with positive probability, the output of the Wasteful Coloring
Procedure satisfies the conclusion of Lemma 24.

4.3 Proof of Lemma 27

This is the only part of the proof that requires (k,Ks,t)-local-sparsity. We will first provide
an upper bound for E[|EK(v)|].

Lemma 31. E[|EK(v)|] ⩽ keep2ℓ(v)deg(v)(1 + ηβ)

Proof. Note that

|EK(v)| =
∑

c∈L(v)

∑
c′∈NH(c)

1{c,c′∈K}.
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If c ∈ K, then two events occur: no color in NH(c) is activated, and c survives its
equalizing coin flip. Since activations and equalizing coin flips occur independently, we
have:

E[|EK(v)|] =
∑

c∈L(v)

∑
c′∈NH(c)

P[c, c′ ∈ K]

=
∑

c∈L(v)

∑
c′∈NH(c)

P[eq(c) = 1]P[eq(c′) = 1]
(
1− η

ℓ

)|NH(c)∪NH(c′)|

=
∑

c∈L(v)

∑
c′∈NH(c)

P[eq(c) = 1]P[eq(c′) = 1]
(
1− η

ℓ

)|NH(c)|+|NH(c′)|−|NH(c)∩NH(c′)|

= keep2
∑

c∈L(v)

∑
c′∈NH(c)

(
1− η

ℓ

)−|NH(c)∩NH(c′)|
.

For c ∈ H, we will consider two cases based on the value of degH(c) (we will abuse
notation and say c ∈ C1 and c ∈ C2 when c satisfies the conditions to be in Case 1 and
Case 2, respectively.)

(Case 1) degH(c) < d1−1/(5st). Then

|NH(c) ∩NH(c
′)| ⩽ |NH(c)| = degH(c) ⩽ d1−1/(5st).

Thus, using the inequality (1−x)n ⩾ 1−nx for n ⩾ 1 and x ⩽ 1, and the lower bound
ℓ ⩾ 4ηd from assumption (L3), we have:∑

c′∈NH(c)

(
1− η

ℓ

)−|NH(c)∩NH(c′)|
⩽

∑
c′∈NH(c)

(
1− η

ℓ

)−d1−1/(5st)

(as 1− η/ℓ < 1)

⩽ degH(c)
(
1− d1−1/(5st)η

ℓ

)−1

⩽ degH(c)

(
1− d−1/(5st)

4

)−1

⩽ degH(c)
(
1 + d−1/(5st)

)
, (4.3)

where the last inequality holds since d−1/(5st) ⩽ 1.

(Case 2) degH(c) ⩾ d1−1/(5st). We note that this is the only place where we use
(k,Ks,t)-local-sparsity. Define the following sets:

Bad(c) :=
{
c′ ∈ NH(c) : |NH(c

′) ∩NH(c)| ⩾ degH(c)
1−1/(5st)

}
,

Good(c) := NH(c) \ Bad(c).

Then: ∑
c′∈NH(c)

(
1− η

ℓ

)−|NH(c)∩NH(c′)|
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=
∑

c′∈Bad(c)

(
1− η

ℓ

)−|NH(c)∩NH(c′)|
+

∑
c′∈Good(c)

(
1− η

ℓ

)−|NH(c)∩NH(c′)|

⩽
∑

c′∈Bad(c)

(
1− η

ℓ

)− degH(c)

+
∑

c′∈Good(c)

(
1− η

ℓ

)− degH(c)1−1/5st

⩽ |Bad(c)|
(
1− η

ℓ

)−2d

+ (degH(c)− |Bad(c)|)
(
1− η

ℓ

)− degH(c)1−1/5st

. (4.4)

Since degH(c)
1−1/5st ⩽ 2d, the last expression is increasing in terms of |Bad(c)|. The

following claim provides an upper bound on the size of Bad(c).

Claim 32. |Bad(c)| ⩽ degH(c)
1−1/(5st).

Proof. By the Handshaking Lemma,

|Bad(c)| ⩽ 2 |E(H[NH(c)])|
degH(c)

1−1/(5st)
.

Since H is (k,Ks,t)-locally-sparse, H[NH(c)] is (k,Ks,t)-sparse, and so by Proposition 22

it follows that if for k⋆ :=
(s+ t)2 degH(c)

s+t−1

2 ss tt
we have k ⩽ k⋆, then

|E(H[NH(c)])| ⩽ 4 degH(c)
2−1/(st).

