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Abstract

We address the last outstanding case of the directed Oberwolfach problem with
two tables of different lengths. Specifically, we show that the complete symmetric
directed graph K∗

n admits a decomposition into spanning subdigraphs comprised of
two vertex-disjoint directed cycles of length t1 and t2, respectively, where t1 ∈ {4, 6},
t2 is even, and t1 + t2 ⩾ 14. In conjunction with recent results of Kadri and Šajna,
this gives a complete solution to the directed Oberwolfach problem with two tables
of different lengths.

Mathematics Subject Classifications: 05B30

Keywords: Directed Oberwolfach problem; directed 2-factorization; complete symmetric
directed graph.

1 Introduction

In this paper, we investigate a variation of the famous Oberwolfach Problem (OP). In-
troduced by Ringel [18] in 1967, the OP(t1, t2, . . . , ts) poses the following question: given
n = 2k + 1 people and s round tables that respectively seat t1, t2, . . . , ts people, where
t1 + t2 + · · · + ts = n and ti ⩾ 3, does there exist a set of k seating arrangements
such that each person sits beside every other person precisely once? This problem can
be formulated as a graph-theoretic problem by considering the question of existence of
a 2-factorization of the complete graph Kn such that each 2-factor is comprised of cy-
cles of lengths t1, t2, . . . , ts. In [22], the OP was adapted to consider the case where n
is even. In that case, the existence of a 2-factorization of Kn − I is considered, where
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Kn − I is the complete graph with the edges of a 1-factor removed. Constructive solu-
tions to the OP have been found in each of the following cases: cycles of uniform length
[4, 5, 21, 22], two cycles [19, 30], any combination of cycles of even length [9, 20], and
n ⩽ 100 [14, 15, 16, 26, 27]. Constructive solutions to the OP have also been found for
several infinite families of cases in [3] and [10] and in the case where a single table is
sufficiently large [29]. It has also been shown non-constructively that a solution to the
OP exists for all sufficiently large n [17]. We refer the interested reader to [11] for a survey
of known results on the Oberwolfach problem and related variants as of 2024.

The directed Oberwolfach problem (OP∗(t1, t2, . . . , ts)) considers a similar scenario.
This time, we let ti ⩾ 2 and we seek n− 1 seating arrangements with the added property
that each guest is to be seated to the right of every other guest exactly once. If all s tables
are of the same length t, we write OP∗(t; s). When n is odd and each ti ⩾ 3, one can
easily construct a solution to the OP∗(t1, t2, . . . , ts) from a solution to the OP(t1, t2, . . . , ts).
Therefore it suffices to consider the OP∗(t1, t2, . . . , ts) for n even or, when n is odd, in
those cases where a solution to the OP(t1, t2, . . . , ts) is unknown.

Recently, the last open case of the OP∗(t; s) was settled [24]. Thus we have a con-
structive proof of Theorem 1 below.

Theorem 1 ([1, 2, 6, 8, 12, 13, 24, 28]). Let s and t be positive integers such that ts is
even. The OP∗(t; s) has a solution if and only if (s, t) ̸∈ {(1, 6), (1, 4), (2, 3)}.

Naturally, the next step is to consider the case with cycles of varying length. The only
result on this more general case of the OP∗ when n is even can be found in [23] and [31]. In
[31], Zhang and Du established the existence of solutions to OP∗(3m1 , 4) and OP∗(3m2 , 5)
for all positive integers m1 and m2 such that 3m1 + 4 ≡ 1 (mod 3) and 3m2 + 5 ≡ 2
(mod 3). They do so by constructing resolvable Mendelsohn designs with parallel classes
containing m1 or m2 blocks of size 3 and one block of size 4 or 5. Recently, Kadri and
Šajna [23] used a recursive approach to obtain several infinite families of solutions. One of
the key results of [23] is a near-complete constructive solution to the directed Oberwolfach
problem with two cycles of varying lengths formulated in Theorem 2 below.

Theorem 2 ([23]). Let t1 and t2 be integers such that 2 ⩽ t1 < t2. Then the OP∗(t1, t2)
has a solution if and only if (t1, t2) ̸= (3, 3) with a possible exception in the case where
t1 ∈ {4, 6}, t2 is even, and t1 + t2 ⩾ 14.

The recursive approach used to prove Theorem 2 relies on the existence of a solution
to OP∗(t; 1). However, it is known from Theorem 1 that no such decomposition exists
when t1 ∈ {4, 6}. Therefore, the methods of [23] cannot be used to construct a solution
to the OP∗(t1, t2) when t1 ∈ {4, 6} and t2 is even.

Here we complement the results of Theorem 2 and complete the solution of the directed
Oberwolfach problem with two tables.

Theorem 3. Let t1 and t2 be positive even integers such that t1 ∈ {4, 6} and t1+ t2 ⩾ 14.
Then the OP∗(t1, t2) has a solution.

the electronic journal of combinatorics 33(1) (2026), #P1.33 2



Theorems 2 and 3 jointly imply a complete constructive solution to the OP∗(t1, t2)
stated below.

Theorem 4. Let t1 and t2 be integers such that 2 ⩽ t1 ⩽ t2. Then the OP∗(t1, t2) has a
solution if and only if (t1, t2) ̸= (3, 3).

This paper is structured as follows. In Section 2, we give key definitions. Then,
in Section 3, we take a reduction step by showing that it suffices to find particular 2-
factorizations of a class of sparser digraphs. Next, in Section 4, we describe the ingredients
needed to obtain the desired 2-factorizations and prove that these indeed give rise to the
appropriate solutions of the directed Oberwolfach problem. We conclude by constructing
the desired set of ingredients required to form the directed 2-factorizations we need.

2 Key definitions

We make the standard assumption that all directed graphs (digraphs for short) are strict.
This means that digraphs do not contain loops or parallel arcs. If G is a digraph (graph),
we shall denote its vertex set as V (G) and its arc set (edge set) as A(G) (E(G)), re-
spectively. For any graph G, let G∗ denote the digraph with vertex set V (G) and arc
set {(x, y), (y, x) : {x, y} ∈ E(G)}. Let K∗

n denote the complete symmetric digraph on n

vertices and let C⃗m denote the directed cycle on m vertices. Let Em denote the undirected
graph with m vertices and no edges.

The length of a directed path (dipath for short) or a directed cycle refers to the number
of arcs it has. For a dipath P , we denote its length as len(P ). Moreover, the source of a
dipath P is the vertex with in-degree 0 and is denoted s(P ), while the terminal of P is
the vertex with out-degree 0 and is denoted t(P ).

Let G be a digraph. A decomposition of a G is a set {H1, H2, . . . , Hr} of pairwise
arc-disjoint subdigraphs of G such that A(G) = A(H1)∪A(H2)∪· · ·∪A(Hr). A 2-regular
digraph is a digraph comprised of disjoint directed cycles and a spanning subdigraph of G
that is also a 2-regular digraph is a directed 2-factor of G. A (C⃗t1 , C⃗t2 , . . . , C⃗ts)-factor of G
is a directed 2-factor that is the disjoint union of s directed cycles of lengths t1, t2, . . . , ts.
A bipartite 2-regular digraph is a 2-regular digraph comprised of directed cycles of even
lengths. If H is a spanning subdigraph of G and G admits a decomposition into subdi-
graphs isomorphic to H, then this decomposition is called an H-factorization. In particu-
lar, a (C⃗t1 , C⃗t2 , . . . , C⃗ts)-factorization of G is a decomposition of G into (C⃗t1 , C⃗t2 , . . . , C⃗ts)-
factors. A directed 2-factorization of G is a decomposition of G into directed 2-factors.
All these terms can be analogously defined for undirected graphs.

We now formulate the OP∗(t1, t2, . . . , ts) in graph-theoretic terms.

Problem 5 (OP∗(t1, t2, . . . , ts)). For integers 2 ⩽ t1 ⩽ t2 ⩽ · · · ⩽ ts such that t1+ t2+

· · ·+ ts = n, does K∗
n admit a (C⃗t1 , C⃗t2 , . . . , C⃗ts)-factorization?

To prove Theorem 3, we construct a (C⃗t1 , C⃗t2)-factorization of K∗
n when n = t1 + t2,

t1 ∈ {4, 6}, t2 is even, and n ⩾ 14.
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We conclude this section with a pair of definitions that are used to construct the
desired (C⃗t1 , C⃗t2)-factorizations of K

∗
n.

Definition 6. For graphs G and H, the wreath product of G with H, denoted G ≀H, is
the graph with vertex set V (G)× V (H) in which (g1, h1) and (g2, h2) are adjacent if and
only if either g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H).

Definition 7. For a subset S of {1, . . . , ⌊n
2
⌋}, the circulant of order n with connection

set S, denoted Circ(n, S), is the graph with vertex set Zn and edge set {{i, i + s} : i ∈
Zn, s ∈ S} with addition performed modulo n.

