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Abstract

A k-kernel in a digraph G is a stable set X of vertices such that every vertex
of G can be joined from X by a directed path of length at most k. We prove three
results about k-kernels.

First, it was conjectured by Erdés and Székely in 1976 that every digraph G
with no source has a 2-kernel | K| with |K| < |G|/2. We prove this conjecture when
G is a “split digraph” (that is, its vertex set can be partitioned into a tournament
and a stable set), improving a result of Langlois et al., who proved that every split
digraph G with no source has a 2-kernel of size at most 2|G|/3.

Second, the Erdos-Székely conjecture implies that in every digraph G there is a
2-kernel K such that the union of K and its out-neighbours has size at least |G|/2.
we prove that this is true if V(G) can be partitioned into a tournament and an
acyclic set.

Third, in a recent paper, Spiro asked whether, for all k > 3, every strongly-
connected digraph G has a k-kernel of size at most about |G|/(k +1). This remains
open, but we prove that there is one of size at most about |G|/(k — 1).

Mathematics Subject Classifications: 05C20, 05C35, 05C69

1 Introduction

A digraph is a finite directed graph with no loops or parallel edges (it may have directed
cycles of length two). If G is a digraph, X C V(G) is stable if there is no edge with both
ends in X. In a digraph G, if X, Y C V(G), we say X k-covers Y if for each y € Y, there
exists x € X and a directed path of length at most k from x to y. (If X is a singleton
{z} we write x for {x} here, and the same for Y.) A k-kernel in a digraph G is a stable
set X of vertices that k-covers V(G). !
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There are many interesting open questions about k-kernels. For instance, not every
digraph has a 1-kernel (the cyclic triangle is a counterexample), but Chvétal and Lovész [3]
showed that every digraph has a 2-kernel. Every 2-kernel must contain every source (a
source is a vertex with in-degree zero), but if there are no sources, how large must 2-
kernels be in terms of the number of vertices? (We write |G| for |V(G)|.) The following
was conjectured by P. L. Erdés and L. A. Székely [5] in 1976, and remains open:

Conjecture 1.1 (The small quasi-kernel conjecture). Every digraph G with no source
has a 2-kernel of size at most |G|/2.

There has been extensive work proving special cases of the conjecture and exploring
related problems (see, for example, [1, 2, 6, 7, 8, 9, 10, 12]; and see [4] for a survey). The
best general bound seems to be a result of Spiro [12], that every digraph G with no source
has a 2-kernel of size at most |G| — 1(|G|log |G|)"/2, which is of course very far from the
conjecture. We will show below that it is enough to prove Conjecture 1.1 for oriented
graphs, that is, digraphs with no directed cycle of length two.

If G is a counterexample to Conjecture 1.1, then since it has a 2-kernel, it has a stable
set S with |S| > |G|/2; and a natural special case is when G \ S is a tournament. Let
us say G is a split digraph if G is an oriented graph and its vertex set admits a partition
into a stable set and a tournament. Ai, Gerke, Gutin, Yeo and Zhou [1] proved that
Conjecture 1.1 holds for split digraphs in which all edges between the tournament and
the stable set are directed towards the stable set. Langlois, Meunier, Rizzi, Vialette and
Zhou [10] proved that every split digraph G with no sources admits a 2-kernel of size at
most 2|G|/3. In Section 2, we strengthen these results:

Theorem 1.2. Every split digraph G with no sources admits a 2-kernel K with |K| <
|G|/2.

Our second result concerns a problem of Spiro [12], who observed that Conjecture 1.1
implies:

Conjecture 1.3. In every digraph G, there is a 2-kernel K such that at least half the
vertices of G belong to K or have an in-neighbour in K.

We discuss this in Section 3, and prove that it holds for split digraphs, and indeed
for digraphs with a vertex set that can be partitioned into a tournament and an acyclic
subgraph.

Our third result concerns a different problem of Spiro [12], who asked whether:

Conjecture 1.4 (Spiro). For all integers k > 3, every strongly-connected digraph G has
a k-kernel of size at most |G|/(k + 1) + Ox(1).

It seems that the best known bound in this case is due to Spiro, in the same paper,
who proved that under the hypotheses of Conjecture 1.4, there is a k-kernel of size at most
about |G|/ log k. Our third result is that there is one of size at most |G|/(k — 1) 4+ Ox(1).

This is a consequence of Theorem 1.5 below.
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Let T be a subdigraph with underlying graph a tree, such that for some vertex r of T',
every edge of T is directed away from r in the natural sense. We call T" an arborescence,
and r is its root. Every strongly-connected digraph has a subdigraph that is a spanning
arborescence (spanning means that the arborescence contains all vertices of the digraph).
In Section 4 we will prove:

Theorem 1.5. For all integers k > 2, every digraph G with |G| > 1 and with a spanning
arborescence has a k-kernel of size at most 1 + (|G| —2)/(k —1).