Let us first show k ⩽ k⋆. As we are in (Case 2), we have degH(c) ⩾ d1−1/(5st). It follows
that

k⋆ ⩾
(s+ t)2 d(1−1/(5st))(s+t−1)

2 ss tt
=

(s+ t)2 ds+t−1−1/(5t)−1/(5s)+1/(5st)

2 ss tt

Note that
sstt

(s+ t)2
< (st)st ⩽

(
α̃ log d

log log d

) α̃ log d
log log d

< log d
α̃ log d
log log d = dα̃,

for α̃ sufficiently small, where the second inequality holds by assumption (L4). Thus,

(s+ t)2

sstt
> d−α̃.

Additionally, we claim that

s+ t− 1− 1/(5t)− 1/(5s) + 1/(5st) ⩾ (s+ t)/5 + 2/5, for all s ⩾ t ⩾ 1.

One can manually verify the above for s = t = 1 and s = 2, t = 1. For s ⩾ t ⩾ 2, we have

4(s+ t)/5 + 1/(5st) > 3 > 1/(5t) + 1/(5s) + 1 + 2/5,

which implies the desired inequality.
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Thus, for d large enough and α̃ sufficiently small, we have k⋆ > d(s+t)/5 ⩾ k by
assumption (L2). Hence, by Proposition 22 we have

|Bad(c)| ⩽ 2 |E(H[NH(c)])|
degH(c)

1−1/(5st)
⩽

2 · 4 degH(c)
2−1/(st)

degH(c)
1−1/(5st)

= 8degH(c)
1−4/(5st)

⩽ degH(c)
1−1/(5st),

as desired.

With Claim 32 in hand, and as
(
1− η

ℓ

)−2d
= 1

keep
⩽ 2 due to assumption (L3), we

have the following as a result of (4.4):∑
c′∈NH(c)

(
1− η

ℓ

)−|NH(c)∩NH(c′)|

⩽ 2 degH(c)
1−1/(5st) + (degH(c)− degH(c)

1−1/(5st))
(
1− η

ℓ

)− degH(c)1−1/5st

⩽ 2 degH(c)
1−1/(5st) +

(degH(c)− degH(c)
1−1/(5st))(

1− degH(c)
1−1/5st η

ℓ

)
= degH(c)

(
2 degH(c)

−1/(5st) +
1− degH(c)

−1/(5st)(
1− η

ℓ
degH(c)

1−1/5st
))

⩽ degH(c)

(
2 degH(c)

−1/5st +
1− degH(c)

−1/(5st)(
1− η

ℓ
2d degH(c)

−1/5st
)) (since degH(c) ⩽ 2d)

⩽ degH(c)

(
2 degH(c)

−1/5st +
1− degH(c)

−1/5st(
1− 1

2
degH(c)

−1/5st
)) (since 2d

η

ℓ
⩽

1

2
)

⩽ degH(c)
(
degH(c)

−1/10st + 1
)
, (4.5)

completing this case.

By (4.2), we have ηβ ⩾ d−1/(100st) ⩾ d−1/(10st). Therefore, putting together the bounds
(4.3) from (Case 1) and (4.5) from (Case 2), we have the following:

E[|EK(v)|] = keep2
∑

c∈L(v)

∑
c′∈NH(c)

(
1− η

ℓ

)−|NH(c)∩NH(c′)|

⩽ keep2

(∑
c∈C1

degH(c)
(
1 + d−1/(5st)

)
+
∑
c∈C2

degH(c)
(
degH(c)

−1/10st + 1
))

⩽ keep2

(∑
c∈C1

degH(c) (ηβ + 1) +
∑
c∈C2

degH(c) (ηβ + 1)

)
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= keep2
∑

c∈L(v)

degH(c) (ηβ + 1)

= keep2 ℓ(v) degH(v) (ηβ + 1) ,

completing the proof.

The following lemma bounds E[|EK(v) ∩ EU(v)|] in terms of E[|EK(v)|]. The proof
involves a special case of the FKG inequality, dating back to Harris and Kleitman. As
the argument is identical to that of [6, Lemma 5.5], we omit the details here.

Lemma 33. E[|EK(v) ∩ EU(v)|] ⩽ uncolor (1 + 4ηβ)E[|EK(v)|].

Proof. The proof is the same as that in [6, Lemma 5.2].

Lemmas 31 and 33 together imply that

E[|EK(v) ∩ EU(v)|] ⩽ keep2 uncolor ℓ(v) degH(v)(1 + 4ηβ)(1 + ηβ)

⩽ keep2 uncolor ℓ(v) degH(v)(1 + 6ηβ),

which completes the proof of Lemma 27.

5 Proof of Theorem 13

To prove Theorem 13, we start by defining several parameters: For a given ε > 0, d, k ∈
R, s, t ∈ N \ {0}, and i ∈ N, we define the following:

C :=

{
4 + ε when k ⩽ dε(s+t)/200,

8 else.

