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Abstract

We address the last outstanding case of the directed Oberwolfach problem with
two tables of different lengths. Specifically, we show that the complete symmetric
directed graph K admits a decomposition into spanning subdigraphs comprised of
two vertex-disjoint directed cycles of length ¢; and to, respectively, where t; € {4, 6},
to is even, and t1 + to > 14. In conjunction with recent results of Kadri and Sajna,
this gives a complete solution to the directed Oberwolfach problem with two tables
of different lengths.

Mathematics Subject Classifications: 05B30

Keywords: Directed Oberwolfach problem; directed 2-factorization; complete symmetric
directed graph.

1 Introduction

In this paper, we investigate a variation of the famous Oberwolfach Problem (OP). In-
troduced by Ringel [18] in 1967, the OP(t1,ts,...,ts) poses the following question: given
n = 2k + 1 people and s round tables that respectively seat t,ts,...,ts people, where
ty +to+---+1ts = n and t; > 3, does there exist a set of k seating arrangements
such that each person sits beside every other person precisely once? This problem can
be formulated as a graph-theoretic problem by considering the question of existence of
a 2-factorization of the complete graph K, such that each 2-factor is comprised of cy-
cles of lengths t1,ts,...,ts. In [22], the OP was adapted to consider the case where n
is even. In that case, the existence of a 2-factorization of K, — I is considered, where
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K,, — I is the complete graph with the edges of a 1-factor removed. Constructive solu-
tions to the OP have been found in each of the following cases: cycles of uniform length
14, 5, 21, 22], two cycles [19, 30], any combination of cycles of even length [9, 20], and
n < 100 [14, 15, 16, 26, 27]. Constructive solutions to the OP have also been found for
several infinite families of cases in [3] and [10] and in the case where a single table is
sufficiently large [29]. It has also been shown non-constructively that a solution to the
OP exists for all sufficiently large n [17]. We refer the interested reader to [11] for a survey
of known results on the Oberwolfach problem and related variants as of 2024.

The directed Oberwolfach problem (OP*(t,t,...,ts)) considers a similar scenario.
This time, we let t; > 2 and we seek n — 1 seating arrangements with the added property
that each guest is to be seated to the right of every other guest exactly once. If all s tables
are of the same length ¢, we write OP*(¢;s). When n is odd and each t; > 3, one can
easily construct a solution to the OP* (¢, ts, . .., t5) from a solution to the OP(¢y,to, ..., t5).
Therefore it suffices to consider the OP*(¢y,ts,...,ts) for n even or, when n is odd, in
those cases where a solution to the OP(t1,1s, ..., ts) is unknown.

Recently, the last open case of the OP*(¢;s) was settled [24]. Thus we have a con-
structive proof of Theorem 1 below.

Theorem 1 ([1, 2, 6, 8, 12, 13, 24, 28]). Let s and t be positive integers such that ts is
even. The OP*(t;s) has a solution if and only if (s,t) & {(1,6), (1,4), (2,3)}.

Naturally, the next step is to consider the case with cycles of varying length. The only
result on this more general case of the OP* when n is even can be found in [23] and [31]. In
[31], Zhang and Du established the existence of solutions to OP*(3™,4) and OP*(3™2,5)
for all positive integers m; and ms such that 3m; +4 = 1 (mod 3) and 3my + 5 = 2
(mod 3). They do so by constructing resolvable Mendelsohn designs with parallel classes
containing m; or msy blocks of size 3 and one block of size 4 or 5. Recently, Kadri and
Sajna [23] used a recursive approach to obtain several infinite families of solutions. One of
the key results of [23] is a near-complete constructive solution to the directed Oberwolfach
problem with two cycles of varying lengths formulated in Theorem 2 below.

Theorem 2 ([23]). Let t; and ty be integers such that 2 < t; < ty. Then the OP*(tq,ts)
has a solution if and only if (t1,t2) # (3,3) with a possible exception in the case where
t1 € {4,6}, ty is even, and t; +to > 14.

The recursive approach used to prove Theorem 2 relies on the existence of a solution
to OP*(¢;1). However, it is known from Theorem 1 that no such decomposition exists
when ¢; € {4,6}. Therefore, the methods of [23] cannot be used to construct a solution
to the OP*(¢1,t2) when ¢; € {4,6} and ¢, is even.

Here we complement the results of Theorem 2 and complete the solution of the directed
Oberwolfach problem with two tables.

Theorem 3. Let t; and ty be positive even integers such that t; € {4,6} and t; +ty > 14.
Then the OP*(ty,ts) has a solution.
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Theorems 2 and 3 jointly imply a complete constructive solution to the OP*(tq,t5)
stated below.

Theorem 4. Let t; and ty be integers such that 2 < t; < to. Then the OP*(t1,ts) has a
solution if and only if (t1,t2) # (3,3).

This paper is structured as follows. In Section 2, we give key definitions. Then,
in Section 3, we take a reduction step by showing that it suffices to find particular 2-
factorizations of a class of sparser digraphs. Next, in Section 4, we describe the ingredients
needed to obtain the desired 2-factorizations and prove that these indeed give rise to the
appropriate solutions of the directed Oberwolfach problem. We conclude by constructing
the desired set of ingredients required to form the directed 2-factorizations we need.

2 Key definitions

We make the standard assumption that all directed graphs (digraphs for short) are strict.
This means that digraphs do not contain loops or parallel arcs. If G is a digraph (graph),
we shall denote its vertex set as V(G) and its arc set (edge set) as A(G) (E(G)), re-
spectively. For any graph G, let G* denote the digraph with vertex set V(G) and arc
set {(z,v), (v, ) {z,y} € E( )}. Let K denote the complete symmetric digraph on n

vertices and let C’m denote the directed cycle on m vertices. Let E,, denote the undirected
graph with m vertices and no edges.