3 Overall strategy

This section details the overall strategy we follow to prove Theorem 3. Our primary
objective is to demonstrate that, in order to construct the desired (C⃗t1 , C⃗t2)-factorization

of K∗
n, it suffices to construct a (C⃗t1 , C⃗t2)-factorization of a sparser digraph that only

requires seven or nine (C⃗t1 , C⃗t2)-factors.
Crucial to our approach is the following immediate consequence of a lemma of

Häggkvist, see [20].

Lemma 8 ([20]). Let D be a bipartite 2-regular digraph of order 2m comprised of directed
cycles of length at least 4. The digraph (Cm ≀ E2)

∗ admits a D-factorization.

Proof. Let F be the 2-factor obtained from D by replacing each arc (x, y) with an
undirected edge {x, y}. By the first lemma of [20], commonly known as Häggkvist’s
Lemma, there is an F -factorization F of Cm ≀E2. Thus there is an F ∗-factorization F∗ of
(Cm ≀ E2)

∗. Clearly, each copy of F ∗ in F∗ can be decomposed into two copies of D and
together, these copies of D form the desired directed 2-factorization of (Cm ≀ E2)

∗.

Lemma 8 does not apply to bipartite 2-regular digraphs containing at least one cycle
of length 2. However, for our purpose, we do not need to consider this case.

Let D be a bipartite 2-regular digraph on 2m vertices comprised of directed cycles
of length at least 4. Our overall strategy for finding D-factorizations of K∗

2m is first to
decompose K∗

2m into copies of (Cm ≀E2)
∗ and a single copy of another graph that we call

W ∗
2m. It will then suffice to find a D-factorization of W ∗

2m because we can form a D-
factorization of K∗

2m by taking the union of this D-factorization with D-factorizations of
the copies of (Cm ≀E2)

∗ provided by Lemma 8. In the remainder of this section, we define
the graph W ∗

2m and show that K∗
2m can indeed be decomposed into copies of (Cm ≀ E2)

∗

and one copy of W ∗
2m. This approach is inspired by the one used by Bryant and Danziger

in [9].

Definition 9. If m is odd, we define W2m to be Circ(m, {1, 2}) ≀ K2 and if m is even,
we define W2m to be Circ(m, {1, 3e}) ≀K2, where Circ(m, {1, 3e}) denotes the graph with
vertex set Zm and edge set

{{i, i+ 1} : i ∈ Zm} ∪ {{i, i+ 3} : i ∈ Zm is even}.
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Note that W2m is 9-regular if m is odd and is 7-regular if m is even. Also note that
Circ({m, 1, 3e}) is not technically a circulant but we use this notation as we believe it is
a useful mnemonic. See Figure 1 for an illustration of W20.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x0 x1

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y0 y1

Figure 1: The graph W20; the digraph W ∗
20 is obtained by replacing each edge with a pair

of arcs oriented in opposite directions.

Our goal in this section is to prove the following result.

Lemma 10. Let D be a bipartite 2-regular digraph of order 2m ⩾ 14 comprised of directed
cycles of length at least 4. There is a D-factorization of K∗

2m if there is a D-factorization
of W ∗

2m.

When m is even, we will make use of the following result of Bryant and Danziger [9].

Lemma 11 ([9, Lemma 7]). For each even m ⩾ 8, there is a factorization of Km into
m−4
2

copies of Cm and a copy of Circ(m, {1, 3e}).

We will require an analogue for Lemma 11 for the case where m is odd. To prove this,
we state a lemma on decomposition of circulants into hamiltonian cycles. It asserts a
special case of a result of Bermond, Favaron, and Mahéo [7] on 2-factorizations of Cayley
graphs.

Lemma 12 ([7]). Let m be an integer and let S be a subset of {1, . . . , ⌊m−1
2

⌋}. Then
Circ(m,S) admits a Cm-factorization if |S| = 2 and gcd(S ∪ {m}) = 1.

Lemma 13. For each odd m ⩾ 7, the graph Km admits a decomposition into m−5
2

copies
of Cm and one copy of Circ(m, {1, 2}).

Proof. The graph Circ(m, {1, . . . , m−1
2

}) is a copy of Km. If m = 7, then Circ(7, {1, 2, 3})
has a decomposition F = {Circ(7, {1, 2}),Circ(7, {3})}. If m ⩾ 9, then Circ(m, {1, . . . ,
m−1
2

}) has a decomposition F given by{
Circ(m,S) : S ∈ {{1, 2}, {3, 4}, . . . , {m−3

2
, m−1

2
}}
}

if m ≡ 1 (mod 4);{
Circ(m,S) :S ∈ {{1, 2}, {3, 5}, {4}, {6, 7}, {8, 9}, . . . , {m−3

2
, m−1

2
}}
}

if m ≡ 3 (mod 4).

Clearly, Circ(m, {4}) is a copy of Cm when m is odd and Circ(7, {3}) is a copy of C7.
Therefore, in each case it can be seen that each subgraph in F other than Circ(m, {1, 2})
admits a Cm-factorization by using Lemma 12. Taking the union of Circ(m, {1, 2}) to-
gether with these Cm-factorizations completes the proof.

the electronic journal of combinatorics 33(1) (2026), #P1.33 5



Using Lemmas 11 and 13 we can complete our proof of Lemma 10.

Proof of Lemma 10. By Lemmas 11 and 13, there is a decomposition {G} ∪ C of Km

where C is a set of directed cycles of length m, G is a copy of Circ(m, {1, 3e}) if m is even,
and G is a copy of Circ(m, {1, 2}) if m is odd. Since Km ≀K2 is isomorphic to K2m, we
have that F is a decomposition of K2m where

F = {G ≀K2} ∪ {C ≀ E2 : C ∈ C}.

Noting (G ≀K2)
∗ is a copy of W ∗

2m, we see that F∗ = {F ∗ : F ∈ F} is a decomposition
of K∗

2m into copies of (Cm ≀ E2)
∗ and one copy of W ∗

2m. By Lemma 8, (C ≀ E2)
∗ has

a D-factorization DC for each C ∈ C. Thus, if W ∗
2m has a D-factorization D′, then

D′ ∪ {DC : C ∈ C} will be a D-factorization of K∗
2m.

In summary Lemma 10 implies that, to prove Theorem 3, it suffices to construct a
(C⃗t1 , C⃗t2)-factorization of W ∗

t1+t2
when t1 ∈ {4, 6}, t2 is even, and t1 + t2 ⩾ 14.

4 Main construction

Throughout this section we take t1 and q to be fixed integers such that t1 ∈ {4, 6} and

q ∈
{

{10, 14, 16, 20} if t1 = 4;
{14, 16, 18, 20} if t1 = 6.

(1)

Our goal will be to show that a (C⃗t1 , C⃗q+8k)-factorization of W ∗
t1+q+8k exists for each

nonnegative integer k. Lemma 10 will establish our main theorem for all pairs (t1, q)
except those in {(4, 12), (6, 8), (6, 10), (6, 12)}. We will then deal with these special cases
in Appendix A.3.

Notation 14. Throughout the remainder of the paper we shall assume that, in the
definition of W ∗

2m given in Definition 9, the copy of K2 has vertex set {x, y}. Further, we
will abbreviate vertices (a, x) to xa and vertices (b, y) to yb so that

V (W ∗
2m) = {xa, yb : a, b ∈ Zm}.

In addition, we define the following permutations of V (W ∗
2m).

Definition 15. For each even integer j, we will take ρj to be the permutation of V (W ∗
2m)

defined by ρj(xi) = xi+j and ρj(yi) = yi+j, with subscript addition performed modulo m.
For a dipath P = v0v1 · · · vt of W ∗

2m, we let ρ
j(P ) = ρj(v0)ρ

j(v1)ρ
j(v2) · · · ρj(vt). We refer

to a dipath ρj(P ) as a translation of P , and note that ρj(P ) is also a dipath of W ∗
2m since

j is even.

Each of the factors in the directed 2-factorizations we desire will be created from what
we call a (t1, q)-base tuple (X,Q,R, S, T ) where X is a directed t1-cycle and Q, R, S and
T are dipaths of various lengths. We will define (t1, q)-base tuples formally in Definition
17 below, but first we give an informal overview of how they will be used. For a given
nonnegative integer k, from each (t1, q)-base tuple (X,Q,R, S, T ), we will construct a

(C⃗t1 , C⃗q+8k)-factor which is a union of the following pieces:
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• a directed t1-cycle X;

• two dipaths I0 and I1 formed as the concatenation of k translations of S and T ,
respectively;

• two dipaths Q and R such that s(Q) = t(I1), t(Q) = s(I0), s(R) = t(I0), and
t(R) = s(I1).