µ :=
C − ε

2
log
(
1 +

ε

8C

)
η := µ/ log

(
dk−1/(s+t)

)
ℓ0 := C d/ log

(
dk−1/(s+t)

)
d0 := d

ki :=

(
1− η

ℓi

)2di

ui :=

(
1− η

ℓi

)ki ℓi/2

ℓi+1 := ki ℓi di+1 := ki ui di

β0 := d
−1/(200st)
0 βi+1 := max

{
(1 + 36η)βi, d

−1/(200st)
i+1

}
.

We will also assume ε is sufficiently small such that µ < 1. The reader may be familiar
with similar arguments parameterized by keepi and uncolori. For brevity, we use ki and
ui instead.

Lemma 34. For all ε > 0 sufficiently small, there exists d∗ such that whenever d ⩾ d∗

and
1

2
< k ⩽ d(s+t)/10,

the following hold:
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(I1) For j ∈ N, dj+1/ℓj+1 ⩽ dj/ℓj ⩽ d0/ℓ0 = 1
C
log
(
dk−1/(s+t)

)
.

(I2) For j ∈ N, ℓj ⩾ d
(
dk−1/(s+t)

)−4/(C−7ε/8)
.

(I3) There exists a minimum integer i∗ ⩽
⌈
16
µ
log
(
dk−1/(s+t)

)
log log

(
dk−1/(s+t)

)⌉
such

that di⋆ ⩽ ℓi⋆/100.

Proof. We will not explicitly compute the value d∗, but instead simply state that we let
d be sufficiently large when needed.

By definition, dj+1/ℓj+1 is smaller than dj/ℓj by a factor of uj and so (I1) holds. Note
the following:

0 < 4/(C − 7ε/8) < 1, and d9/10 ⩽ dk−1/(s+t) ⩽ 2d. (5.1)

We now use strong induction on j ∈ N to prove (I2). As d→ ∞, it follows dk−1/(s+t) → ∞.
Thus for d large enough, we have

log
(
dk−1/(s+t)

)
C

⩽
(
dk−1/(s+t)

)4/(C−7ε/8)
,

from where it follows that

ℓ0 =
C d

log (dk−1/(s+t))
⩾ d

(
dk−1/(s+t)

)−4/(C−7ε/8)
.

This completes the proof of the base case. Now assume for some j′ ∈ N, (I2) holds for all
0 ⩽ j ⩽ j′. We will show ℓj′+1 ⩾ d

(
dk−1/(s+t)

)−4/(C−7ε/8)
. To do so, we will compute a

sufficient lower bound on kj for each 0 ⩽ j ⩽ j′, which will allow us to prove the desired
bound on ℓj′+1. We start by showing kj is bounded from below by a constant (independent
of j); we then use this to compute an upper bound on uj, which we then use to prove a
stronger lower bound on kj.

Let 0 ⩽ j ⩽ j′. First note

η

ℓj
=

µ

log (dk−1/(s+t))

1

ℓj

⩽
µ

log (dk−1/(s+t))

(
dk−1/(s+t)

)4/(C−7ε/8)

d

⩽
10

9 log(d)

(2d)4/(4+ε/8)

d

⩽
1

dε/50
, (5.2)

where the inequalities follow by (5.1), the bound on ℓj from the induction hypothesis,
and for d large enough. Now recall for any ε > 0, there exists x0 > 0 such that 1 − x ⩾
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exp
(
− x

1−ε

)
whenever 0 < x < x0. Thus for d sufficiently large, by (5.2) it follows η/ℓj is

sufficiently small for the following to hold:

kj =

(
1− η

ℓj

)2dj

⩾ exp

(
− η2dj
ℓj(1− ε/C)

)
⩾ exp

(
− 2ηd0
ℓ0(1− ε/C)

)
,

where the second inequality follows from (I1).
We now have:

exp

(
− 2ηd0
ℓ0(1− ε/C)

)
= exp

(
− 2µ

(1− ε/C)C

)
= exp

(
− 2µ

C − ε

)
.

Thus

kj ⩾ exp

(
− 2µ

C − ε

)
.