The length of a directed path (dipath for short) or a directed cycle refers to the number
of arcs it has. For a dipath P, we denote its length as len(P). Moreover, the source of a
dipath P is the vertex with in-degree 0 and is denoted s(P), while the terminal of P is
the vertex with out-degree 0 and is denoted ¢(P).

Let G be a digraph. A decomposition of a G is a set {HI,HQ, ..., H.} of pairwise
arc-disjoint subdigraphs of G such that A(G) = A(H,)UA(Hy)U UA( r). A 2-regular
digraph is a digraph comprised of disjoint directed cycles and a spanning subdlgraph of G
that is also a 2-regular digraph is a directed 2-factor of G. A (Ctl, C’tQ, ..., Cy)-factor of G
is a directed 2-factor that is the disjoint union of s directed cycles of lengths ty,to, ..., ts.
A bipartite 2-reqular digraph is a 2-regular digraph comprised of directed cycles of even
lengths. If H is a spanning subdigraph of G and G admits a decomposition into subdi-
graphs isomorphic to H, then this decomposition is called an H -factorization. In particu-
lar, a (Cy,, C.,, ..., Cy.)-factorization of G is a decomposition of G into (C,,,Cy,, ..., C,.)-
factors. A directed 2-factorization of G is a decomposition of GG into directed 2-factors.
All these terms can be analogously defined for undirected graphs.

We now formulate the OP* (1, ts, ..., ts) in graph-theoretic terms.

Problem 5 (OP*(t1,t2,...,ts)). For integers 2 < t; <ty < -+ <t such that ¢; + 5+
-+ ts =n, does K} admit a (C,, C,, ..., C;,)-factorization?

To prove Theorem 3, we construct a (@1, étQ)—factorization of K when n = t; + to,
t1 € {4,6}, t5 is even, and n > 14.
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We conclude this section with a pair of definitions that are used to construct the
desired (C,, Cy,)-factorizations of K.

Definition 6. For graphs G and H, the wreath product of G with H, denoted G ¢ H, is
the graph with vertex set V(G) x V(H) in which (g1, k1) and (ge, h2) are adjacent if and
only if either g1g2 € F(G) or g1 = g, and h1hy € E(H).

Definition 7. For a subset S of {1,...,|%]}, the circulant of order n with connection
set S, denoted Circ(n,.S), is the graph with vertex set Z, and edge set {{i,i + s} : i €
Zy,s € S} with addition performed modulo n.

3 Overall strategy

This section details the overall strategy we follow to prove Theorem 3. Our primary
objective is to demonstrate that, in order to construct the desired (@1, (jtz)—factorization
of K, it suffices to construct a (étl,étQ)—factorization of a sparser digraph that only
requires seven or nine (C,,, Gy, )-factors.

Crucial to our approach is the following immediate consequence of a lemma of
Héggkvist, see [20].

Lemma 8 ([20]). Let D be a bipartite 2-reqular digraph of order 2m comprised of directed
cycles of length at least 4. The digraph (Cp, L Eo)* admits a D-factorization.

Proof. Let F' be the 2-factor obtained from D by replacing each arc (x,y) with an
undirected edge {z,y}. By the first lemma of [20], commonly known as Haggkvist’s
Lemma, there is an F-factorization F of C,, ! E5. Thus there is an F*-factorization F* of
(Cm U E)*. Clearly, each copy of F* in F* can be decomposed into two copies of D and
together, these copies of D form the desired directed 2-factorization of (C,, ! Eo)*. O

Lemma 8 does not apply to bipartite 2-regular digraphs containing at least one cycle
of length 2. However, for our purpose, we do not need to consider this case.

Let D be a bipartite 2-regular digraph on 2m vertices comprised of directed cycles
of length at least 4. Our overall strategy for finding D-factorizations of K  is first to
decompose K3, into copies of (Cp, ! Ey)* and a single copy of another graph that we call
Wy .. It will then suffice to find a D-factorization of Wi because we can form a D-
factorization of K3, by taking the union of this D-factorization with D-factorizations of
the copies of (C,, ! Ey)* provided by Lemma 8. In the remainder of this section, we define
the graph W3 and show that K3, can indeed be decomposed into copies of (Cy, ! Ey)*
and one copy of Wy . This approach is inspired by the one used by Bryant and Danziger
in [9].

Definition 9. If m is odd, we define W5, to be Circ(m, {1,2}) Ky and if m is even,
we define Wa,, to be Circ(m, {1,3°}) ¢ Ks, where Circ(m, {1,3°}) denotes the graph with
vertex set Z,, and edge set

{H{i,i+1} i€ Zy,}U{{i,i+3}:i € Z, is even}.
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Note that W, is 9-regular if m is odd and is 7-regular if m is even. Also note that
Circ({m, 1,3°}) is not technically a circulant but we use this notation as we believe it is
a useful mnemonic. See Figure 1 for an illustration of Ws.

Zo Xy X2 €3 Ly Ts Lo X7 Tg Ty Lo T
— = —

P e
X7 N NI N \[K=2
— == == =

Yo U1 Yo Y3 Ya Ys YUs Y Us Yo Yo U1

Figure 1: The graph Wyy; the digraph Wy, is obtained by replacing each edge with a pair
of arcs oriented in opposite directions.

Our goal in this section is to prove the following result.