This follows easily from a result about acyclic digraphs (acyclic means there is no
directed cycle):

Theorem 1.6. For every integer k > 1, if G is an acyclic digraph with |G| > 2 and with
only one source, then G has a k-kernel of size at most 1 + (|G| —2)/k.

This result is tight, as can be seen from the digraph shown in figure Fig. 1.

Figure 1: All 3-kernels have size > 1 + (|G| — 2)/3. For k > 3 make the vertical paths
longer.

Before we pass to our main topic, let us prove the result mentioned earlier, that it is
enough to work with oriented graphs instead of general digraphs. We need:

Lemma 1.7. Let G be a digraph. Then either

e there is a stable set K of G with |K| < |G|/2 such that K 2-covers every vertex of
G that is not a source; or

e there is an induced subdigraph G' of G that is a counterezample to Conjecture 1.1.

Proof. We proceed by induction on |G|. Let A be the set of all sources of G. If A = 0,
then one of the outcomes is true, so we assume that v is a source of G. Let N be the
set of all out-neighbours of v. If N = (), then v has no in-neighbours or out-neighbours
and the result follows by deleting v and applying the inductive hypothesis. So we assume
that |[N| > 1. The vertices in N are not sources, and so AN N = (. Let G’ be the
digraph obtained from G by deleting N U {v}, and let A’ be the set of all sources of G'.
Thus A\ {v} C A". Moreover, each vertex in A"\ A has an in-neighbour in G but not in
G', and so is 1-covered in G by N and hence 2-covered by v. If there exists a stable set
K' C V(G') with |K| < |G'|/2 that 2-covers V(G') \ A" in G’, then K U {v} satisfies the
first outcome of the theorem. If there is no such K, then the second outcome holds for
G’ and hence for G. This proves Lemma 1.7. m
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We deduce:

Lemma 1.8. Suppose that G is a digraph with no source that does not satisfy Conjec-
ture 1.1. Then it has a subdigraph with no source and with no directed cycle of length two
that also does not satisfy Conjecture 1.1.

Proof. We proceed by induction on |E(G)|. We may assume that there is a directed cycle
with vertex set {u,v}. Let G; be obtained by deleting the edge uv. If G; has no source,
then it does not satisfy Conjecture 1.1 (because every 2-kernel of G is a 2-kernel of G),
and the result follows from the inductive hypothesis applied to G;. So we assume that
(G1 has a source, and hence v is a source of G; and therefore v has no in-neighbour in G
except u. Similarly, v has no in-neighbour in G except v. Moreover, v is the only source
of GG1. Let us apply Lemma 1.7 to G.

Suppose the first outcome holds, and hence there is a stable set K of Gy with |K| <
|G|/2 such that K 2-covers (in G) every vertex of GG that is not a source, that is,
every vertex except possible v. In particular, K 2-covers u in G;. Since v is the only
in-neighbour of v in G, it follows that either u € K, or K 1-covers v in G; and in either
case K 2-covers v (and hence 2-covers V(G)) in G, a contradiction.

Thus the second outcome of Lemma 1.7 holds, and there is an induced subdigraph G’
of G; that is a counterexample to Conjecture 1.1. But then the result follows from the
inductive hypothesis applied to G’. This proves Lemma 1.8. O

2 Split digraphs

If G is a digraph, we use G[X] to denote the subdigraph induced on X C V(G). We say
“u is adjacent to v” to mean that w is an in-neighbour of v, and “adjacent from” to mean
it is an out-neighbour. A neighbour of v means a vertex that is either an in-neighbour or
an out-neighbour of v. We sometimes use “G-in-neighbour” to mean “in-neighbour in the
digraph G”, and so on (this is helpful because we sometimes work with different digraphs
that have the same vertex set.) For a vertex v of a digraph G, N (v) denotes the set
of all out-neighbours of v, and N (v) is its set of in-neighbours. A split in an oriented
graph G is a pair (S,T), where SUT = V(G), SNT =, S is a stable set, and G[T] is
a tournament.

In this section we prove Theorem 1.2, but it is convenient to prove a slightly stronger
statement, that the same conclusion holds just assuming that no vertex in S is a source.
Now there is a difficulty, because this is false for the 1-vertex digraph with S = (, but
this is the only exception. We will prove:

Theorem 2.1. Let (S,T) be a split of an oriented graph G, such that S # () and no vertex
in S is a source. Then there is a 2-kernel K with |K| < |G|/2.