Now we use this lower bound on kj to derive an upper bound on uj as follows:

uj =

(
1− η

ℓj

)kjℓj/2

⩽ exp

(
−ηkjℓj

2ℓj

)
= exp

(
−ηkj

2

)
⩽ exp

(
−η
2
exp

(
− 2µ

C − ε

))
⩽ 1− (1− ε/(4C))

η

2
exp

(
− 2µ

C − ε

)
,

where the last inequality follows by the fact that for any ε > 0, there exists x0 > 0 such
that 1 − x ⩾ exp

(
− x

1−ε

)
whenever 0 < x < x0 (we assume d is large enough so that we

may apply this inequality).
As the expression above is independent of j, we may use it to compute an upper bound

on
dj
ℓj

as follows:

dj
ℓj

=
d0
ℓ0

j−1∏
m=0

um ⩽
d0
ℓ0

(
1− (1− ε/(4C))

η

2
exp

(
− 2µ

C − ε

))j

. (5.3)

We use this to improve our lower bound on kj. Assuming d is large enough, by (5.2) we
have η/ℓj is small enough such that:

kj =

(
1− η

ℓj

)2dj

⩾ exp

(
− η

ℓj

2dj
(1− ε/(2C))

)
⩾ exp

(
− 2η

(1− ε/(2C))

d0
ℓ0

(
1− (1− ε/(4C))

η

2
exp

(
− 2µ

C − ε

))j
)

= exp

(
− 2µ

(1− ε/(2C))C

(
1− (1− ε/(4C))

η

2
exp

(
− 2µ

C − ε

))j
)

= exp

(
− 2µ

C − ε/2

(
1− (1− ε/(4C))

η

2
exp

(
− 2µ

C − ε

))j
)
,
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This bound holds for all 0 ⩽ j ⩽ j′. We may now lower bound ℓj′+1 as follows:

ℓj′+1 = ℓ0

j′∏
m=0

km ⩾ ℓ0

j′∏
m=0

exp

(
− 2µ

C − ε/2

(
1− (1− ε/(4C))

η

2
exp

(
− 2µ

C − ε

))m)

= ℓ0 exp

(
− 2µ

C − ε/2

j′∑
m=0

(
1− (1− ε/(4C))

η

2
exp

(
− 2µ

C − ε

))m
)

⩾ ℓ0 exp

(
− 2µ

(C − ε/2)

1(
1−

(
1− (1− ε/(4C)) η

2
exp

(
− 2µ

C−ε

)))) ,
where the last inequality follows by bounding the summation as a partial sum of a geo-
metric series (we may assume that d is large enough implying η is small enough so this is
indeed true). From this it follows:

ℓj′+1 ⩾ ℓ0 exp

(
− 2µ

(C − ε/2)

2

(1− ε/(4C))η exp
(
− 2µ

C−ε

))

= ℓ0 exp

(
−4 log

(
dk−1/(s+t)

)
exp

(
2µ
C−ε

)
(C − ε/2)(1− ε/(4C))

)

⩾ ℓ0 exp

(
−4 log

(
dk−1/(s+t)

)
exp

(
2µ
C−ε

)
C − 3ε/4

)
(for ε sufficiently small)

= ℓ0(dk
−1/(s+t))ξ

(
where ξ :=

−4 exp
(

2µ
C−ε

)
C − 3ε/4

=
−4(1 + ε/(8C))

C − 3ε/4

)
=

C d

log (dk−1/(s+t))

(
dk−1/(s+t)

)ξ
⩾ d

(
dk−1/(s+t)

)−4/(C−7ε/8)
,

where the last inequality follows for d large enough as ξ > −4/(C−7ε/8). This completes
the induction and finishes the proof of (I2).

For (I3), note that by (5.3), it follows for all i ∈ N,

di
ℓi

⩽
d0
ℓ0

(
1−

(
1− ε

4C

) η
2
exp

(
− 2µ

C − ε

))i

⩽
d0
ℓ0

exp

(
−i
(
1− ε

4C

) η
2
exp

(
− 2µ

C − ε

))
=

log
(
dk−1/(s+t)

)
C

exp

(
−i
(
1− ε

4C

) η
2

1

1 + ε/(8C)

)
⩽

log
(
dk−1/(s+t)

)
C

exp

(
− i µ

8 log (dk−1/(s+t))

)
,
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for ε small enough. Now, for

j∗ :=

⌈
16

µ
log
(
dk−1/(s+t)

)
log log

(
dk−1/(s+t)

)⌉
,

we have:

dj∗

ℓj∗
⩽

log
(
dk−1/(s+t)

)
C

exp

(
− j∗ µ

8 log (dk−1/(s+t))

)
⩽

log
(
dk−1/(s+t)

)
C

exp
(
−2 log log

(
dk−1/(s+t)

))
⩽

1

C log (dk−1/(s+t))

⩽
1

100

for d large enough by (5.1). Thus a minimum integer i∗ ⩽ j∗ such that di∗/ℓi∗ ⩽ 1/100
exists.