Lemma 10. Let D be a bipartite 2-reqular digraph of order 2m > 14 comprised of directed
cycles of length at least 4. There is a D-factorization of K3, if there is a D-factorization
of W5 ..

When m is even, we will make use of the following result of Bryant and Danziger [9].

Lemma 11 (]9, Lemma 7]). For each even m > 8, there is a factorization of K,, into
m—4

m= copies of Cy, and a copy of Circ(m, {1,3°}).

We will require an analogue for Lemma 11 for the case where m is odd. To prove this,
we state a lemma on decomposition of circulants into hamiltonian cycles. It asserts a
special case of a result of Bermond, Favaron, and Mahéo [7] on 2-factorizations of Cayley
graphs.

Lemma 12 ([7]). Let m be an integer and let S be a subset of {1,...,|=52]}. Then
Circ(m, S) admits a Cp,-factorization if |S| =2 and ged(S U {m}) = 1.

Lemma 13. For each odd m > 7, the graph K,, admits a decomposition into ’”T_E’ copies
of Cpy and one copy of Circ(m, {1,2}).

Proof. The graph Circ(m, {1,...,™2}) is a copy of K,,. If m = 7, then Circ(7,{1, 2, 3})
has a decomposition F = {Circ(7,{1,2}), Circ(7,{3})}. If m > 9, then Circ(m,{1,...,

mT_l}) has a decomposition F given by

{Circ(m,S) : S € {{1,2},{3,4},... {=2, =11} } if m =1 (mod 4);
{Circ(m, S):S e {1,2},{3,5},{4},{6,7},{8,9},..., {mT_?’, mT_l}}} if m =3 (mod 4).

Clearly, Circ(m,{4}) is a copy of C,, when m is odd and Circ(7,{3}) is a copy of Ci.
Therefore, in each case it can be seen that each subgraph in F other than Circ(m, {1,2})
admits a C,,-factorization by using Lemma 12. Taking the union of Circ(m,{1,2}) to-
gether with these C),-factorizations completes the proof. m
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Using Lemmas 11 and 13 we can complete our proof of Lemma 10.

Proof of Lemma 10. By Lemmas 11 and 13, there is a decomposition {G} UC of K,
where C is a set of directed cycles of length m, G is a copy of Circ(m, {1,3°}) if m is even,
and G is a copy of Circ(m,{1,2}) if m is odd. Since K,, ! K3 is isomorphic to Ky,,, we
have that F is a decomposition of K5, where

Noting (G K)* is a copy of W5, we see that F* = {F* : F' € F} is a decomposition
of K;  into copies of (C,, ! E3)* and one copy of W5 . By Lemma 8, (C'{ Es)* has
a D-factorization D¢ for each C' € C. Thus, if W5 has a D-factorization D', then
D'U{D¢ : C € C} will be a D-factorization of K3, .. O

In summary Lemma 10 implies that, to prove Theorem 3, it suffices to construct a
(Cy,, Cy, )-factorization of Wy, when t; € {4,6}, {5 is even, and t; + ¢, > 14.

4 Main construction

Throughout this section we take t; and ¢ to be fixed integers such that ¢; € {4,6} and

{10,14,16,20} if t; = 4; 0
{14,16,18,20} if t; = 6.

Our goal will be to show that a (@1, éq+8k)—factorization of W}, s exists for each
nonnegative integer k. Lemma 10 will establish our main theorem for all pairs (1, q)
except those in {(4,12), (6, 8), (6,10), (6,12)}. We will then deal with these special cases
in Appendix A.3.

Notation 14. Throughout the remainder of the paper we shall assume that, in the
definition of W5 = given in Definition 9, the copy of Ks has vertex set {x,y}. Further, we

m
will abbreviate vertices (a, x) to x, and vertices (b,y) to y, so that

VW) =A{zaup = a,b € Zy}.
In addition, we define the following permutations of V(W5 ).

Definition 15. For each even integer j, we will take p/ to be the permutation of V (W5, )
defined by p/(x;) = 24, and p’(y;) = yi1;, with subscript addition performed modulo m.
For a dipath P = vgvy - - - v, of Wi, we let p? (P) = p?(vo)p? (v1)p” (va) - - - p (vy). We refer
to a dipath p/(P) as a translation of P, and note that p’(P) is also a dipath of W5, since
J is even.

Each of the factors in the directed 2-factorizations we desire will be created from what
we call a (t1, q)-base tuple (X, Q, R,S,T) where X is a directed t;-cycle and @, R, S and
T are dipaths of various lengths. We will define (1, ¢)-base tuples formally in Definition
17 below, but first we give an informal overview of how they will be used. For a given
nonnegative integer k, from each (t1,q)-base tuple (X,Q, R,S,T), we will construct a
(@1, éﬁgk)—factor which is a union of the following pieces:
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e a directed t-cycle X

e two dipaths Iy and I; formed as the concatenation of k translations of S and T,
respectively;

e two dipaths () and R such that s(Q) = t(I1), t(Q) = s(lp), s(R) = t(lp), and
t(R) = s(I).

The union of @, R, Iy, and [; will form a directed (g + 8k)-cycle that is disjoint from
X. A schematic picture of this construction is given in Figure 2. Since each (t1,q)-base
tuple gives us factors of infinitely many orders, this approach will allow us to reduce our
problem to finding only eight sets of (1, q)-base tuples (one for each possible choice of

(th Q))

s(R) Vo Q) s(R)

Iy

t(R) s(Q)

J

t(R)

Figure 2: A schema of the construction of a directed 2-factor of Wi from a (¢, q)-base
tuple (X, @, R, S,T) with directed t;-cycle X drawn in red.