For the proof, we begin with some lemmas. A 2-kernel K is strong if for every vertex
v € T, either there is a vertex in K that 1-covers v, or a vertex in K NT that 2-covers
v. (We do not know whether Theorem 1.2 remains true if we ask for a strong 2-kernel of
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size at most |G|/2.) If v € T, we say s € S is a problem for v if v is adjacent from s, and
v does not 2-cover s, and no non-neighbour of v in S 2-covers s. If v has a problem, then
v is contained in no 2-kernel.

Lemma 2.2. Let G,T,S be as above, and let v € T. If v is contained in no strong
2-kernel, then there exists w € V(G)\ {v}, adjacent to v, such that N (w) C Ng(v); and
either w € S and w is a problem for v, orw € T.

Proof. Since the set consisting of v and all non-neighbours of v in S is not a strong 2-
kernel, there exists w € V(G) \ {v} such that v does not 2-cover w, and either w € T" and
no non-neighbour of v in S 1-covers w, or w € S and no non-neighbour of v in S 2-covers w.
In the first case, since v does not 2-cover w, Ng (w) NT C N (v). If s € N (w) NS, then
since no non-neighbour of v in S 1-covers w, it follows that s € NJ (v) U N (v); and since
v does not 2-cover w, s ¢ NJ (v), and so s € Ng (v). This proves that Ng(w) C N (v)
as required. In the second case, w is a problem for v. Moreover, every in-neighbour of w
is an in-neighbour of v: because if © € T is adjacent to w, then u is not adjacent from
v since v does not 2-cover w, and so u is adjacent to v. Hence, again, Ng (w) C Ng (v).
This proves Lemma 2.2. O

Lemma 2.3. Let G, T, S be as above, and suppose that G, S, T form a smallest counterex-
ample to Theorem 2.1. Suppose also that v € T is contained in no strong 2-kernel, and
let w be as in Lemma 2.2. If w € T, then there is no problem for w.

Proof. Suppose that w € T, and s € S is a problem for w. Let A = NJ(v). Since
Ng(w) € Ng(v), no vertex in A is adjacent to w, and in particular s ¢ A. Make a
digraph G’ from G by deleting v and making w complete to A. So G’ has no sources.

(1) Nei(w) € N (v).
Let u € N5 (w). Sou ¢ A, and so u € N (w) C Ng (v). This proves (1).

Let K be a 2-kernel of G'. We will show that K is also a 2-kernel of G. Certainly it
is stable in G.

2 wéK.

Suppose that w € K. Then s ¢ K, so there is a directed path P of G’, of length
one or two, from some x € K to s. Since s is a problem for w in GG, some edge of P is not
an edge of G, which is impossible since s ¢ A. This proves (2).

So w ¢ K. Since K 2-covers w in G’, (1) implies that K 2-covers v in GG, and 1-covers
vin G if it 1-covers w in G'. Let a € A. We must show that K 2-covers a in G. If a € K
this is true, so we assume there is a directed path P of G’ of length one or two, from some
x € K to a. If P is a path of G then K 2-covers a in G, so we may assume that the last
edge of P is an edge of G’ not in G. But w ¢ K and = € K, so w # x, and therefore P
has length two with middle vertex w. By (1), z-v-a is a path of G, so K 2-covers a in G.
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This proves that every 2-kernel of G’ is a 2-kernel of GG. Since G, S, T form a smallest
counterexample to Theorem 2.1, and G’ has fewer vertices than G, and (S,7 \ {v}) is a
split for G’, with S # ), and no vertex in S is a source in G’, it follows that G’ has a
2-kernel of size at most |G’|/2; but this is also a 2-kernel for G, which is impossible. This
proves that there is no problem for w, and so proves Lemma 2.3. O

Now we prove Theorem 2.1, which we restate:

Theorem 2.4. Let (S, T) be a split of an oriented graph G, such that S # 0 and no vertex
in S is a source. Then there is a 2-kernel K with |K| < |G|/2.

Proof. We may assume that G, .S, T form a smallest counterexample. Let B be the set
of all vertices in T with problems. For each b € B, select a problem z, for b, and let Z
be the set {z, : b € B}. Let @ be the set of all ¢ € S\ Z with N;(¢) € B. For each
q € @, it has an in-neighbour in B, since it is not a source; select one such in-neighbour
by. Similarly, for each s € S\ (Q U Z), choose some t; € T'\ B adjacent to s.

For each z € Z, let ®(2) be the set of ¢ € Q such that z = z,,. For each t € T'\ B, let
®(t) be the union of {t} and the set of s € S\ (Q U Z) such that ¢t = t,. Thus, the sets
®(v) (v e ZN(T\ B)) are pairwise disjoint and have union V(G) \ (BU Z). Some of the
sets ®(z) (z € Z) may be empty.