Lemma 35. There exists α > 0 such that the following holds: Let ε > 0 be sufficiently
small. Then there exists d# such that whenever

d ⩾ d#, 1 ⩽ t ⩽ s, st ⩽
α ε log d

log log d
, and 1/2 < k ⩽ d(s+t)/10,

the following hold for all i ∈ N with 0 ⩽ i < i∗, where i∗ is defined (and guaranteed to
exist) by Lemma 34 item (I3).

(R1) di is sufficiently large: di ⩾ d̃, where d̃ is from Lemma 24,

(R2) k is not too large: k ⩽ d
(s+t)/5
i .

(R3) ℓi is bounded below and above in terms of di: 4η di < ℓi < 100di,

(R4) s and t are bounded in terms of di: 1 ⩽ t ⩽ s and st ⩽
α̃ log di
log log di

,

(R5) η is sufficiently small:
1

log5 di
< η <

1

log(dik−1/(s+t))
,

(R6) βi is small: βi ⩽ 1/10. (Note that the bound βi ⩾ d
−1/(200st)
i holds by definition.)

Proof. Once again, we will not explicitly compute d#, but instead simply take d to be
sufficiently large when needed. For all i < i∗, we have di ⩾ ℓi/100, and by (I2) of Lemma

34, it follows for d large enough that ℓi ⩾ d
(
dk−1/(s+t)

)−4/(C−7ε/8)
. Note the following as

a result of (5.1):

di ⩾
1

100
d
(
dk−1/(s+t)

)−4/(C−7ε/8)
⩾ dε/40. (5.4)
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Using the above, note for d# large enough, namely d# ⩾ d̃40/ε, it follows

di ⩾ dε/40 ⩾ d̃,

showing (R1).
From (5.4) it also follows that when k ⩽ dε(s+t)/200, we have:

k ⩽ dε(s+t)/200 ⩽ d
40(s+t)/200
i = d

(s+t)/5
i .

Otherwise, when k > dε(s+t)/200, we have C = 8. Using the first inequality in (5.4), it
follows that:

d
(s+t)/5
i ⩾

(
1

100
d
(
dk−1/(s+t)

)−4/(C−7ε/8)
)(s+t)/5

=

(
1

100
d(1−

4
8−7ε/8)k(

4
(s+t)(8−7ε/8))

)(s+t)/5

⩾
(
d(1−

4
8−7ε/4)k(

4
(s+t)(8−7ε/8))

)(s+t)/5

⩾
(
k

10
s+t(1−

4
8−7ε/4)+

4
(s+t)(8−7ε/8)

)(s+t)/5 (
as k ⩽ d(s+t)/10

)
= k2 (1−

4
8−7ε/4)+

4
5(8−7ε/8) .

Let us consider the exponent above. We have

2

(
1− 4

8− 7ε/4

)
+

4

5(8− 7ε/8)
= 2− 4

5

(
10

8− 7ε/4
− 1

8− 7ε/8

)
= 2− 4 (10(8− 7ε/8)− (8− 7ε/4))

5(8− 7ε/4)(8− 7ε/8)

= 2− 4

5

(
72− 7ε

64− 21ε+ 49ε2/32

)
⩾ 1,

for ε sufficiently small. Therefore, k ⩽ d
(s+t)/5
i completing the proof of (R2).

We also have
ℓi
di

⩾
ℓ0
d0

=
C η

µ
.

Since µ < 1 for ε sufficiently small, this shows

ℓi ⩾
C η

µ
di ⩾ C ηdi ⩾ 4ηdi

proving (R3) as the upper bound always holds for i < i∗.
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As log(x)/ log log(x) is increasing for x large enough, it follows we can take d̃ sufficiently
large such that

st ⩽
αε log d

log log d
⩽

αε log
(
d
40/ε
i

)
log log

(
d
40/ε
i

) ⩽
40α log di
log log di

⩽
α̃ log di
log log di

,

when α ⩽ α̃/40. This proves (R4).
Again using the fact that dk−1/(s+t) ⩽ 2d, we see for d large enough that

1

log5(di)
⩽

1

log5(dε/40)
=

(40/ε)5

log5(d)
<

µ

log(2d)
⩽ η.

Furthermore, for ε sufficiently small, we have µ < 1. Thus, as di ⩽ d, we may conclude
that

η ⩽
1

log (dk−1/(s+t))
⩽

1

log (dik−1/(s+t))
.

This shows (R5). Let 0 ⩽ i′ ⩽ i∗ − 1 be the largest integer such that βi′ = d
−1/(200st)
i′ .

Then

βi∗−1 = (1 + 36η)i
∗−1−i′d

−1/(200st)
i′

⩽ (1 + 36η)i
∗ (
dε/40

)−1/(200st)

⩽ exp (36ηi∗) d−ε/(800st).