Notation 16. For the remainder of this section, it will be useful to set p = %(tl + q),
so that 2p is the smallest of the orders of the directed 2-factorizations we desire. For
each non-negative integer k, we also define certain subsets of the vertex set of Wy, ;. as
follows:

Vo=Azi,yi + 0<i<p+ 1}
V()T:{%ayi c2<i<p—1}
Vi=Axi,yi - p+4j—4<i<p+4j+1}foreachje{1,2,... Kk}

Observe that Vo = V(W5 . ) if k=0, [Vg| = 2(p + 2) otherwise, and |V;| = 12 for
each j € {1,2,...,k}. Also, for all integers i and j with 0 < i < j <k,

{xp—lyxpa yp—hyp} lf (Zaj) = (07 1)7
if (4,7) = (0, k);
‘[LQV: {xOVIl)yOvyl} 1 ‘a ‘ ) ) ‘ 2
! {@prais Tpraiv 1, Ypsais Ypraivr y if j =i+ 1and i > 1; @)
0 otherwise.
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Let k > 2 be an integer and let A = (P! ..., P¥) be a sequence of dipaths. We say
that A concatenates if t(P") = s(P**!) for each ¢ € {1,...,k — 1} and, aside from this,
no vertex is in more than one dipath in the sequence. In this case we call the dipath
P U ---U P* the concatenation of A. Similarly we say that A cyclically concatenates
if t(Pk) = s(P1), t(P) = s(P™!) for each i € {1,...,k — 1} and, aside from this, no
vertex is in more than one dipath in the sequence. In this case we call the directed cycle
P'U---U P* the cyclic concatenation of A.

Definition 17. The 5-tuple (X, Q, R, S, T) is a (1, q)-base tuple if X is a directed ¢;-cycle
of Wil 4424 and Q, R, S and T are dipaths of Wy, .54 with the following properties.

B1 V(X) C VOT; V(Q) € Vo \ {zo,vo, x1, 01} V(R) € Vo \ {Zp, Yps Tpt1: Yp1 15 V().
V(T) C Vi

B2 len(Q) +len(R) = ¢ and len(S) + len(7T") = §;

B3 X, @, and R are pairwise vertex-disjoint;
4 (@, p’(R)) cyclically concatenates;
5 (T,Q,S) and (p=P=4(S), R,p™?~4(T)) concatenate;
6 (5,

p*(S)) and (T, p*(T')) concatenate. Further, the concatenations of (S, p*(S)) and
(T,p (T')) are vertex-disjoint.

In Definition 17 above, we chose t; + ¢ + 24 because it was large enough that it can be
easily checked that the translations mentioned in B4, B5, and B6 do not contain vertices
of V. We could equivalently have chosen any other order large enough to ensure this
property. Our next lemma describes how we can use a (t1,¢q)-base tuple to obtain a
directed 2-factor.

Lemma 18. Let (X,Q, R, S,T) be a (t1,q)-base tuple and let k be a nonnegative integer.
In the host graph W}, .. denote S7 = p*i=1(S) and T7 = p*U=(T) for each j €
{1,2,...,k} and let

=(Q,S', 8% ..., S* R T TF ... Th.

Then A cyclically concatenates and, furthermore, X and the cyclic concatenation of A
form the cycles of a (C’tl,C’ k) -factor of Wi, gy

Proof. If A cyclically concatenates, then its cyclic concatenation is a directed cycle of
length g + 8% by B2. So it suffices to prove that A does indeed cyclically concatenate and
that its cyclic concatenation is vertex-disjoint from X.

Case 1. Suppose that k = 0. Then our host graph is W, = W3 and A = (@, R).
In W3, we have that pP is the identity permutation and so B4 implies that A cyclically
concatenates. Further, B3 implies that the cyclic concatenation of A is vertex-disjoint
from X.
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Case 2. Suppose that & = 1. Then our host graph is Wy, s = W;(p+4) and A =

(Q,SY, R, T"). In W30, We have that p~P~* is the identity permutation and so B5
implies that (71, Q,S') and (S*, R, T"') concatenate. So, because ) and R are vertex-
disjoint by B3, we have that A cyclically concatenates. By B3 () and R are both vertex-
disjoint from X. By Bl and (2), both S and T are vertex-disjoint from X. So the cyclic
concatenation of A is vertex-disjoint from X.

Case 3. Suppose that k > 2. Our host graph is Wy g = Wo, 45y In W5 ), we have
that p**=1) = p=»=% and so B5 implies that (7", Q,S') and (S*, R, T*) concatenate. By
B6, we have that (5%, S™1) and (7%, T*"!) both concatenate for each i € {1,... , k — 1}.
Also by B6, for each i € {1,...,k — 1}, we have that S* is vertex-disjoint from 7"
and T and that T is vertex-disjoint from S° and S*™!. Note that Bl implies that
V(S?) and V(T") are subsets of V; for each i € {1,...,k}. Thus we can conclude that A
cyclically concatenates because B1 and (2) imply that all the remaining vertex-disjointness
conditions are met. Further, using B3 together with B1 and (2), we have that the cyclic
concatenation of A is vertex-disjoint from X. O]

For digraphs G and H, we use the notation G = H to indicate that G and H are
isomorphic. Furthermore, for digraphs G, Go, H; and Hs, we write (Gy, G2) = (Hy, Hs)
to indicate that G; = Hy, Gy = Hs, and G; U Gy = H; U Hy. Note that if (G1,Gy) =
(Hy, Hy) and H is arc-disjoint from H,, then we must have that G is arc-disjoint from
G4 because

|A(GL U Gy)| = [A(HL U Hy)| = |A(HL)| + [A(H)| = |A(G)| + |A(G2)].