BRGNS Y5
\\\\\\ Mg

) T [N 5
Figure 2: Definitions of ®(z) and ().

>

Let H be the oriented graph obtained from G[(T'\ B)U Z] by adding all possible edges
from T\ B to Z; that is, if t € T'\ B and z € Z are nonadjacent in G then we add an
edge tz.

For each v € V(H), let NY%(v) be the set of vertices that are neither out- nor in-
neighbours of v (including v itself). Thus Ny (v) = Z if v € Z, and N} (v) = {v} if
v € T\ B. Define ¢*(v) = ZueNE(v) |®(u)| and define ¢~ (v), ¢"(v) similarly. We call
¢ (v) + ¢°(v)/2 the score of v. If V(H) =0, then T\ B = and B = ) (since Z = ();
so T = (), which implies that S = () (since there are no sources in S), a contradiction. So
V(H) # (. We have

Yoo e@letw) = D [@@lew)] = > [P(w)]é (w),
ueV (H) uwweE(H) weV (H)

and therefore

Y 12 (w) = ¢7(u) =

ueV (H)
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We claim that there exists v € V(H) such that ¢ (v) > ¢~ (v). If |P(u)|(¢ (u) —
¢t (u)) # 0 for some u € V(H), then |®(u)|(¢~ (u) — ¢ (u)) > 0 for some u € V( ) nd
the claim is true. If not, then either |®(u)| = 0 for each u € V(H), or ¢~ (u) — ¢ (u) =
for some u € V(H), and in either case the claim is true. This proves that there ex1sts
v € V(H) such that ¢*(v) = ¢~ (v).

Since

¢*(v) + ¢~ (v) +¢°(v) = |G| - |Z] - |B| < |G| - 2|Z],

it follows that ¢~ (v) + ¢°(v)/2 < |G|/2 — |Z]. Choose v € V(H) with score as small as
possible (and consequently with score at most |G|/2 — |Z|).

A vertex in T is pure-up if it has no in-neighbour in S. The case when v has score
exactly |G|/2 — |Z| is troublesome, so let us first handle that.

(1) We may assume that either v has score strictly less than |G|/2 — |Z|, or v € Z
and ®(v) # 0, or |®(v)| = 2.

We assume that v has score exactly |G|/2 — |Z|. It follows that |B| =
vertex u € V(H) has score at least |G|/2 — | Z|, and so satisfies ¢ (u) < ¢

Y 2l () = 6" (w) =

ueV (H)

|Z], and every
“(u). But

It follows that for every u € V(H), |®(u)|(¢~(u) — ¢ (u)) = 0, so either ®(u) = () (and
hence u € Z) or ¢*(u) = ¢~ (u) (and hence u has the same score as v). In particular, if
®(u) # O for some u € Z, then we may replace v by u and the claim holds. Similarly,
if some u € T\ B satisfies |®(u)| > 2, we can replace v by u. So we may assume that
P(u) = 0 for all w € Z (and hence @ = (), and ®(u) = {u} for each u € T\ B (and
hence S\ (QU Z) = ). Consequently, S = Z. Since |Z| < |G|/2 (because |Z| = |B]),
we may assume that there exists py € T not 2-covered by Z. Thus pg is pure-up, and
so P # (), where P is the set of pure-up vertices. Choose p € P that 2-covers P. (Any
vertex of maximum out-degree in G[P] has this property.) Let Z’ be the set of vertices in
Z that are not adjacent from p; so Z' U {p} is stable. We claim it is a 2-kernel. Certainly
Z"U{p} 2-covers Z; each vertex in T' 1-covered by Z \ Z' is 2-covered by p; every other
vertex of T' 1-covered by Z is 1-covered by Z’; and each vertex of T not 1-covered by Z
is in P, and hence is 2-covered by p. So Z' U {p} is a 2-kernel, and therefore we may
assume its size is more than |G|/2. Since |Z| = |B|, it follows that |7"\ B| = 1 and hence
T\B = P = {p}, since PNB = ; and so py = p. Since Z 1-covers B and does not 2-cover
po = p, it follows that p is adjacent to every vertex in B. But then {p} is a 2-kernel (be-
cause every vertex in S = Z has an in-neighbour, since it is not a source). This proves (1).

(2) If v € Z then the theorem holds.