The union of Q, R, I0, and I1 will form a directed (q + 8k)-cycle that is disjoint from
X. A schematic picture of this construction is given in Figure 2. Since each (t1, q)-base
tuple gives us factors of infinitely many orders, this approach will allow us to reduce our
problem to finding only eight sets of (t1, q)-base tuples (one for each possible choice of
(t1, q)).

t(R)

R

s(R)

X

s(Q)

Q

t(Q)

t(R)

s(R)

I1

I0

V0

Figure 2: A schema of the construction of a directed 2-factor of W ∗
2m from a (t1, q)-base

tuple (X,Q,R, S, T ) with directed t1-cycle X drawn in red.

Notation 16. For the remainder of this section, it will be useful to set p = 1
2
(t1 + q),

so that 2p is the smallest of the orders of the directed 2-factorizations we desire. For
each non-negative integer k, we also define certain subsets of the vertex set of W ∗

2p+4k as
follows:

V0 = {xi, yi : 0 ⩽ i ⩽ p+ 1};
V †
0 = {xi, yi : 2 ⩽ i ⩽ p− 1};
Vj = {xi, yi : p+ 4j − 4 ⩽ i ⩽ p+ 4j + 1} for each j ∈ {1, 2, . . . , k}.

Observe that V0 = V (W ∗
2p+4k) if k = 0, |V0| = 2(p + 2) otherwise, and |Vj| = 12 for

each j ∈ {1, 2, . . . , k}. Also, for all integers i and j with 0 ⩽ i < j ⩽ k,

Vi ∩ Vj =


{xp−1, xp, yp−1, yp} if (i, j) = (0, 1);
{x0, x1, y0, y1} if (i, j) = (0, k);
{xp+4i, xp+4i+1, yp+4i, yp+4i+1} if j = i+ 1 and i ⩾ 1;
∅ otherwise.

(2)
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Let k ⩾ 2 be an integer and let A = (P 1, . . . , P k) be a sequence of dipaths. We say
that A concatenates if t(P i) = s(P i+1) for each i ∈ {1, . . . , k − 1} and, aside from this,
no vertex is in more than one dipath in the sequence. In this case we call the dipath
P 1 ∪ · · · ∪ P k the concatenation of A. Similarly we say that A cyclically concatenates
if t(P k) = s(P 1), t(P i) = s(P i+1) for each i ∈ {1, . . . , k − 1} and, aside from this, no
vertex is in more than one dipath in the sequence. In this case we call the directed cycle
P 1 ∪ · · · ∪ P k the cyclic concatenation of A.

Definition 17. The 5-tuple (X,Q,R, S, T ) is a (t1, q)-base tuple if X is a directed t1-cycle
of W ∗

t1+q+24 and Q, R, S and T are dipaths of W ∗
t1+q+24 with the following properties.

B1 V (X) ⊆ V †
0 ; V (Q) ⊆ V0 \ {x0, y0, x1, y1}; V (R) ⊆ V0 \ {xp, yp, xp+1, yp+1}; V (S),

V (T ) ⊆ V1;

B2 len(Q) + len(R) = q and len(S) + len(T ) = 8;

B3 X, Q, and R are pairwise vertex-disjoint;

B4 (Q, ρp(R)) cyclically concatenates;

B5 (T,Q, S) and (ρ−p−4(S), R, ρ−p−4(T )) concatenate;

B6 (S, ρ4(S)) and (T, ρ4(T )) concatenate. Further, the concatenations of (S, ρ4(S)) and
(T, ρ4(T )) are vertex-disjoint.

In Definition 17 above, we chose t1+ q+24 because it was large enough that it can be
easily checked that the translations mentioned in B4, B5, and B6 do not contain vertices
of V †. We could equivalently have chosen any other order large enough to ensure this
property. Our next lemma describes how we can use a (t1, q)-base tuple to obtain a
directed 2-factor.

Lemma 18. Let (X,Q,R, S, T ) be a (t1, q)-base tuple and let k be a nonnegative integer.
In the host graph W ∗

t1+q+8k, denote Sj = ρ4(j−1)(S) and T j = ρ4(j−1)(T ) for each j ∈
{1, 2, . . . , k} and let

A = (Q,S1, S2, . . . , Sk, R, T k, T k−1, . . . , T 1).

Then A cyclically concatenates and, furthermore, X and the cyclic concatenation of A
form the cycles of a (C⃗t1 , C⃗q+8k)-factor of W ∗

t1+q+8k.

Proof. If A cyclically concatenates, then its cyclic concatenation is a directed cycle of
length q+8k by B2. So it suffices to prove that A does indeed cyclically concatenate and
that its cyclic concatenation is vertex-disjoint from X.
Case 1. Suppose that k = 0. Then our host graph is W ∗

t1+q = W ∗
2p and A = (Q,R).

In W ∗
2p, we have that ρp is the identity permutation and so B4 implies that A cyclically

concatenates. Further, B3 implies that the cyclic concatenation of A is vertex-disjoint
from X.
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Case 2. Suppose that k = 1. Then our host graph is W ∗
t1+q+8 = W ∗

2(p+4) and A =

(Q,S1, R, T 1). In W ∗
2(p+4), we have that ρ−p−4 is the identity permutation and so B5

implies that (T 1, Q, S1) and (S1, R, T 1) concatenate. So, because Q and R are vertex-
disjoint by B3, we have that A cyclically concatenates. By B3 Q and R are both vertex-
disjoint from X. By B1 and (2), both S and T are vertex-disjoint from X. So the cyclic
concatenation of A is vertex-disjoint from X.
Case 3. Suppose that k ⩾ 2. Our host graph isW ∗

t1+q+8k = W ∗
2(p+4k). InW ∗

2(p+4k), we have

that ρ4(k−1) = ρ−p−4 and so B5 implies that (T 1, Q, S1) and (Sk, R, T k) concatenate. By
B6, we have that (Si, Si+1) and (T i, T i+1) both concatenate for each i ∈ {1, . . . , k − 1}.
Also by B6, for each i ∈ {1, . . . , k − 1}, we have that Si is vertex-disjoint from T i

and T i+1 and that T i is vertex-disjoint from Si and Si+1. Note that B1 implies that
V (Si) and V (T i) are subsets of Vi for each i ∈ {1, . . . , k}. Thus we can conclude that A
cyclically concatenates because B1 and (2) imply that all the remaining vertex-disjointness
conditions are met. Further, using B3 together with B1 and (2), we have that the cyclic
concatenation of A is vertex-disjoint from X.

For digraphs G and H, we use the notation G ∼= H to indicate that G and H are
isomorphic. Furthermore, for digraphs G1, G2, H1 and H2, we write (G1, G2) ∼= (H1, H2)
to indicate that G1

∼= H1, G2
∼= H2, and G1 ∪ G2

∼= H1 ∪ H2. Note that if (G1, G2) ∼=
(H1, H2) and H1 is arc-disjoint from H2, then we must have that G1 is arc-disjoint from
G2 because

|A(G1 ∪G2)| = |A(H1 ∪H2)| = |A(H1)|+ |A(H2)| = |A(G1)|+ |A(G2)|.

The next lemma gives conditions under which the 2-factors arising from a number of
(t1, q)-base tuples form a directed 2-factorization.

Lemma 19. Let r = 9 if t1 + q ≡ 2 (mod 4), and let r = 7 if t1 + q ≡ 0 (mod 4). For
each a ∈ {0, . . . , r − 1} let (Xa, Qa, Ra, Sa, Ta) be a (t1, q)-base tuple and let F̂a be the

corresponding (C⃗t1 , C⃗q+16)-factor of W ∗
t1+q+16. If the digraphs in F̂ = {F̂0, . . . , F̂r−1} are

pairwise arc-disjoint, then W ∗
t1+q+8k admits a (C⃗t1 , C⃗q+8k)-factorization for each positive

integer k. If, in addition, each of the dipaths Q0, . . . , Qr−1 is arc-disjoint from each of the
dipaths ρp(R0), . . . , ρ

p(Rr−1), then W ∗
t1+q admits a (C⃗t1 , C⃗q)-factorization.

Proof. Fix a nonnegative integer k and suppose that the digraphs in F̂ = {F̂0, . . . , F̂r−1}
are pairwise arc-disjoint and that, if k = 0, each of the paths Q0, . . . , Qr−1 is arc-disjoint
from each of the paths ρp(R0), . . . , ρ

p(Rr−1). For each a ∈ {0, . . . , r − 1}, let Fa be the

(C⃗t1 , C⃗q+8k)-factor ofW
∗
t1+q+8k constructed using the (t1, q)-base tuple (Xa, Qa, Ra, Sa, Ta).

Using the notation of Lemma 18 relative to the host graph W ∗
t1+q+8k, F̂a is the union of

Xa and the cyclic concatenation of

(Qa, S
1
a, S

2
a, S

2
a, . . . , S

k
a , Ra, T

k
a , T

k−1
a , . . . , T 1

a )

Again using the notation of Lemma 18, but adding hats to indicate that the notation
is relative to the host graph W ∗

t1+q+16, we let F̂a be the union of X̂a and the cyclic
concatenation of
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(Q̂a, Ŝ
1
a, Ŝ

2
a, R̂a, T̂

2
a , T̂

1
a )

We must show that F = {F0, F1, . . . , Fr−1} is a (C⃗t1 , C⃗q+8k)-factorization of W ∗
t1+q+8k.