By Lemma 34 item (I3), we may conclude the following:

βi∗−1 ⩽ exp (36ηi∗) d−ε/(800st)

⩽ exp

(
576

η

µ
log
(
dk−1/(s+t)

)
log log

(
dk−1/(s+t)

))
d−ε/(800st)

=
(
log
(
dk−1/(s+t)

))576
d−ε/(800st)

⩽ (log(2d))576 d−ε/(800st)

⩽ (log(2d))576 d
−
ε log log d

800αε log d

⩽ log(d)1000 log(d)−
1

800α

= log(d)1000−
1

800α

⩽
1

10
,

for d large enough and α small enough. This shows (R6) and completes the proof.

We are now ready to prove the main theorem:
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Theorem 36 (Restatement of Theorem 13). There exists a constant α > 0 such that for
every ε > 0, there is d∗ ∈ N such that the following holds. Suppose that d, s, t ∈ N, and
k ∈ R satisfy

d ⩾ d∗, 1 ⩽ t ⩽ s, st ⩽
α ε log d

log log d
, and 1/2 ⩽ k ⩽ d(s+t)/10.

Define C as follows:

C :=

{
4 + ε k ⩽ dε(s+t)/200,
8 otherwise.

If G is a graph and H = (L,H) is a correspondence cover of G such that:

(i) H is (k,Ks,t)-locally-sparse,

(ii) ∆(H) ⩽ d, and

(iii) |L(v)| ⩾ C d/ log
(
dk−1/(s+t)

)
for all v ∈ V (G).

Then, G admits a proper H-coloring.

Proof. Let α be as defined in Lemma 35. Let ε > 0 be sufficiently small. We will
not explicitly compute d∗ but simply take d large enough when needed. Thus let d be
sufficiently large so that we may apply Lemma 35.

Let G be a graph and H = (L,H) be a correspondence cover of G satisfying the
hypotheses of the theorem. Set

G0 := G, H0 = (L0, H0) := H

By slightly modifying ε if necessary, and taking d sufficiently large, we may assume ℓ0
is an integer. By removing some of the vertices from H if necessary, we may assume that
|L(v)| = ℓ0 for all v ∈ V (G).

At this point, we recursively define a sequence of graphs Gi with correspondence cover
Hi = (Li, Hi) for 0 ⩽ i ⩽ i∗ by iteratively applying Lemma 24 as follows: Lemma 35
shows conditions (L1)–(L5) of Lemma 24 (with di in place of d, ℓi in place of ℓ) hold for
each 0 ⩽ i ⩽ i∗ − 1. Therefore, if Gi is a graph with correspondence cover Hi = (Li, Hi)
such that for βi as defined at the start of the section,

(S1) Hi is (k,Ks,t)-locally-sparse,

(S2) ∆(Hi) ⩽ 2di,

(S3) the list sizes are roughly between ℓi/2 and ℓi:

(1− βi)ℓi/2 ⩽ |Li(v)| ⩽ (1 + βi)ℓi for all v ∈ V (Gi),

(S4) average color-degrees are smaller for vertices with smaller lists of colors:

degHi
(v) ⩽

(
2− (1− βi)

ℓi
|Li(v)|

)
di for all v ∈ V (Gi),
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then Gi, and Hi satisfy the required hypotheses of Lemma 24. In particular, there exists
a partial Hi-coloring φi of Gi and an assignment of subsets Li+1(v) ⊆ (Li)φi

(v) to each
vertex v ∈ V (Gi) \ dom(φi) such that, setting

Gi+1 := Gi[V (Gi) \ dom(φi)], Hi+1 := Hi

[⋃
v∈V (Gi+1)

Li+1(v)
]
,

and Hi+1 := (Li+1, Hi+1),

we have items (S1)–(S4) hold for Gi+1 and Hi+1 with parameter βi+1. Thus we may
iteratively apply Lemma 24 i∗ times, starting with G0 and H0, to define Gi and Hi for
0 ⩽ i ⩽ i∗.

We now show Gi∗ and Hi∗ satisfy the hypotheses of Proposition 20. By (S3), it follows
for each v ∈ V (Gi∗),

|Li∗(v)| ⩾ (1− βi∗)ℓi∗/2 ⩾ (1− (1 + 36η)βi∗−1)ℓi∗/2.

Since βi∗−1 ⩽ 1
10

and η ⩽ 1
100

for d large enough, it follows

(1− (1 + 36η)βi∗−1)ℓi∗/2 ⩾

(
1− 1 + 36/100

10

)
ℓi∗/2 ⩾

1

4
ℓi∗

for d large enough. As ℓi∗ ⩾ 100di∗ , we have:

1

4
ℓi∗ ⩾ 25di∗ .