Let J be the set of vertices in S\ Z that are 2-covered by v. (Possibly J N Q # 0.)
Let A= S\ (JUQUZ), and F = (T \ B) \ N/ (v). Since N5 (v) = F, and therefore
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the union of the sets ®(u) (u € Ng(v)) includes F'U A, it follows that ¢~ (v) > |F| + |A|.
Moreover,
o°(v) =) 19(=)| = |Q|.
z2€Z
Consequently, the score of v is at least |F| 4+ |A] + |Q]|/2, and so the latter is at most
Gl/2— 2]

Choose X C S minimal such that AU Z U X 1-covers every vertex of T that is not
pure-up. Thus |X| < |F|, since Z l-covers B U (T N Ng(v)). Let K = AU Z U X.
We claim that K is a 2-kernel. It certainly 2-covers S, since Z 2-covers ), and AU {v}
2-covers S\ (QU Z). It 1-covers all vertices in 7" that are not pure-up, from the choice
of X. Suppose it does not 2-cover some p € T'\ B. Then p is pure-up, so p ¢ B; and
p is complete to all vertices in T' that are not pure-up, since K 1-covers all such vertices
and does not 2-cover p. Moreover, each vertex in Z is adjacent from p in H. Thus, every
H-in-neighbour of p is also pure-up, and so is adjacent to v in H. Consequently

)+ Y 1W< Y e

uEN; (p) uEN (v)

N

and since |®(p)| > 1 it follows that p has smaller score than v, a contradiction.
So K is a 2-kernel. But

[K| < | X[+ Al + 2] < |[FI+ Al + 2] < |Gl/2 = el /2.
It follows that | K| < |G|/2. This proves (2).

Henceforth we assume that v € T'\ B and, by (1), either v has score strictly less than
GI/2 =12, or [B(v)] = 2.

(3) v extends to a strong 2-kernel.

Suppose not. By Lemma 2.2, there exists t € T, adjacent to v, such that every G-
in-neighbour of ¢ is a G-in-neighbour of v, and ¢ € T\ B by Lemma 2.3. A vertex of
H is a G-in-neighbour of v if and only if it is an H-in-neighbour of v, and the same is
true for in-neighbours of ¢; so every H-in-neighbour of ¢ is an H-in-neighbour of v. Hence

¢~ (v) = ¢ (t) + |®(t)]. Since ¢°(v) = |®(v)| and ¢°(t) = |®(¢)], it follows that

¢~ (v) +0"(v)/2 2 ¢ (1) + (1) + | P(v)]/2 > ¢ (1) + &°(1) /2,

and so the score of t is strictly less than that of v, contradicting the choice of v. This
proves (3).

Let Q" = U,cpn-() P(2), and Q" = U,c zon-(,) P(2); s0 Q" = Q \ Q. Let J be the
set of vertices in S\ @ that are 2-covered by v in G\ B. So, J, Z are both subsets of S\ @,
but they might intersect each other. S is also partitioned into three subsets, S N N (v),

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.32 8



SN N;(v) and S\ Ng(v), where we define Ng(v) = N (v) U Ng (v). (See figure Fig. 3.)
We intend to find a 2-kernel containing v of size at most |G|/2, but we must be careful
only to add vertices in S\ Ng(v), to keep the set stable.

J 7 Q// Q/
1] 0 1] 1] SNNL(v)

fo A NN g A g 5Nl

BN WANINN GOV
VRN <7/

—F

T\ (BU{v}) B

Figure 3: v is adjacent to everything in the top row of boxes, and from everything in the
third. Its adjacency to B is not specified in the figure. It has no out-neighbours in )
since v ¢ B, and so all its out-neighbours in S belong to J.

Let D = Ng(v)N S, and F = (T'\ B) N N (v). Thus
Ng(v)=FU(ZnD).

The union of the sets ®(¢) (¢ € F') includes FU(S\ (QUJUZ)), and J,c,np ®(2) = Q".
Consequently
¢~ (v) Z [F|+[S\(QUJUZ)|+|Q",

and so the score of v is at least
|F|+ 1S\ (QUJUZ)|+ Q"] + ¢°(v)/2.

Since ¢°(v) > 1, and either ¢°(v) > 2 or the score of v is strictly less than |G|/2 — |Z], it
follows that
||+ 1S\ (QUJUZ)|+1Q"|+1+[2] <|Gl/2.

Since v extends to a strong 2-kernel, for each u € T'\ B that is not 2-covered by v,
there is an in-neighbour of v in S\ Ng(v); choose X C S\ Ng(v) minimal 1-covering each
vertex in F' that is not 2-covered by v. Thus | X| < |F|. For each u € D, since v extends
to a 2-kernel, there exists t € S\ Ng(v) that 2-covers u; let Y C S\ Ng(v) be minimal
2-covering D\ (JUQ'). Thus |Y| < |D\ (JUQ')|.