Observe that
∑r−1

a=0 |A(Fa)| = |A(W ∗
t1+q+8k)|. Therefore, it suffices to show that the di-

rected 2-factors in F = {F0, F1, . . . , Fr−1} are pairwise arc-disjoint. This follows immedi-
ately from the hypothesis if k = 2, so we can assume otherwise.

If k = 1 then, for each a ∈ {0, . . . , r − 1}, Fa is obtained from F̂a by associating
the vertices xp+4, yp+4, . . . , xp+7, yp+7 with, respectively, the vertices xp, yp, . . . , xp+3, yp+3.

In this association process, by their definitions, the subdigraphs Ŝ1
a and Ŝ2

a of F̂a both
map to the subdigraph S1

a of Fa, and the subdigraphs T̂ 1
a and T̂ 2

a of F̂a both map to
the subdigraph T 1

a of Fa. Together with B1. This ensures that no two arcs in different
factors of F̂ are mapped onto the same arc. Thus, because the factors in F̂ are pairwise
arc-disjoint, the factors in F are pairwise arc-disjoint.

If k = 0 then, for each a ∈ {0, . . . , r − 1}, Fa is obtained from F̂a by deleting the
arcs in Ŝ1

a ∪ Ŝ2
a ∪ T̂ 1

a ∪ T̂ 2
a , deleting the vertices xp+2, yp+2, . . . , xp+7, yp+7, and associating

the vertices xp, yp, xp+1, yp+1 with, respectively, the vertices x0, y0, x1, y1. Our additional
assumption in the case k = 0, together with B1, ensures that no two arcs in different
factors of F̂ are mapped onto the same arc in this association process. Thus, because the
factors in F̂ are pairwise arc-disjoint, the factors in F are pairwise arc-disjoint.

Lastly, we consider the case k ⩾ 3. For each a ∈ {0, . . . , r−1}, we let Ya = Xa∪Qa∪Ra

and, for each i ∈ {1, . . . , k}, U i
a = Si

a ∪ T i
a. Also, we let Ŷ = X̂a ∪ Q̂a ∪ R̂a and, for

j ∈ {1, 2}, we let Û j
a = Ŝj

a ∪ T̂ j
a . Let {V0, . . . , Vk} be the partition of V (W ∗

t1+q+8k) defined
in Notation 16. By B1 and (2) we have, for each a ∈ {0, . . . , r − 1}:

(i) V (Ya) ⊆ V0; and

(ii) V (U i
a) ⊆ Vi for each i ∈ {1, . . . , k}.

Let g and ℓ be distinct elements of {0, . . . , r− 1}. We complete the proof by showing
that Fℓ is arc-disjoint from Fg. We do this by first showing that Yℓ is arc-disjoint from
Fg. Then, for each j ∈ {1, . . . , k}, we show that U j

ℓ is arc-disjoint from Fg.

Case 1: Yℓ. Using (i) and (ii) we have that Yℓ is vertex-disjoint from
⋃k−1

i=2 U
i
g because

V0 is vertex-disjoint from V2, . . . , Vk−1. Now Yℓ ∪ U1
ℓ is arc-disjoint from Yg ∪ U1

g because

(Yℓ ∪U1
ℓ , Yg ∪U1

g )
∼= (Ŷℓ ∪ Û1

ℓ , Ŷg ∪ Û1
g ) and Ŷℓ ∪ Û1

ℓ is arc-disjoint from Ŷg ∪ Û1
g . Similarly,

Uk
ℓ ∪ Yℓ is arc-disjoint from Uk

g ∪ Yg because (Uk
ℓ ∪ Yℓ, U

k
g ∪ Yg) ∼= (Û2

ℓ ∪ Ŷℓ, Û
2
g ∪ Ŷg) and

Û2
ℓ ∪ Ŷℓ is arc-disjoint from Û2

g ∪ Ŷg. So, in particular, Yℓ is arc-disjoint from Uk
g ∪Yg ∪U1

g

and hence from Fg.

Case 2: U j
ℓ where j ∈ {2, . . . , k − 1}. Let I = {0, 1, . . . , j − 2, j + 2, j + 3, . . . , k}.

From (i) and (ii), the digraph U j
ℓ is vertex-disjoint from Yg ∪

⋃
i∈I\{0} U

i
g because Vj is

vertex-disjoint from
⋃

i∈I Vi. Now, U
j−1
ℓ ∪ U j

ℓ is arc-disjoint from U j−1
g ∪ U j

g because

(U j−1
ℓ ∪ U j

ℓ , U
j−1
g ∪ U j

g )
∼= (U1

ℓ ∪ U2
ℓ , U

1
g ∪ U2

g )
∼= (Û1

ℓ ∪ Û2
ℓ , Û

1
g ∪ Û2

g )
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and Û1
ℓ ∪Û2

ℓ is arc-disjoint from Û1
g ∪Û2

g . Similarly, U j
ℓ ∪U

j+1
ℓ is arc-disjoint from U j

g ∪U j+1
g

because (U j
ℓ ∪U j+1

ℓ , U j
g ∪U j+1

g ) ∼= (Û1
ℓ ∪ Û2

ℓ , Û
1
g ∪ Û2

g ). So, in particular, Uj is arc-disjoint
from U j−1

g ∪ U j
g ∪ U j+1

g and hence from Fg.

Case 3: U1
ℓ and Uk

ℓ . From (i) and (ii), it follows that U1
ℓ is vertex-disjoint from

⋃k
i=3 U

i
g

because V1 is vertex-disjoint from V3, . . . , Vk. Likewise, Uk
ℓ is arc-disjoint from

⋃k−2
i=1 U

i
g

because Vk is vertex-disjoint from V1, . . . , Vk−2. In Case 1, we saw that U1
ℓ and Uk

ℓ are
both arc-disjoint from Yg. In Case 2, (with j = 2) we saw that U1

ℓ is arc-disjoint from U2
g .

In Case 2, (with j = k − 1) we also saw that Uk
ℓ is arc-disjoint from Uk−1

g . So both U1
ℓ

and Uk
ℓ are arc-disjoint from Fg.

In summary, we have demonstrated that Fℓ is arc-disjoint from Fg for distinct ℓ and
g. Therefore, the given set of r (t1, q)-base tuples gives rise to the desired directed 2-
factorization of W ∗

2m.

We now conclude this section with the proof of this paper’s main result, namely the
proof of Theorem 3.

Proof of Theorem 3. We show thatK∗
2m admits a (C⃗t1 , C⃗t2)-factorization when t1+t2 =

2m, t1 ∈ {4, 6}, and t1 + t2 ⩾ 14. Lemma 10 implies that it suffices to find a (C⃗t1 , C⃗t2)-
factorization of W ∗

2m. For the special cases where (t1, t2) ∈ {(4, 12), (6, 8), (6, 10), (6, 12)}
we give a (C⃗t1 , C⃗t2)-factorization of W ∗

2m in Appendix A.3. Otherwise, we have that
t2 = q+8k for some q satisfying (1) and nonnegative integer k. Let r = 9 if m is odd and

r = 7 if m is even. To construct a (C⃗t1 , C⃗t2)-factorization of W ∗
2m, it suffices to construct

r (t1, q)-base tuples satisfying the hypothesis of Lemma 19.

1. If m is odd, then (t1, q) ∈ {(4, 10), (4, 14), (6, 16), (6, 20)}. Appendix A.1 gives a set
of nine (t1, q)-base tuples satisfying the hypothesis of Lemma 19 for each of these
choices of (t1, q).

2. If m is even, then (t1, q) ∈ {(4, 16), (4, 20), (6, 14), (6, 18)}. Appendix A.2 gives a set
of seven (t1, q)-base tuples satisfying the hypothesis of Lemma 19 for each of these
choices of (t1, q).

In conclusion, the digraph W ∗
2m admits a (C⃗t1 , C⃗t2)-factorization when t1 + t2 = 2m,

t1 ∈ {4, 6}, and t1+t2 ⩾ 14. It follows that the OP∗(t1, t2) has a solution for all applicable
t1 and t2 values.

The (t1, q)-tuples presented in Appendices A.1 and A.2 were constructed by hand
with the assistance of a computer. For example, in many cases, we first used a computer
to obtain an exhaustive list of all possible sets of dipaths {S0, T0, . . . , Sr−1, Tr−1} and
{Q0, R0, . . . , Qr−1, Rr−1}. The process of fitting these together, making adjustments if
necessary, and completing the tuples such that they give rise to the desired directed
2-factorization, however, was largely accomplished by hand.
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A Supplementary material for the proof of Theorem 3

A.1 The case t1 + q ≡ 2 (mod 4)

Case 1: t1 = 4 and q = 10. See Figures 3–11 in Appendix B.1.