We have by (S2) that ∆(Hi∗) ⩽ 2di∗ , thus for all c ∈ V (Hi∗), we have

25di∗ ⩾ 10 degHi∗
(c).

Putting this chain of inequalities together yields |Li∗(v)| ⩾ 8 degHi∗
(c), as desired.

Therefore by Proposition 20 there exists an Hi∗-coloring of Gi∗ , say φi∗ . Letting φi be
the partial Hi-colorings of Gi for 0 ⩽ i ⩽ i∗− 1 guaranteed at each application of Lemma
24, it follows

i∗⋃
i=0

φi

is a proper H-coloring of G, as desired.

6 Concluding remarks

We conclude with a description of potential future directions of inquiry. In this paper,
we show an asymptotically improved bound on the (correspondence) chromatic number
of a graph G of maximum degree ∆ when G has at most k ≪ ∆s+t copies of Ks,t in
the neighborhood of any vertex. It is natural to ask if we can extend the range of k to
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k = Θ(∆s+t). We note that for k =
(

∆
s+t

)(
s+t
t

)
, in the worst case the graph is complete,

implying

χc(G) = ∆ + 1 = O

(
∆

log (∆k−1/(s+t))

)
.

Therefore, we suspect our results should extend to all values of k in this range (although
the proof would require some new ideas; recall the discussion at the end of §3). Fur-
thermore, in light of our results and Conjecture 5, we make the following more general
conjecture (a correspondence coloring version of Conjecture 5 appeared in [5]).

Conjecture 37. For every graph F , the following holds for ∆ ∈ N large enough. Let

1/2 ⩽ k < ∆|V (F )|,

and let G be a (k, F )-locally-sparse graph of maximum degree ∆. Then,

χc(G) = O

(
∆

log (∆k−1/|V (F )|)

)
,

where the constant factor in the O(·) may depend on F .

We note that a simple application of Theorem 10 together with Proposition 22 proves
Conjecture 37 for bipartite graphs F and the following range of k:

|V (F )|2∆|V (F )|−1 ⩽ k ⩽
∆|V (F )|

(log∆)c
,

for some constant c := c(F ) > 0. As a result of Corollary 15, it remains to consider the
range

∆|V (F )|/10 < k < |V (F )|2∆|V (F )|−1, and k >
∆|V (F )|

(log∆)c
,

in order to verify the conjecture for bipartite graphs.
We remark that the constant C in Corollary 15 is independent of F . This is in line

with several recent results surrounding Conjecture 5 which prove the constant in the O(·)
is independent of F (such as [33, 30] for F = K3, [14] for fans and cycles, [5] for F
bipartite, and [6] for F almost-bipartite; see Table 1). To this end, we conjecture the
following, which is a strengthening of [6, Conjecture 1.7]:

Conjecture 38. There exists a universal constant C ∈ R such that for every graph F ,
the following holds for ∆ ∈ N large enough. Let

1/2 ⩽ k < ∆|V (F )|,

and let G be a (k, F )-locally-sparse graph of maximum degree ∆. Then,

χc(G) ⩽
C∆

log (∆k−1/|V (F )|)
.
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We note that for an arbitrary graph, a simple counting argument shows that

k ⩽

(
∆

|V (F )|

)
|V (F )|!
|Aut(F )|

,

where the bound is tight when considering the number of copies of F in K∆. As the above
is strictly less than ∆|V (F )|, the bounds on k in Conjecture 37 and Conjecture 38 cover all
possible cases.

We also note that Corollary 15 verifies this conjecture in the case when F is bipartite
for a smaller range of k than stated. Additionally, we remark that Conjecture 38 is quite
challenging. Indeed, Conjecture 5 itself is considered ambitious (see the discussion at the
end of [6, §1.1]). As such, falsifying Conjecture 38 may be a much more feasible task than
disproving Conjecture 5 and so we pose it as an interesting question.

As mentioned earlier, the best known upper bound for Conjecture 5 and arbitrary
F is O (∆ log log∆/ log∆) due to Johansson [23]. In fact, his proof holds in the list
coloring setting as well. The constant factor was improved by Molloy [30], and Bernshteyn
extended the result to correspondence coloring [7]. A natural question to ask is whether
we can prove a similar bound for (k, F )-locally-sparse graphs. This would be the first
step toward proving Conjecture 37 and Conjecture 38.
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A Proof of Proposition 11

We restate the proposition here for convenience.

Proposition 39 (11). Let F and G be graphs and let H = (L,H) be a correspondence
cover of G. For k ∈ R, the following holds:

(S1) If G is (k, F )-locally-sparse, then so is H.
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(S2) If F satisfies

∀u, v ∈ V (F ), uv /∈ E(F ) =⇒ NF (u) ∩NF (v) ̸= ∅,

then if G is F -free, H is as well.