Let

K={v}U(Z\(DUNZS()U(S\(QUJUZUD)UXUY U(Q"\D).
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We claim that K is a 2-kernel. Certainly it is stable.
(4) K 2-covers S.

Let s € S, and assume first that s ¢ Q. If s € J then v 2-covers s; if s € D\ J
then Y 2-covers s;if s € Z\ (JUD) then s € K; and if s ¢ ZUJUD then s € K. So in
this case K 2-covers s. Next assume that s € Q. So s ¢ JUNZ (v). If s € Q" \ D then
se€ K,and if s € Q"N D then Y 2-covers s, so we assume that s € @', and so z,, € Z\ D.
If 2, ¢ NZ(v) then z,, € K and so K 2-covers s, so we assume that z,, € N (v). Then
bs is adjacent from v (because by does not 2-cover z,, since z,, is a problem for b,) and so
K 2-covers s. This proves (4).

(5) K 2-covers T, and hence K is a 2-kernel.

Let t € T. We may assume that t € N;(v). If t € T\ B thent € F and X 1-
covers t, so we assume that t € B. If z; ¢ Ng(v) then z € K and 1-covers ¢, so we
assume that z; € Ng(v). Since v is adjacent from ¢ and z; is a problem for ¢, it follows
that 2, ¢ N (v), so z; € N5 (v). Choose y € Y such that y 2-covers z;, and choose u € T
such that y-u-z; is a directed path. Since z; is a problem for ¢, it follows that t is adjacent
from u, and so y 2-covers t. This proves (5).

Now let us bound the size of K. We have
IK| <14+ |Z\D|+|S\(QUJUZUD)|+|X|+|Y]|+|Q"\ D|.

We know that
[Fl+ 1S\ (QUJUZ)|+|Q"+1<|G|/2—|Z],

and | X| < |F|, and Y] < |D\ (JUQ')|. Adding, we deduce that:

K|+ |F|+[S\(QUJUZ)| +|Q"| + 1+ |X|+ Y|
<1+ |Z\D|+|S\(QUJUZUD)|+|X|+|Y|+|Q"\ D
+|G[/2 = |Z] +|F|+ D\ (JUQ')|.

This simplifies to:

(Kl +[S\ (QUJUZ)+IQ <IZ\D|+[S\(QUJUZUD)|+|Q"\ D
+1GI/2=12]+ D\ (JU Q)]

Since

S\ (QUJUZ)| =[S\ (QUJUZUD)+|D\(QUJUZ),

we deduce

K|+ D\ (QUJUZ)[+[Q <[Q"\ D|+[D\ (JUQ)|+[2\ D|+G|/2 = |Z].
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Since
D\ (JU@Q) =D\ (QUJUZ)| =D\ )N (Q"U(Z\ Q) <[DN(Q"UZ),
this further simplifies to:
K| +|Q"NDI< DN (Q"UZ) —[ZND|+G|/2,
and so |K| < |G|/2. This proves Theorem 2.4. O

3 Large 2-kernels

In this section, we turn to a second topic, Spiro’s question, Conjecture 1.3. While it seems
to be asking for something close to the opposite of Conjecture 1.1, Spiro observed that
Conjecture 1.1 implies Conjecture 1.3. Here is his argument: to prove Conjecture 1.3
for a digraph G, choose a large number n. If G has a source v, delete v and all its out-
neighbours and apply induction; while if G has no sources, for each vertex v of G, add
n new vertices adjacent from v and with no other neighbours. Applying Conjecture 1.1
with n sufficiently large implies that G satisfies Conjecture 1.3.

If G is a digraph and X C V(G), let N/, [X] denote the set of vertices that either belong
to X or are adjacent from a vertex in X. The same construction (adding nf(v) new out-
leaves for each vertex) shows that Conjecture 1.1 implies a slightly stronger statement
(Z4 denotes the set of non-negative integers, and f(X) denotes ) _ f(v)):

Conjecture 3.1. In every digraph G, and for every map f : V(G) — Z, there is a
2-kernel K such that f(NZ[K]) > f(V(G))/2.

In this section we show that Conjecture 3.1 is true for split digraphs, and indeed for
a somewhat more general class of graphs. If G is an oriented graph, let us say a break of
G is a partition (S,T") of V(G) such that G[S] is acyclic (that is, has no directed cycles),
and G[T] is a tournament. We will show:

Theorem 3.2. In every oriented graph G that admits a break, and for every map f :
V(G) = Z., there is a 2-kernel K such that f(NZ[K]) = f(V(G))/2.

The greater generality given by the function f will be useful for the inductive proof,
allowing us to delete vertices without changing f(V(G)). We need a result of von Neumann
and Morgenstern [11]:

Theorem 3.3. FEvery acyclic digraph has a unique 1-kernel.