X0 = x4 x3 y5 y3 x4; X3 = y5 y4 y2 x4 y5; X6 = x4 y2 y4 x2 x4;
Q0 = y7 x5 y6 y4 x6 x7; Q3 = x8 y7 x7 x5 x6 y6 y8; Q6 = x8 x6 y7 y5 y6 x5 x7;
R0 = x0 y2 x1 x2 y1 y0; R3 = y1 y3 x2 x3 x1; R6 = x0 y1 x3 y3 x1;
S0 = x7 y9 x9 x8 y10 x11; S3 = y8 x9 y11 x11 x10 y12; S6 = x7 y8 x10 x11;
T0 = y11 x10 y8 y7; T3 = x12 y10 y9 x8; T6 = x12 y11 x9 y9 y10 x8;

X1 = y5 x3 y4 x5 y5; X4 = x5 x3 x4 y3 x5; X7 = y5 x5 y4 y3 y5;
Q1 = y7 x6 x4 y6 x8; Q4 = x7 x6 y4 y6 y5 y7; Q7 = y8 y6 x4 x6 x8;
R1 = x1 x0 x2 y3 y1 y2 y0; R4 = y0 x1 y1 x2 y2 x0; R7 = x1 y2 x3 x2 x0 y0 y1;
S1 = x8 x7 x9 x10 x12; S4 = y7 x8 y9 x10 y11; S7 = x8 x9 y10 x12;
T1 = y11 y10 y8 y9 y7; T4 = x11 y10 x9 y8 x7; T7 = y12 x10 y9 x7 y7 y8;

X2 = y5 x4 x2 y4 y5; X5 = x5 y3 y4 x4 x5; X8 = x5 x4 y4 x3 x5;
Q2 = x8 y6 x6 x5 y7; Q5 = y7 y6 x7 y5 x6 y8; Q8 = y8 x6 y5 x7 y6 y7;
R2 = y0 y2 y3 x3 y1 x0 x1; R5 = y1 x1 x3 y2 x2 y0; R8 = y0 x2 x1 y3 y2 y1;
S2 = y7 y9 y8 y10 y11; S5 = y8 x8 x10 y10 y12; S8 = y7 x9 x11 y9 y11;
T2 = x12 x10 x9 x7 x8; T5 = y11 y9 x11 x9 y7; T8 = y12 y10 x10 x8 y8.

Case 2: t1 = 4 and q = 14. See Figures 12–20 in Appendix B.1.

X0 = x3 y3 x5 y4 x3; S0 = x10 y10 y9 x11 y12 x14;
Q0 = x9 x8 x6 y5 x7 y6 y7 y8 x10; T0 = x13 x12 y11 x9;
R0 = x1 y1 y0 x2 x4 y2 x0;

X1 = x3 x5 x4 y5 x3; S1 = y9 x9 x11 y11 y13;
Q1 = x10 x8 y10 y8 x6 y6 x7 y7 y9; T1 = x14 x12 y14 y12 x10;
R1 = y0 x0 x2 y4 y2 y3 x1;

X2 = y3 y5 x4 x5 y3; S2 = x10 y12 y14 x12 x14;
Q2 = y9 y7 y6 x6 x7 y8 y10 x8 x10; T2 = y13 y11 x11 x9 y9;
R2 = x1 x3 y2 y4 x2 x0 y0;

X3 = y3 x4 x6 y4 y3; S3 = x9 y10 x12 y12 y11 x13;
Q3 = y9 x7 x5 y5 y6 x8 y8 y7 x9; T3 = y13 x11 x10 y9;
R3 = x0 y1 y2 x3 x1 x2 y0;
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X4 = y3 y4 y6 x4 y3; S4 = y9 x10 y11 x12 y13;
Q4 = x9 y8 x7 y5 y7 x5 x6 x8 y9; T4 = x13 y12 x11 y10 x9;
R4 = y0 x1 y2 x2 x3 y1 x0;

X5 = y4 x6 x4 y6 y4; S5 = y9 y10 x11 y13;
Q5 = x10 y8 x8 x9 y7 y5 x5 x7 y9; T5 = x14 y12 x12 x13 y11 x10;
R5 = y0 y1 x3 x2 y3 y2 x1;

X6 = y4 x5 x3 x4 y4; S6 = x9 x10 x12 x11 x13;
Q6 = y9 y8 y6 y5 x6 y7 x8 x7 x9; T6 = y13 y12 y10 y11 y9;
R6 = x0 x1 y3 y1 x2 y2 y0;

X7 = y4 x4 x3 y5 y4; S7 = y9 y11 y10 y12 y13;
Q7 = x9 x7 x8 y6 x5 y7 x6 y8 y9; T7 = x13 x11 x12 x10 x9;
R7 = y0 y2 y1 y3 x2 x1 x0;

X8 = y4 y5 y3 x3 y4; S8 = x9 y11 y12 x13;
Q8 = y9 x8 y7 x7 x6 x5 y6 y8 x9; T8 = y13 x12 y10 x10 x11 y9.
R8 = x0 y2 x4 x2 y1 x1 y0;

Case 3: t1 = 6 and q = 16. See Figures 21–29 in Appendix B.1.

X0 = y5 x6 y8 x7 x8 y7 y5; S0 = y11 x13 y13 y12 x14 y15;
Q0 = x11 x9 y9 y10 x10 y11; T0 = x15 y14 x12 x11;
R0 = y0 x2 y2 y1 x3 x4 y6 y4 x5 y3 x1 x0;

X1 = x5 y5 x7 y6 y8 y7 x5; S1 = y12 x12 x14 y14 y16;
Q1 = y11 y9 x9 x8 x10 y10 y12; T1 = y15 x13 x11 y13 y11;
R1 = y1 x1 x3 y3 x4 x6 y4 x2 x0 y2 y0;

X2 = y5 x5 y7 x8 x7 x6 y5; S2 = y11 y13 x11 x13 y15;
Q2 = y12 y10 x9 x10 y8 y9 y11; T2 = y16 y14 x14 x12 y12;
R2 = y0 y2 x0 x2 y4 y6 x4 y3 x3 x1 y1;

X3 = x5 x6 x8 y6 y7 x7 x5; S3 = x12 y13 x15 y15 y14 x16;
Q3 = y12 x10 y9 y8 x9 x11 y11 y10 x12; T3 = y16 x14 x13 y12;
R3 = x1 y2 x4 y4 y3 y5 x3 x2 y1;

X4 = x6 x7 y9 y7 y6 x8 x6; S4 = x11 y12 x13 y14 x15;
Q4 = y11 x10 x9 y8 y10 x11; T4 = y15 x14 y13 x12 y11;
R4 = x0 y1 x2 y3 y4 y5 x4 x5 x3 y2 x1 y0;
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X5 = y6 x5 x7 x9 y7 x6; S5 = y12 y13 x14 y16;
Q5 = x12 y10 y9 x8 y8 x10 y12; T5 = x16 y14 x13 y11 x11 x12;
R5 = y1 y2 x3 y4 x4 y5 y3 x2 y0 x0 x1;

X6 = y6 x7 y7 y8 x6 x5 y6; S6 = x12 x13 x15 x14 x16;
Q6 = y11 x9 y10 x8 y9 x11 x10 x12; T6 = y15 y13 y14 y12 y11;
R6 = x1 x2 x4 x3 y5 y4 y2 y3 y1 y0;

X7 = y5 y6 x6 y7 y9 x7 y5; S7 = y11 y12 y14 y13 y15;
Q7 = x12 x10 x11 y10 y8 x8 x9 y11; T7 = x16 x14 x15 x13 x12;
R7 = y0 y1 y3 y2 y4 x3 x5 x4 x2 x1;

X8 = y5 y7 x9 x7 y8 y6 y5; S8 = y11 x12 y14 y15;
Q8 = x11 y9 x10 x8 y10 y11; T8 = x15 y13 x13 x14 y12 x11.
R8 = y0 x1 y3 x5 y4 x6 x4 y2 x2 x3 y1 x0;

Case 4: t1 = 6 and q = 20. See Figures 30–38 in Appendix B.1.