Proof. We first prove (S1). Let v ∈ V (G) and c ∈ L(v). From (CC3) it follows |NH(c) ∩
L(u)| ⩽ 1 for each u ∈ V (G). Suppose H[NH(c)] contains at least ⌊k⌋ + 1 copies of F .
Let X be one such copy. By the earlier observation, the map c′ → L−1(c′) is injective
for c′ ∈ X, i.e., no two vertices of X are in L(u) for any u ∈ V (G). Thus the map
ψ : V (X) → V (G) defined by ψ(c′) = L−1(c′) is an isomorphism from X to a subgraph
of G. In addition, as V (X) ⊆ NH(c), it follows by the second clause in (CC3) that
L−1(c′) ∈ NG(v) for each c

′ ∈ V (X). Therefore, ψ(X) ⊆ G[NG(v)]. Thus if H contains a
copy of F in a neighborhood, then so does G.

Now, let X ̸= X ′ be distinct copies of F in H[NH(c)]. As shown earlier, there are
subgraphs ψ(X), ψ(X ′) in G[NG(v)] isomorphic toX, X ′ respectively. It is now enough to
show that ψ(X) ̸= ψ(X ′). If V (X) ̸= V (X ′), then by the fact that c→ L−1(c) is injective
for c ∈ X, we have V (ψ(X)) ̸= V (ψ(X ′)) and thus ψ(X) ̸= ψ(X ′). If V (X) = V (X ′),
then as X ̸= X ′, it follows there is some edge c1c2 ∈ E(X) \ E(X ′) . Since ψ is an
isomorphism, the edge L−1(c1)L

−1(c2) ∈ E(ψ(X)) \E(ψ(X ′)), and ψ(X) ̸= ψ(X ′). Thus
ψ(X) and ψ(X ′) are two different copies of F in G[NG(v)]. It follows that if H contains
⌊k⌋ + 1 copies of F in H[NH(c)], then G contains ⌊k⌋ + 1 copies of F in G[NG(v)],
contradicting the local sparsity G. Thus H is (k, F )-locally-sparse.

We now prove (S2). Suppose X is a copy of F in H. From the argument in the
previous paragraph, if the map φ : V (X) → V (G) by c → L−1(c) is injective, then it
follows that φ(X) is a copy of F in G. If F is a clique, and X is a copy of F , then clearly
(CC2) implies φ is injective. Suppose F is not a clique and let X be a copy of F such
that φ is not injective, i.e., there exist c, c′ ∈ V (X) with c, c′ ∈ L(u) for some u ∈ V (G).
Then, as (CC2) states L(u) is an independent set, it follows cc′ /∈ E(F ). Thus, by the
assumption of (S2), it follows NX(c) ∩ NX(c

′) ̸= ∅. However, this violates (CC3). Thus
φ is injective. Therefore, if H contains a copy of F , then so does G. As G is F -free, we
conclude H is as well.

B Proof of Proposition 22

Let us first restate the result.

Proposition 40 (Restatement of Proposition 22). Let G be an n-vertex (k,Ks,t)-sparse

graph. For k⋆ = (s+t)2 ns+t−1

2 ss tt
, we have

|E(G)| ⩽

{
4n2−1/(st) if k ⩽ k⋆;

2 s1/t t1/s k1/st n2−1/s−1/t if k > k⋆.

We will use the following result of Alon in our proof.
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Lemma 41 (Contrapositive of [1, Lemma 2.1]). Let s ⩾ t ⩾ 1 and let G = (V,E) be a
graph such that there are at most k homomorphisms from a labelled copy of H = Ks,t into
G. Then, |E| ⩽ k1/st n2−1/s−1/t/2.

Proof of Proposition 22. It is easy to see that there are at most (s+t)2 ns+t−1 non-injective
homomorphisms from a labelled copy of Ks,t into G. As G contains at most k copies of
Ks,t, the number of injective homomorphisms from a labelled copy of Ks,t into G is at
most

21{s=t} s! t! k ⩽ 2 ss tt k.

Therefore, the number of homomorphisms from Ks,t into G is at most

(s+ t)2 ns+t−1 + 2 ss tt k ⩽

{
2 (s+ t)2 ns+t−1 if k ⩽ k⋆;

4 ss tt k if k > k⋆.

As s, t ∈ N and s ⩾ t ⩾ 1, we have(
2(s+ t)2

)1/(st)
⩽ 8, and 41/(st) ⩽ 4.

The claim now follows by applying Lemma 41.
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