In order to prove Theorem 3.2, we prove a stronger statement (by the non-neighbourhood
of a vertex v, we mean the digraph induced on the set of vertices different from and non-
adjacent with v):

Theorem 3.4. Let (S,T) be a break of an oriented graph G, and let f : V(G) — Z, be a
map. Then there is a 2-kernel K such that f(NG[K]) > f(V(G))/2, where either K C S,
or K consists of some v € T together with the unique 1-kernel of its non-neighbourhood.
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Proof. We assume the result holds for all oriented graphs that admit breaks (S, 7") with
2|S"|+|T"| < 2|S|+|T|. For each X C S, let A(X) be the unique 1-kernel of G[X] (which
exists by Theorem 3.3); and for each v € T', let M (v) be its non-neighbourhood. Let us
say a 2-kernel K of G is special for (G,S,T) if either K C S, or K = {v} U A(M (v)) for
some v € 1.

(1) We may assume that {v} U A(M(v)) is a 2-kernel for each v € T

Suppose not. Certainly {v} U A(M(v)) is stable, so there is a vertex w # v such
that {v} U A(M(v)) does not 2-cover w. We claim that N;(w) C N (v). For sup-
pose that s € N (w) \ Ng(v). Since s ¢ {v} U NZ(v) (because {v} U A(M(v)) does
not 2-cover w), it follows that v, s are nonadjacent, and so s € M(v) C S. But then
s is 1-covered by A(M(v)), and so w is 2-covered by {v} U A(M(v)), a contradiction.
This proves that N (w) C N (v). Thus every 2-kernel of G’ = G \ v is also a 2-kernel
of G. Define f'(w) = f(w) + f(v), and f'(z) = f(z) for all z € V(G) \ {v,w}. Ap-
plying the inductive hypothesis to G’ and f’, we deduce there is a 2-kernel K of G’
(and hence of G), special for (G',S,T \ {v}) (and hence special for (G, S,T)), such that
FINSIKD) > F(V(G)/2 = F(V(G))/2. But NA[K] € NE[K], and if w € Ny [K] then
v,w € NG[K], and so f/(NL[K]) < f(NS[K]). Hence f(NZG[K]) > f(G)/2. This proves
(1).

A sink of G is a vertex that has no out-neighbours.
(2) Let s € S be a sink of G[S]. We may assume that s is a neighbour of every vertex in T

For each t € T, if s,t are nonadjacent, let us add the edge ts, forming an oriented
graph G’. Suppose the theorem holds for G', with the same function f, and let K’ be a
2-kernel of G, special for (G',S,T), with f(NL[K']) = f(V(G")/2 = f(V(G))/2. For
each v € T, let M'(v) be the non-neighbourhood of v in G’. There are four cases:

o K'={v}UA(M(v)) for some v € T adjacent from s in G;

o K'={v}UA(M'(v)) for some v € T adjacent to s in G;

o K'={v}UA(M(v)) for some v € T nonadjacent with s in G;
o K/'CS.

In the first two cases, M'(v) = M(v), and {v} U A(M(v)) is a 2-kernel of G by (1); and
NG |K'] = NA[K'], and so K’ satisfies the theorem. In the third case, M'(v) = M(v)\{s}.
If A(M'(v)) 1-covers s, then A(M’'(v)) = A(M(v)) and so K’ satisfies the theorem. If
A(M'(v)) does not 1-cover s, then A(M(v)) = A(M'(v)) U {s} (because s is a sink of
G[S]), and so K = {v} U A(M(v)) satisfies the theorem. Finally, in the fourth case,
K’ C S. If K’ is a 2-kernel of G then it satisfies the theorem, so we assume it is not;
and since K’ is a 2-kernel of G', it follows that K’ does not 2-cover s. But then K’ U {s}
satisfies the theorem. This proves (2).
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If S =0, then G is a tournament and the result holds, so we assume that S # (), and
hence contains a sink of G[S]. By (2), then (S\ {s},TU{s}) is also a break of G, and from
the inductive hypothesis, there is a 2-kernel K of G such that f(NS[K]) > f(V(Q))/2,
and K is special for (G, S\ {s},T U {s}). But then K is also special for (G,S,T). This
proves Theorem 3.4. O

What happens to Conjecture 3.1 if we assume that V' (G) can be partitioned into two
sets S, T where T' is a tournament and S is small? By Theorem 3.4, the conjecture holds
if | S| < 2, and in hope of finding a counterexample, we worked on the case when |S| = 3.
But the conjecture is also true in this case (by an ad hoc argument that does not seem
capable of any generalization, and we omit the details).