The next lemma gives conditions under which the 2-factors arising from a number of
(t1, q)-base tuples form a directed 2-factorization.

Lemma 19. Letr =9 if ty + ¢ =2 (mod 4), and let r =7 if t; + ¢ =0 (mod 4). For
each a € {0,...,r — 1} let (X4, Qu, Ra, Sa, T,) be a (t1,q)-base tuple and let F, be the
corresponding (th1, @q+16)-fact0r of Wi i16- If the digraphs in F = {FO, o ,Fr_l} are
pairwise arc-disjoint, then Wi ¢ admits a (th1, 6q+8k)-fact0rizati0n for each positive
integer k. If, in addition, each of the dipaths Qq, ..., Q._1 is arc-disjoint from each of the
dipaths pP(Ro), ..., pP(Re_1), then W7, admits a (C,,. C,)-factorization.

Proof. Fix a nonnegative integer k£ and suppose that the digraphs in F= {Fg, cee FT,l}
are pairwise arc-disjoint and that, if £ = 0, each of the paths @, ..., Q,_1 is arc-disjoint
from each of the paths pP(Ry),...,p"(R,_1). For each a € {0,...,r — 1}, let F, be the
(@1, éq+8k)‘faCt0r of W, . g constructed using the (1, g)-base tuple (X4, Qa, Ra, Sa;, Tu)-
Using the notation of Lemma 18 relative to the host graph Wp ¢, F, is the union of
X, and the cyclic concatenation of

(Qa, Sk, 82,82, ..., S* R, Tk TF .. )T

Again using the notation of Lemma 18, but adding hats to indicate that the notation
is relative to the host graph Wy, .., we let F, be the union of X, and the cyclic
concatenation of
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(Qa: S, 53 R, T3, 1)

We must show that F=A{Fy, F,...,F._1}isa (C’;N éq+8k)—factorization of Wi, ik
Observe that S."_0 |A(F,)| = |A( t1+q+8k)|. Therefore, it suffices to show that the di-
rected 2-factors in ]: {Fo, F1, ..., F._1} are pairwise arc-disjoint. This follows immedi-
ately from the hypothesis if k = 2, so we can assume otherwise.

If £ = 1 then, for each a € {0,...,7 — 1}, F, is obtained from E, by associating
the vertices xpi4, Ypta, - .., Tpr7, Yp+7 With, respectively, the vertices xp, Yp, . . ., Tpt3, Yp+3-
In this association process, by their definitions, the subdigraphs S! and 52 of F, both
map to the subdigraph S! of F,, and the subdigraphs 7! and 72 of F, both map to
the subdigraph T! of F,. Together with B1. This ensures that no two arcs in different
factors of F are mapped onto the same arc. Thus, because the factors in F are pairwise
arc-disjoint, the factors in F are pairwise arc-disjoint.

If £ = 0 then, for each a € {0,...,r — 1}, F, is obtained from E, by deleting the
arcs in S} U S2UT! UT?, deleting the vertices , 2, Ypt2, - - - » Tpi7, Yps7, and associating
the vertices @, Yp, Tpi1, Yp+1 With, respectively, the vertices xg, yo, x1,y1. Our additional
assumption in the case k = 0, together with B1, ensures that no two arcs in different
factors of F are mapped onto the same arc in this association process. Thus, because the
factors in F are pairwise arc-disjoint, the factors in F are pairwise arc-disjoint.

Lastly, we consider the case k > 3. Foreacha € {0,...,r—1}, welet Y, = X,UQ,UR,
and, for each i € {1,...,k}, Ul = S, UT,. Also, we let Y = X, UQ,UR, and, for
je{1,2}, welet Ui = SJ UTY. Let {Vg, ..+, Vi} be the partition of V(W .g,) defined
in Notation 16. By Bl and (2 ) we have, for each a € {0,...,r —1}:

(i) V(Ya) C Vo; and
(i) V(UY) CV, for each i € {1,...,k}.

Let g and ¢ be distinct elements of {0,...,r —1}. We complete the proof by showing
that F} is arc-disjoint from F;. We do this by first showing that Y} is arc-disjoint from
F,. Then, for each j € {1,...,k}, we show that U] is arc-disjoint from F.

Case 1: Y,. Using (i) and (ii) we have that Y} is vertex-disjoint from Uf;; U: because
Vp is vertex-disjoint from V5,..., Vi_1. Now Y, U U} is arc-disjoint from Y, U U, because
(Y UU}Y,uU}) = (Y,UU}, Y, UU}) and Y, U U} is arc-disjoint from Y, UU}. Similarly,
Uf UY, is arc-disjoint from UF UY; because (UF UY,, UF UY,) = (U2 UY,,U? UY,) and
U; Uy, is arc-disjoint from U; U 579. So, in particular, Y} is arc-disjoint from ng uY,uU Ug1
and hence from Fj,.

Case 2: Ug where j € {2,...,k—1}. Let I ={0,1,...,5 —2,7+2,5+3,... k}.
From (i) and (i), the digraph Uj is vertex-disjoint from Y, U U,cp oy U: because V; is

vertex-disjoint from |J,; Vi. Now, U/~ U U7 is arc-disjoint from U=t U U] because

(U VUL U U U) = (U DU, UL U02) = (0} U 02,02 U 02)
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and UQUUZQ is arc-disjoint from U;UU; Similarly, Ugng‘H is arc-disjoint from UgUUgH
because (Ul u UZH,Ug uUtt) = (U U2, U; U UQZ) So, in particular, U; is arc-disjoint
from U]~ U U] U U] and hence from F.