X0 = y3 y5 x7 x5 y6 y4 y3; S0 = y13 x14 y16 y17;
Q0 = x13 y11 x11 x12 y10 x9 y7 x8 x6 y8 y9 x10 y12 y13; T0 = x17 y15 x15 x16 y14 x13;
R0 = y0 x1 x3 y2 x4 x2 y1 x0;

X1 = y3 y4 x4 y5 y7 x5 y3; S1 = y13 y14 y16 y15 y17;
Q1 = x14 x12 x13 x11 x10 x8 x9 y8 y6 x6 x7 y9 y10 y12 y11 y13; T1 = x18 x16 x17 x15 x14;
R1 = y0 y1 x3 x2 y2 x1;

X2 = y4 x5 y5 y6 x4 x3 y4; S2 = x14 x15 x17 x16 x18;
Q2 = y13 y11 y12 y10 y9 x7 y8 x6 y7 x9 x8 x10 x11 x13 x12 x14; T2 = y17 y15 y16 y14 y13;
R2 = x1 y2 x2 y3 y1 y0;

X3 = y3 x5 y4 y6 y5 x3y3;
Q3 = x14 y12 x11 y9 x9 x10 y8 y7 x7 x6 x8 y10 y11 x12 y14; S3 = y14 y15 x16 y18;
R3 = y1 x2 x4 y2 y0 x0 x1; T3 = x18 y16 x15 y13 x13 x14;

X4 = y3 x4 y6 x5 x6 y5 y3; S4 = x13 y14 x15 y16 x17;
Q4 = y13 x12 y11 x10 y9 x8 x7 y7 y8 x9 y10 x11 y12 x13; T4 = y17 x16 y15 x14 y13;
R4 = x0 y1 y2 y4 x2 x3 x1 y0;

X5 = y3 x3 y5 x6 x5 x4y3; S5 = x14 y15 x17 y17 y16 x18;
Q5 = y14 x12 x11 y10 x8 y7 y6 x7 x9 y9 y8 x10 y11 x13 y13 y12 x14; T5 = y18 x16 x15 y14;
R5 = x1 x2 y4 y2 y1;
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X6 = x3 x4 x6 y4 y5 x5 x3; S6 = y13 y15 x13 x15 y17;
Q6 = y14 y12 x12 x10 y10 y8 x7 x8 y6 y7 y9 y11 x9 x11 y13; T6 = y18 y16 x16 x14 y14;
R6 = y0 x2 x0 y2 y3 x1 y1;

X7 = x3 x5 x7 y5 x4 y4 x3; S7 = y14 x14 x16 y16 y18;
Q7 = y13 x11 x9 y11 y9 y7 x6 y6 x8 y8 y10 x10 x12 y12 y14; T7 = y17 x15 x13 y15 y13;
R7 = y1 x1 y3 y2 x0 x2 y0;

X8 = x4 x5 y7 y5 y4 x6 x4; S8 = y13 x15 y15 y14 x16 y17;
Q8 = x13 y12 x10 x9 x7 y6 y8 x8 y9 x11 y11 y10 x12 y13; T8 = x17 y16 x14 x13.
R8 = y0 y2 x3 y1 y3 x2 x1 x0;

A.2 The case t1 + q ≡ 0 (mod 4)

Case 1: t1 = 4 and q = 16. See Figures 39–45 in Appendix B.2.

X0 = x7 y8 y7 x8 x7; S0 = y10 x13 y13 x14 y14;
Q0 = x11 x10 y9 x9 y10; T0 = x15 x12 y12 y11 x11;
R0 = y0 x3 x4 y4 y3 y2 x5 y6 x6 y5 x2 y1 x1;

X1 = x6 x9 y6 y9 x6; S1 = y11 x12 x13 y12 y15;
Q1 = x10 y10 x11 x8 y8 y11; T1 = x14 x15 y14 y13 x10;
R1 = y1 x2 x5 y5 x4 y7 x7 y4 x3 y2 y3 x0;

X2 = x7 x6 y7 y8 x7; S2 = y10 y13 y12 x11 x12 y15 y14;
Q2 = x10 y11 x8 x9 y9 y10; T2 = x14 x13 x10;
R2 = y0 y3 x2 x1 y2 y5 y6 x5 y4 x4 x3 x0;

X3 = x7 x8 y7 y6 x7; S3 = x11 y11 y12 x12 x15;
Q3 = y10 y9 x10 x9 y8 x11; T3 = y14 x14 y13 x13 y10;
R3 = x1 y1 y2 x2 x3 y4 y5 x6 x5 x4 y3 y0;

X4 = x9 x8 y9 y8 x9; S4 = x11 y12 x15;
Q4 = y10 y11 x10 x11; T4 = y14 x13 x14 y15 x12 y13 y10;
R4 = x1 x2 y3 x4 x7 y7 y4 x5 x6 y6 y5 y2 x3 y0;

X5 = x6 x7 y6 x9 x6; S5 = x10 x13 y14 y15 x14;
Q5 = x11 y8 y9 x8 y11 y10 x10; T5 = x15 y12 y13 x12 x11;
R5 = x0 y3 x3 x2 y5 y4 y7 x4 x5 y2 x1;

X6 = x6 y9 y6 y7 x6; S6 = x10 y13 y14 x15 x14;
Q6 = y11 y8 x8 x11 y10 x9 x10; T6 = y15 y12 x13 x12 y11.
R6 = x0 x3 y3 y4 x7 x4 y5 x5 x2 y2 y1;
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Case 2: t1 = 4 and q = 20. See Figures 46–52 in Appendix B.2.

X0 = x10 x11 y10 y11 x10; S0 = y12 y15 x15 x14 x17 x16 y16;
Q0 = y13 x12 x13 y12; T0 = y17 y14 y13;
R0 = y0 y3 y4 x3 x4 y7 y8 x8 x7 x6 x9 y9 y6 x5 y5 x2 y2 y1;

X1 = x8 x11 y8 y11 x8; S1 = y13 x14 y14 y17;
Q1 = x12 y12 x13 x10 y10 y13; T1 = x16 x17 y16 x15 y15 x12;
R1 = y1 y2 y5 x6 y9 x9 y6 y7 x7 y4 x5 x4 x3 x2 y3 x0;

X2 = x8 y9 x10 x9 x8; S2 = x13 x14 y15 y14 x17;
Q2 = y12 y11 x11 x12 y13 y10 x13; T2 = y16 y17 x16 x15 y12;
R2 = x1 y2 x2 y5 x4 x5 y6 x6 x7 y8 y7 y4 y3 x3 y0;

X3 = y8 x9 y10 y9 y8; S3 = y13 y14 x15 y16 y15 x16 y17;
Q3 = x13 x12 x11 x10 y11 y12 y13; T3 = x17 x14 x13;
R3 = y1 x2 x3 y3 x4 y4 y5 y6 x7 x8 y7 x6 x5 y2 x1;

X4 = x8 x9 y8 x11 x8; S4 = y13 x13 y14 x14 y17;
Q4 = x12 y11 y10 x10 y13; T4 = x16 y15 y12 x15 x12;
R4 = y1 x1 x2 x5 y4 x7 y6 y9 x6 y7 x4 y5 y2 y3 y0 x3 x0;

X5 = x8 y11 y8 y9 x8; S5 = x12 x15 x16;
Q5 = y13 x10 x13 y10 x11 y12 x12; T5 = y17 y16 x17 y14 y15 x14 y13;
R5 = x0 y3 y2 x3 y4 x4 x7 y7 y6 x9 x6 y5 x5 x2 y1;

X6 = x9 x10 y9 y10 x9; S6 = x12 y15 y16 x16;
Q6 = y13 y12 x11 y11 x12; T6 = y17 x14 x15 y14 x13 y13.
R6 = x0 x3 y2 x5 x6 y6 y5 y4 y7 x8 y8 x7 x4 y3 x2 x1 y1;

Case 3: t1 = 6 and q = 14. See Figures 53–59 in Appendix B.2.

X0 = x4 y7 x6 y5 y6 x7 x4; S0 = y11 x10 x11 y12 x12 y15;
Q0 = y10 y9 x9 y8 x8 y11; T0 = y14 y13 x13 y10;
R0 = y1 x0 x1 x2 x5 y2 x3 y4 y3 y0;

X1 = x4 x7 y7 y4 y5 x5 x4; S1 = x11 y10 y13 y12 x15;
Q1 = y11 y8 y9 y6 x6 x9 x8 x11; T1 = y15 x12 x13 x10 y11;
R1 = x1 y0 y3 x0 x3 x2 y2 y1;
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X2 = y4 x5 y5 x6 y7 x7 y4; S2 = y11 x11 x12 y12 y15;
Q2 = x10 y10 x9 y6 y9 x8 y8 y11; T2 = x14 y14 x13 y13 x10;
R2 = y1 x1 y2 x2 y3 x4 x3 x0;

X3 = x4 x5 y4 x7 y8 y7 x4; S3 = y10 x13 y14;
Q3 = y11 x8 y9 x6 y6 x9 y10; T3 = y15 y12 x11 x10 y13 x12 y11;
R3 = y0 x1 x0 y3 x3 y2 y5 x2 y1;

X4 = x5 y6 y7 x8 x7 x6 x5; S4 = x11 y11 x12 x15;
Q4 = y10 x10 x9 y9 y8 x11; T4 = y14 x14 x13 y12 y13 y10;
R4 = x1 y1 y2 y3 x2 y5 x4 y4 x3 y0;

X5 = x5 x6 x7 x8 y7 y6 x5; S5 = y10 y11 y12 x13 x14 y13 y14;
Q5 = x11 y8 x9 x10 y9 y10; T5 = x15 x12 x11;
R5 = y0 y1 x2 x3 y3 y4 x4 y5 y2 x1;

X6 = y5 y4 y7 y8 x7 y6 y5; S6 = x10 x13 x12 y13 x14;
Q6 = x11 x8 x9 x6 y9 x10; T6 = x15 y12 y11 y10 x11.
R6 = x0 y1 y0 x3 x4 y3 y2 x5 x2 x1;

Case 4: t1 = 6 and q = 18. See Figures 60–66 in Appendix B.2.