There is a natural refinement of the conjectures Conjecture 1.1 and Conjecture 1.3,
equivalent to Conjecture 1.1 and implying Conjecture 1.3, that:

Conjecture 3.5. In every digraph G, and for every map f : V(G) — Z, there is a
2-kernel K such that |K|+ f(V(G))/2 < |G|/2 + f(NS(K)).

To deduce this from Conjecture 1.1, add f(v) out-leaves to each vertex v. It implies
Conjecture 1.1 by taking f(v) = 0 for all v, and it implies Conjecture 1.3 by scaling f
to be very large. Perhaps the proof of Theorem 2.1 can be modified to show that split
graphs satisfy Conjecture 3.5, but we have not seriously attempted this.

4 k-kernels

Now we turn to the proof of our third result, Theorem 1.5. We begin with:

Lemma 4.1. For all integers k > 0, if G is an acyclic digraph with only one source, then
there exists X C V(G) with | X| < 14 (|G| —1)/(k + 1) that k-covers V(G). Moreover,
either |G| =1 or | X| <1+ (|G| —2)/(k+1) or X is not stable.

Proof. Let r be the unique source. If |G| < k, we may take X = {r}; then |X]| <
1+ (]G] —2)/(k + 1) unless |G| = 1, so the result holds. We assume then that |G| > k,
and proceed by induction on |G|. For each v € V(G), let A, be the set of vertices that
are joined by a directed path (of any length) from v; and choose v with |A,| minimal
such that |A,| > k + 1. (This is possible since |A,| > k + 1.) For each w € A,, there is
a directed path P from v to w, and if P has length more than k£ then we may replace v
by its outneighbour in P, contradicting the minimality of A,. Thus every vertex in A, is
joined from v by a path of length at most k. If v = r then we may take X = {r} and win
as before, so we assume that v # r. Let G’ be the digraph obtained by deleting A,. Every
vertex of G’ has an in-neighbour in G’ except r, so G’ has a unique source; and from the
inductive hypothesis, there exists X’ C V(G’) such that | X'| < 14 (|G'| —1)/(k+1) and
X' k-covers V(G'). Moreover, either |G'| =1 or | X'| < 1+ (|G'| —2)/(k+1) or X' is
not stable. Let X = X’ U {v}. Thus X k-covers V(G). Moreover, since |A4,| = k + 1, it
follows that | X| < 1+ (|G| —1)/(k+ 1), and if either | X'| <1+ (|G| —2)/(k+ 1) or X’
is not stable, then correspondingly either | X| < 1+ (|G| —2)/(k + 1) or X is not stable.
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So we assume that |G| = 1, and so V(G’) = {r}. Since G has a unique source, it follows
that v is adjacent from 7, and so X is not stable. This proves Lemma 4.1. O

We deduce:

Lemma 4.2. For every integer k > 1, if G is an acyclic digraph with |G| > 1 and with
only one source, then G has a k-kernel of size at most 1 + (|G| — 2)/k.

Proof. By Lemma 4.1 applied to G with k replaced by k — 1, there exists X C V(G)
with | X| < 1+ (|G| — 1)/k that (k — 1)-covers V(G). The digraph G[X] is acyclic and
hence has a 1-kernel Y, by Theorem 3.3. Hence Y is a k-kernel in G. Moreover, since
|G| = 2, either | X| < 1+ (|G| —2)/k (when |Y| < |X| and the result is true), or X is
not stable (when |Y| < |X|—1 < (|G| —1)/k and again the result is true). This proves
Lemma 4.2. [l

As we said before, this result is tight (see Fig. 1). Now let us deduce Theorem 1.5,
which we restate:

Theorem 4.3. For all integers k > 2, every digraph G with |G| > 1 and with a spanning
arborescence has a k-kernel of size at most 1 + (|G| —2)/(k — 1).

Proof. Since G has a spanning arborescence, its vertex set can be numbered {vy,...,v,}
in such a way that for 2 < j < n there exists i € {1,...,7 — 1} such that v;v; is an edge.
Let A be the set of all edges v;v; of G with ¢ < j, and let B = E(G) \ A. Let G4 be the
subgraph with vertex set V(G) and edge set A, and define G similarly. Both G4,Gp
are acyclic, and G4 has a unique source. By Lemma 4.2 applied to G4 with k replaced
by k—1, G4 has a (k — 1)-kernel X of size at most 1+ (|G| —2)/(k—1). Now X is stable
in G4, and Gp[X] is acyclic, and so has a 1-kernel Y, by Theorem 3.3. But then Y is a
k-kernel in G, and |Y| < |X| < 1+ (|G| —2)/(k —1). This proves Theorem 4.3. O
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