Case 3: U} and U}. From (i) and (ii), it follows that U} is vertex-disjoint from UL, U:
because V; is vertex-disjoint from Vi, ..., V;. Likewise, UF is arc-disjoint from Uf;f U ;
because Vj is vertex-disjoint from Vi,..., Vs . In Case 1, we saw that U} and U} are
both arc-disjoint from Y,. In Case 2, (with j = 2) we saw that U} is arc-disjoint from U 92.
In Case 2, (with j = k — 1) we also saw that U} is arc-disjoint from UF'. So both U}
and U} are arc-disjoint from F,.

In summary, we have demonstrated that Fy is arc-disjoint from Fj for distinct ¢ and
g. Therefore, the given set of r (1, ¢)-base tuples gives rise to the desired directed 2-
factorization of W5 . [

We now conclude this section with the proof of this paper’s main result, namely the
proof of Theorem 3.

Proof of Theorem 3. We show that K3 admits a (C,,, Gy, )-factorization when t, +t5 =
2m, t, € {4,6}, and t; + t, > 14. Lemma 10 implies that it suffices to find a (C},, G, )-
factorization of Wi, . For the special cases where (t1,t2) € {(4,12), (6, 8), (6, 10), (6,12)}
we give a (Cy,, C,,)-factorization of Wy, in Appendix A.3. Otherwise, we have that
to = q+ 8k for some ¢ satisfying (1) and nonnegative integer k. Let r = 9 if m is odd and
r =7 if m is even. To construct a (Cy,, C,, )-factorization of W, , it suffices to construct

2m»
r (t1, q)-base tuples satisfying the hypothesis of Lemma 19.

1. If m is odd, then (1, q) € {(4,10), (4,14), (6,16), (6,20)}. Appendix A.1 gives a set
of nine (1, ¢)-base tuples satisfying the hypothesis of Lemma 19 for each of these
choices of (t1,q).

2. If m is even, then (t1,q) € {(4,16), (4,20), (6,14), (6,18)}. Appendix A.2 gives a set
of seven (t1, q)-base tuples satisfying the hypothesis of Lemma 19 for each of these
choices of (¢4, q).

In conclusion, the digraph W5 admits a (th1, 6t2)—factorization when t; + t5 = 2m,
t1 € {4,6}, and t; +t > 14. It follows that the OP*(¢;, t5) has a solution for all applicable
t; and to values. ]

The (t1, q)-tuples presented in Appendices A.1 and A.2 were constructed by hand
with the assistance of a computer. For example, in many cases, we first used a computer
to obtain an exhaustive list of all possible sets of dipaths {Sy, To,...,S,—1,7,—1} and
{Qo, Ro, .. .,Qr_1,R.—1}. The process of fitting these together, making adjustments if
necessary, and completing the tuples such that they give rise to the desired directed
2-factorization, however, was largely accomplished by hand.
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A Supplementary material for the proof of Theorem 3

A.1 The case t; + g = 2 (mod 4)
Case 1: t; =4 and ¢ = 10. See Figures 3—-11 in Appendix B.1.

Xo = T4 T3Y5 Y3 T4; X3 = Ys5Ya Y2 T4 Ys; X6 = TalY2YaT2Ty;

Qo = Y7 T5 Y6 Ya Te T7; Q3 = T8 Y7 T7T5 T Yo Ys; Q6 = T8 T6 Y71 Ys Yo T5 T7;
Ry = woy2 T1 22 Y1 Yo; R3 = y1ysra w3 21; Re = xoy1x3y371;

So = T7 Y9 T Tg Y10 T11; S3 = Y8 Ty Y11 T11 T10 Y12; Se = T7YsT10 T11;

To = Y11 T10 Y8 Y73 T3 = X12 Y10 Yo T8; T6 = w12 Y11 9 Yo Y10 T8;
X1 = Y5 T3 Y4 T5Ys; X4 = T5T3T4Y3Ts; X7 = Y505 Ys Y3 Ys;

Q1 = Y7 %6 T4 Y6 Ts; Q4= T726Y1Ys Y5 Yr; Q7 = Ys Y6 T4 Tg Tg;

Ry = 2120%2y3y1¥2%0;  Ra = Yo X1 Y1 T2 Y2 To; R7 = x1y2 2322 0 Yo Y1;
S1 = TgT7 Ty T10 T12; Sy = Yr T8 Yo T10 Y11; S7 = X8 Ty Y10 T12;

T1 = Y11 Y10 Ys Yo Y7; Ty = 11 Y10 To Ys T7; T7 = y12 T10 Yo T7 Y7 Ys;
Xo = Ys T4 T2 Ys Ys: X5 = T5Y3YaTqTs5; Xg = T5T4YsT3Ts;

(2 = Tg Y T6 T5 Yr; Qs = Y7 Y6 T7Ys Te Ys; Qs = Y8 T6 Y5 T7 Yo Y13
Ry = yo Y2 y3 w3 Y1 o T1; Rs = y1 w1 73 Y2 T2 Yo; Rg = yo w271 y3y2 Y13
So = Y7 Yo Ys Y10 Y11; S5 = 1Ys Tg T10 Y10 Y12; Sg = Y7 Ty T11 Yo Y11;

Ty = w1210 Tg T7 T8; T5 = y11 Yo T11 T9 Y7; T3 = Y12 Y10 T10 T8 Ys.