X0 = x6 y9 x8 y7 y8 x9 x6; S0 = x13 y12 y13 x14 y14 x17;
Q0 = x12 y11 x11 y10 x10 x13; T0 = x16 x15 y15 x12;
R0 = x1 y0 y1 x2 y5 y6 x5 x4 x7 y4 x3 y2 y3 x0;

X1 = x7 x6 x9 y9 y6 y7 x7; S1 = y13 x13 x14 y17;
Q1 = y12 x12 x11 x8 y8 y11 x10 y10 y13; T1 = y16 x16 y15 y14 x15 y12;
R1 = y1 x1 x2 y2 y5 x4 x5 y4 y3 x3 y0;

X2 = x7 y7 x8 y9 x9 y6 x7; S2 = y13 x12 y15 y12 x15 y14 y17;
Q2 = x13 y10 y11 y8 x11 x10 y13; T2 = x17 x14 x13;
R2 = y1 y2 x2 x5 x6 y5 y4 x4 y3 y0 x3 x0 x1;

X3 = x6 x7 y6 x9 y10 y9 x6; S3 = y12 y15 x14 x15 y16;
Q3 = y13 x10 x11 y8 x8 y11 y12; T3 = y17 y14 x13 x12 y13;
R3 = y0 y3 x2 x3 x4 y7 y4 x5 y5 y2 x1 x0 y1;
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X4 = x7 y8 y9 x10 x9 x8 x7; S4 = x12 x13 y14 y15 y16 x15 x16;
Q4 = y13 y10 x11 y12 y11 x12; T4 = y17 x14 y13;
R4 = x0 y3 x4 y4 y7 x6 y6 y5 x5 y2 x3 x2 x1 y1;

X5 = x7 x8 x9 x10 y9 y8 x7; S5 = x13 y13 y14 x14 x17;
Q5 = x12 y12 x11 y11 y10 x13; T5 = x16 y16 y15 x15 x12;
R5 = x1 y2 x5 y6 x6 y7 x4 x3 y3 y4 y5 x2 y1 x0;

X6 = y7 y6 y9 y10 x9 y8 y7; S6 = x12 x15 x14 y15 x16;
Q6 = x13 x10 y11 x8 x11 x12; T6 = x17 y14 y13 y12 x13.
R6 = x0 x3 y4 x7 x4 y5 x6 x5 x2 y3 y2 y1 y0 x1;

A.3 Special cases

A (C⃗4, C⃗12)-factorization of W ∗
16:

F0 = {x5 x4 y3 y4 x5, x0 x3 x2 y2 y5 y6 x1 x6 y1 y0 y7 x7 x0};
F1 = {x6 y6 x5 y5 x6, x0 y1 y2 x2 x1 y0 x7 y4 x3 y3 x4 y7 x0};
F2 = {x5 x6 y7 x4 x5, x0 x1 y6 y5 y2 y1 x2 x3 y4 x7 y0 y3 x0};
F3 = { y6 x6 x7 y7 y6, x0 y0 y1 x1 x2 y3 y2 x5 y4 y5 x4 x3 x0};
F4 = {x2 y5 y4 y3 x2, x0 y7 y0 x1 y2 x3 x4 x7 x6 x5 y6 y1 x0};
F5 = { y3 y0 x3 y2 y3, x0 x7 y6 y7 y4 x4 y5 x5 x2 y1 x6 x1 x0};
F6 = {x0 y3 x3 y0 x0, x1 y1 y6 x7 x4 y4 y7 x6 y5 x2 x5 y2 x1}.

A (C⃗6, C⃗8)-factors of W
∗
14:

F0 = {x0 y1 y3 x5 y6 y0 x0, x1 x2 y2 x3 y4 x4 y5 x6 x1};
F1 = {y0 y1 x3 y3 x4 x5 y0, x0 x1 y2 x2 y4 y5 y6 x6 x0};
F2 = {x5 y5 y0 x1 y3 x3 x5, x0 x2 x4 x6 y1 y2 y4 y6 x0};
F3 = {y2 y3 y5 x5 x0 y0 y2, x1 y1 x2 x3 x4 y4 x6 y6 x1};
F4 = {y3 y4 x5 x6 y0 x2 y3, x0 y2 x4 y6 y1 x1 x3 y5 x0};
F5 = {y6 y5 y4 x3 y2 y0 y6, x0 x5 y3 y1 x6 x4 x2 x1 x0};
F6 = {x2 x0 x6 x5 y4 y3 x2, y0 y5 x3 x1 y6 x4 y2 y1 y0};
F7 = {y6 x5 x4 x3 x2 y1 y6, x0 y5 y3 x1 y0 x6 y4 y2 x0};
F8 = {x6 y5 x4 y3 y2 x1 x6, x0 y6 y4 x2 y0 x5 x3 y1 x0}.

A (C⃗6, C⃗10)-factorization of W ∗
16:

F0 = { y1 x0 x1 y6 y5 y2 y1, y0 y7 x4 y4 y3 x3 x2 x5 x6 x7 y0};
F1 = {x4 x7 x0 y1 y0 y3 x4, x1 x2 x3 y4 y7 y6 x5 y2 y5 x6 x1};
F2 = { y1 x2 y2 x5 y6 x6 y1, x0 y7 x7 x4 y5 y4 x3 y3 y0 x1 x0};
F3 = {x0 y3 y2 x1 y0 x3 x0, y1 y6 x7 y4 x5 x4 y7 x6 y5 x2 y1};
F4 = { y0 y1 x6 y7 x0 x3 y0, x1 y2 y3 x2 y5 x4 x5 y4 x7 y6 x1};
F5 = {x1 x6 x5 y5 y6 y1 x1, x0 y0 x7 y7 y4 x4 x3 y2 x2 y3 x0};
F6 = { y7 y0 x0 x7 x6 y6 y7, x1 y1 y2 x3 x4 y3 y4 y5 x5 x2 x1}.
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A (C⃗6, C⃗12)-factorization of W ∗
18:

F0 = {y1 y8 x8 x6 x5 y3 y1, x0 x1 y0 x7 y5 x3 y4 x2 y2 x4 y6 y7 x0};
F1 = {x2 y0 y2 x3 x5 x4 x2, x0 x7 y8 x1 y3 y4 y6 x6 y5 y7 x8 y1 x0};
F2 = {y0 x0 y8 x6 x8 y7 y0, x1 x3 y3 x5 y4 y5 x7 y6 x4 y2 y1 x2 x1};
F3 = {x5 y6 y4 x4 x6 x7 x5, x0 x8 x1 x2 y1 x3 y5 y3 y2 y0 y7 y8 x0};
F4 = {x1 y2 y3 x4 x3 y1 x1, x0 y0 x2 y4 x6 y8 x7 y7 x5 y5 y6 x8 x0};
F5 = {x2 y3 x3 x4 y4 y2 x2, x0 y1 x8 y8 y7 y5 x5 x6 y6 x7 y0 x1 x0};
F6 = {x0 y2 y4 x5 x3 x2 x0, y0 x8 x7 x6 y7 y6 y5 x4 y3 x1 y8 y1 y0};
F7 = {y0 y8 y6 x5 x7 x8 y0, x0 y7 x6 x4 y5 y4 y3 x2 x3 x1 y1 y2 x0};
F8 = {x0 x2 x4 x5 y7 x7 x0, y0 y1 y3 y5 x6 y4 x3 y2 x1 x8 y6 y8 y0}.
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B Illustration of all (t1, q)-base tuples given in Appendix A

B.1 The case t1 + q ≡ 2 (mod 4)

Case 1: t1 = 4 and q = 10

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

x7 x8 x9 x10 x11 x12

y7 y8 y9 y10 y11 y12

Figure 3: The (4, 10)-base tuple (X0, Q0, R0, S0, T0).

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

x7 x8 x9 x10 x11 x12

y7 y8 y9 y10 y11 y12

Figure 4: The (4, 10)-base tuple (X1, Q1, R1, S1, T1).

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

x7 x8 x9 x10 x11 x12

y7 y8 y9 y10 y11 y12

Figure 5: The (4, 10)-base tuple (X2, Q2, R2, S2, T2).