Case 2: t; =4 and g = 14. See Figures 12-20 in Appendix B.1.

Xo = T3Y3 T5Ys T3; S0 = Z10 Y10 Y9 T11 Y12 T14;
Qo = x93 Tg Ys T7Ye Y7 Ys T10; Lo = T13T12 Y11 To;
Ry = 1 y1 Yo T2 24 Y2 To;

X1 = 2335 T4 Y5 T3; S1 = Yo L9 T11 Y11 Y13;
Q1= 10 T8 Y10 Ys Te Y6 T7 Y7 Yo; 11 = T1a T12 Y14 Y12 T10;
Ry = yo w0 T2 Ya Y2 Y3 T1;

Xo = Y3 Y5 Ty T5 Y3; Sy = T10 Y12 Y14 T12 T14;
Q2 = Yo Y7 Y6 T T7Ys Y10 Ts T10; 12 = Y13 Y11 T11 T9 Yo
Ry = 21 23 Y2 Ya T2 To Yo;

X3 = Y3 T4 T6YaYs3; S3 = Tg Y10 T12 Y12 Y11 T13;

Q3 = YoT7T5Ys Y6 T Ys Y7 To; 13 = Y13 T11 T10 Yo
R3 = oY1 Y2 31 T2 Yo;
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X4 = Y3Ya Y6 TaYys3; Sy

Qs = ToYs T7Ys Y7 T5 Te T Yo; 14 =

Ry = Yo 1 y2 T2 T3 Y1 To;

X5 = Yq T T4 Yo Y4, Ss
Qs = T10Ys Ts Ty Y7 Y5 T5 T7 Yo; 15
Rs = yoy1 x3 22 Y3 Y2 T1;

X6 = YaT5 T3 TqYa; Se
Q6 = Yo Ys Ys Ys Te Y7 Tg T7 To; T
Re = 071 Y391 T2 Y2 Yo;

X7 = YaT423Ys5 Ya; S7
Q7 X9 T7 Ty Y6 Ts Y7 Te Ys Yo; L7
Ry = yo y2 y1 Y3 T2 21 To;

X8 = Y1 Vs Y3 T3 Ya; Ss
Qs = Yo Ts Y7 T7 X6 T5 Yo Ys To; 13
Rg = x0 Y2 x4 T2 Y1 1 Yo;

Yo T10 Y11 T12 Y135
T13 Y12 T11 Y10 L9;

Yo Y10 T11 Y13,
T14 Y12 T12 13 Y11 T10;5

Tg T10 T12 T11 T13;
Y13 Y12 Y10 Y11 Y9,

Yo Y11 Y10 Y12 Y13;
L13T11 T12 T10 T9;

L9 Y11 Y12 T13;
Y13 T12 Y10 T10 T11 Y9-

Case 3: t; =6 and ¢ = 16. See Figures 21-29 in Appendix B.1.

Xo

Qo
Ry

= Y5 T Ys L7 T8 Y7 Ys;
= T11 %9 Y9 Y10 T10 Y115
= Yo T2 Y2 Y1 T3 T4 Y6 Y4 T5Y3 X1 X,

= T5Y5T7Ye Ys Y7 T5;
= Y11 Y9 T9 T8 T10 Y10 Y125
= Y11 T3Y3 T4 Te Y4 T2 To Y2 Yo;

= Y5 T5 Y7 T8 T7 T Y5,
= Y12 Y10 T9 T10 Y8 Y9 Y11,
= Yo Y2 Lo T2Y4Ye LaY3 T3 L1 Y1,

= T5Tg T8 Y6 Y7 L7 5,
= Y12 T10 Y9 Ys T9 11 Y11 Y10 T12;
= T1Y2T4YaY3 Ys T3 X2 Y1,

= L6 L7 Y9 Y7 Y6 T8 Lg;
= Y11 L10 L9 Y8 Y10 T11;
= ToY1X2Y3YsYs5 T4 T5T3Y2T1 Yo,
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So
1o

51
T

S
15

S3
13

= Y11 13 Y13 Y12 T14 Y15;
= T15 Y14 T12 T11;

= Y1212 T14 Y14 Y16;
= Y15 13 T11 Y13 Y115

= Y11 Y13 T11 T13 Y15;
= Y16 Y14 T14 T12 Y12,

= T12 Y13 T15 Y15 Y14 T16;
= Y16 T14 T13 Y12;

= T11Y12 T13 Y14 T15;
= Y15 14 Y13 T12 Y11,



X5 = Y6 T5 T7 Tg Y7 Te;
Qs = T12 Y10 Yo T8 Y3 T10 Y12;
Rs = Y1 Y2 T3 Y4 T4 Y5 Y3 T2 Yo To T1;

X6 = Y6 T7Y7 Y8 Te T Yo;
Q6 = Y11 Ty Y10 T8 Yo T11 T10 T12;
Re = 1 29 24 3 Y5 Ya Y2 Y3 Y1 Yo;

X7 = Y5 Y6 T6 Y7 Yo T7 Y53
Q7 = T12 10 T11 Y10 Ys T8 Tg Y11;
R7 = yoy1 Y3 Y2 Ya T3 T5 T4 T T

X8 = Y5 Y7 Tg T7 Y8 Y6 Us;
Qs = T11 Y9 T10 T8 Y10 Y11}
Rg = yo 1 Y3 T5Ya T Ta Y2 T2 T3 Y1 Lo;

Case 4: t; = 6 and ¢ = 20. See Figures 30-38 in Appendix B.1.