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

x7 x8 x9 x10 x11 x12

y7 y8 y9 y10 y11 y12

Figure 6: The (4, 10)-base tuple (X3, Q3, R3, S3, T3).

the electronic journal of combinatorics 33(1) (2026), #P1.33 22



x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

x7 x8 x9 x10 x11 x12

y7 y8 y9 y10 y11 y12

Figure 7: The (4, 10)-base tuple (X4, Q4, R4, S4, T4).

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

x7 x8 x9 x10 x11 x12

y7 y8 y9 y10 y11 y12

Figure 8: The (4, 10)-base tuple (X5, Q5, R5, S5, T5).

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

x7 x8 x9 x10 x11 x12

y7 y8 y9 y10 y11 y12

Figure 9: The (4, 10)-base tuple (X6, Q6, R6, S6, T6).

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

x7 x8 x9 x10 x11 x12

y7 y8 y9 y10 y11 y12

Figure 10: The (4, 10)-base tuple (X7, Q7, R7, S7, T7).
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x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

x7 x8 x9 x10 x11 x12

y7 y8 y9 y10 y11 y12

Figure 11: The (4, 10)-base tuple (X8, Q8, R8, S8, T8).

Case 2: t1 = 4 and q = 14

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x9 x10 x11 x12 x13 x14

y9 y10 y11 y12 y13 y14

Figure 12: The (4, 14)-base tuple (X0, Q0, R0, S0, T0).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x9 x10 x11 x12 x13 x14

y9 y10 y11 y12 y13 y14

Figure 13: The (4, 14)-base tuple (X1, Q1, R1, S1, T1).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x9 x10 x11 x12 x13 x14

y9 y10 y11 y12 y13 y14

Figure 14: The (4, 14)-base tuple (X2, Q2, R2, S2, T2).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x9 x10 x11 x12 x13 x14

y9 y10 y11 y12 y13 y14

Figure 15: The (4, 14)-base tuple (X3, Q3, R3, S3, T3).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x9 x10 x11 x12 x13 x14

y9 y10 y11 y12 y13 y14

Figure 16: The (4, 14)-base tuple (X4, Q4, R4, S4, T4).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x9 x10 x11 x12 x13 x14

y9 y10 y11 y12 y13 y14

Figure 17: The (4, 14)-base tuple (X5, Q5, R5, S5, T5).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x9 x10 x11 x12 x13 x14

y9 y10 y11 y12 y13 y14

Figure 18: The (4, 14)-base tuple (X6, Q6, R6, S6, T6).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x9 x10 x11 x12 x13 x14

y9 y10 y11 y12 y13 y14

Figure 19: The (4, 14)-base tuple (X7, Q7, R7, S7, T7).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x9 x10 x11 x12 x13 x14

y9 y10 y11 y12 y13 y14

Figure 20: The (4, 14)-base tuple (X8, Q8, R8, S8, T8).

Case 3: t1 = 6 and q = 16

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

x11 x12 x13 x14 x15 x16

y11 y12 y13 y14 y15 y16

Figure 21: The (6, 16)-base tuple (X0, Q0, R0, S0, T0).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

x11 x12 x13 x14 x15 x16

y11 y12 y13 y14 y15 y16

Figure 22: The (6, 16)-base tuple (X1, Q1, R1, S1, T1).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

x11 x12 x13 x14 x15 x16

y11 y12 y13 y14 y15 y16

Figure 23: The (6, 16)-base tuple (X2, Q2, R2, S2, T2).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

x11 x12 x13 x14 x15 x16

y11 y12 y13 y14 y15 y16

Figure 24: The (6, 16)-base tuple (X3, Q3, R3, S3, T3).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

x11 x12 x13 x14 x15 x16

y11 y12 y13 y14 y15 y16

Figure 25: The (6, 16)-base tuple (X4, Q4, R4, S4, T4).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

x11 x12 x13 x14 x15 x16

y11 y12 y13 y14 y15 y16

Figure 26: The (6, 16)-base tuple (X5, Q5, R5, S5, T5).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

x11 x12 x13 x14 x15 x16

y11 y12 y13 y14 y15 y16

Figure 27: The (6, 16)-base tuple (X6, Q6, R6, S6, T6).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

x11 x12 x13 x14 x15 x16

y11 y12 y13 y14 y15 y16

Figure 28: The (6, 16)-base tuple (X7, Q7, R7, S7, T7).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

x11 x12 x13 x14 x15 x16

y11 y12 y13 y14 y15 y16

Figure 29: The (6, 16)-base tuple (X8, Q8, R8, S8, T8).
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Case 4: t1 = 6 and q = 20

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

x13 x14 x15 x16 x17 x18

y13 y14 y15 y16 y17 y18

Figure 30: The (6, 20)-base tuple (X0, Q0, R0, S0, T0).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

x13 x14 x15 x16 x17 x18

y13 y14 y15 y16 y17 y18

Figure 31: The (6, 20)-base tuple (X1, Q1, R1, S1, T1).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

x13 x14 x15 x16 x17 x18

y13 y14 y15 y16 y17 y18

Figure 32: The (6, 20)-base tuple (X2, Q2, R2, S2, T2).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

x13 x14 x15 x16 x17 x18

y13 y14 y15 y16 y17 y18

Figure 33: The (6, 20)-base tuple (X3, Q3, R3, S3, T3).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

x13 x14 x15 x16 x17 x18

y13 y14 y15 y16 y17 y18

Figure 34: The (6, 20)-base tuple (X4, Q4, R4, S4, T4).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

x13 x14 x15 x16 x17 x18

y13 y14 y15 y16 y17 y18

Figure 35: The (6, 20)-base tuple (X5, Q5, R5, S5, T5).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

x13 x14 x15 x16 x17 x18

y13 y14 y15 y16 y17 y18

Figure 36: The (6, 20)-base tuple (X6, Q6, R6, S6, T6).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

x13 x14 x15 x16 x17 x18

y13 y14 y15 y16 y17 y18

Figure 37: The (6, 20)-base tuple (X7, Q7, R7, S7, T7).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

x13 x14 x15 x16 x17 x18

y13 y14 y15 y16 y17 y18

Figure 38: The (6, 20)-base tuple (X8, Q8, R8, S8, T8).

B.2 The case t1 + q ≡ 0 (mod 4)

Case 1: t1 = 4 and q = 16

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 39: The (4, 16)-base tuple (X0, Q0, R0, S0, T0).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 40: The (4, 16)-base tuple (X1, Q1, R1, S1, T1).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 41: The (4, 16)-base tuple (X2, Q2, R2, S2, T2).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 42: The (4, 16)-base tuple (X3, Q3, R3, S3, T3).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 43: The (4, 16)-base tuple (X4, Q4, R4, S4, T4).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 44: The (4, 16)-base tuple (X5, Q5, R5, S5, T5).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 45: The (4, 16)-base tuple (X6, Q6, R6, S6, T6).
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Case 2: t1 = 4 and q = 20

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 46: The (4, 20)-base tuple (X0, Q0, R0, S0, T0).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 47: The (4, 20)-base tuple (X1, Q1, R1, S1, T1).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 48: The (4, 20)-base tuple (X2, Q2, R2, S2, T2).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 49: The (4, 20)-base tuple (X3, Q3, R3, S3, T3).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 50: The (4, 20)-base tuple (X4, Q4, R4, S4, T4).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 51: The (4, 20)-base tuple (X5, Q5, R5, S5, T5).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 52: The (4, 20)-base tuple (X6, Q6, R6, S6, T6).

Case 3: t1 = 6 and q = 14

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 53: The (6, 14)-base tuple (X0, Q0, R0, S0, T0).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 54: The (6, 14)-base tuple (X1, Q1, R1, S1, T1).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 55: The (6, 14)-base tuple (X2, Q2, R2, S2, T2).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 56: The (6, 14)-base tuple (X3, Q3, R3, S3, T3).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 57: The (6, 14)-base tuple (X4, Q4, R4, S4, T4).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 58: The (6, 14)-base tuple (X5, Q5, R5, S5, T5).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x10 x11 x12 x13 x14 x15

y10 y11 y12 y13 y14 y15

Figure 59: The (6, 14)-base tuple (X6, Q6, R6, S6, T6).
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Case 4: t1 = 6 and q = 18

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 60: The (6, 18)-base tuple (X0, Q0, R0, S0, T0).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 61: The (6, 18)-base tuple (X1, Q1, R1, S1, T1).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 62: The (6, 18)-base tuple (X2, Q2, R2, S2, T2).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 63: The (6, 18)-base tuple (X3, Q3, R3, S3, T3).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 64: The (6, 18)-base tuple (X4, Q4, R4, S4, T4).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 65: The (6, 18)-base tuple (X5, Q5, R5, S5, T5).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

x12 x13 x14 x15 x16 x17

y12 y13 y14 y15 y16 y17

Figure 66: The (6, 18)-base tuple (X6, Q6, R6, S6, T6).
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