Xo = Y3 Y5 T7 T5 Yo Ya Y3;
Qo = Z13 Y11 T11 T12 Y10 T9 Y7 X8 L6 Y8 Y9 T10 Y12 Y13,
Ry = Yo x1 23 Y2 T4 T2 Y1 To;

X1 = Y3Ya Ta Y5 Y7 T5 Y3;

Q1 = T14T12 T13 T11 T10 T8 T9 Y8 Y6 T6 T7 Yo Y10 Y12 Y11 Y135

Ri = yoy1 2322 Y2 x1;

Xo = Y4 T5Ys Yo T4 T3 Y4;

Q2 = Y13 Y11 Y12 Y10 Yo T7 Ys Te Y7 Tg Tg T10 T11 13 T12 T14;

Ry = 2192 2 Y3 Y1 Yoi

X3 = Y3T5Y1 Ys Ys T3Y3;

Sg =
Ty =

Q3 = T14 Y12 T11 Yo To T10 Y8 Y7 T7 T T8 Y10 Y11 T12 Y14}

R3 = y1 22 24 Y2 Yo To X1;

X4 = Y3T4 Y6 Ts5 T6Ys Y3;

Q4 = Y13 T12 Y11 T10 Yo T8 T7 Y7 Ys Lo Y10 T11 Y12 T13;
Ry = 2o y1 Y2 Y4 T2 T3 T1 Yo;

X5 = Y3 T3Ys5 T Ts Tays;

Rs = 2122 Ys Y2 Y15
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= Y12 Y13 T14 Y16;
= T16 Y14 T13 Y11 T11 T12;

= T12 213 T15 T14 T16;
= Y15 Y13 Y14 Y12 Y11,

= Y11 Y12 Y14 Y13 Y15,
= T16 L14 15 13 T12;

Y11 T12 Y14 Y15;
L15 Y13 L13 T14 Y12 T11-

So =
T, =

Sl_
T, =

Sy =
= Y17 Y15 Y16 Y14 Y13;

Sy =
15 =

Sy =
T, =

55 -
(5 = Y14 T12 T11 Y10 T8 Y7 Y6 T7 To Yo Ys T10 Y11 T13 Y13 Y12 T1a; 15 =

Y13 14 Y16 Y17,
T17 Y15 L15 T16 Y14 T13;

Y13 Y14 Y16 Y15 Y17,
T18 T16 L17 L15 L14;

X14 T15 L17 T16 185

Y14 Y15 T16 Y185
T18 Y16 L15 Y13 L13 L14;

T13 Y14 T15 Y16 T17;

Y17 T16 Y15 14 Y13,

T14 Y15 T17 Y17 Y16 L18;
Y18 16 T15 Y145

16



X6 = T3T4T6Y4Ys5T5T3;
= Y14 Y12 T12 T10 Y10 Y8 L7 T8 Y6 Y7 Y9 Y11 L9 T11 Y13;
Re = yox2 20 Y2 Y3 T1 Y1;

L
|

X7 = T35 T7Ys5 Ty Ys T3;
Q7 Y13 T11 L9 Y11 Yo Y7 L6 Y6 T8 Ys Y10 L10 L12 Y12 Y14,
R7 = y1 w1 Y3 Y2 To T2 Yo;

Xg = T4 T5Y7 Y5 Ya T T
Qs T13 Y12 L10 L9 T7 Y6 Y8 T8 Y9 L11 Y11 Y10 T12 Y135
Rg = yoy2 T3 Y1 Y3 T2 T1 To;

A.2 The case t; + g = 0 (mod 4)

= Y13 Y15 T13 T15 Y175
= Y18 Y16 T16 T14 Y14,

= Y14 T14 T16 Y16 Y18;
= Y17 T15 13 Y15 Y13;

= Y13 T15 Y15 Y14 L16 Y175
= T17 Y16 T14 13-

Case 1: t; =4 and ¢ = 16. See Figures 39-45 in Appendix B.2.

Xo = T7Yg Y7 T3 T7; So =

Qo = T11 %10 Y9 T9 Y10; To
Ro = Yo T3 %4 Y1 Y3 Yo T5 Y6 T Y5 T2 Y1 T1;

X1 = T6 %9 Ys Yo Te; S =
Q1 = T10Y10 T11 T8 Ys Y11} T, =

Ry = y1 29 25 Y5 T4 Y7 T7 Ya T3 Y2 Y3 To;

Xo = T7 X6 Y7 Ys T7; Sy =
Q2 = T10 Y11 T8 Tg Yy Y10; T, =

Ro = Yo y3 T2 T1 Y2 Y5 Y6 T5 Ya T4 T3 To;

X3 = T7X83Y7 Y6 T7; Ss =
Q3 = Y10 Y9 T10 T Ys T11; T5 =

Rs = 1 y1 Y2 T2 T3 Ya Y5 Te T5 T4 Y3 Yo

Xy = X9 X8 Y9 Yg Tg; Sy =
Q1 = Y10 Y11 T10 T11; Ty =

Ry = 1 T2 Y324 T7 Y7 Ya T Te Yo Ys Y2 T3 Yo;

X5 = T T7 Y Tg Ts; Sy =
Q5 = T11Ys Yo Tg Y11 Y10 10} T5 =

Rs = 0 y3 %322 Y5 Ya Y7 T4 T5 Yo T1;

X6 = T6 Yo Yo Y7 T6; Se =
Qs = Y11 Y8 T8 T11 Y10 L9 T10; Ts =

Re = 10 T3Y3Ya 7 T4 Y5 T5 T2 Yo Y1
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Y10 13 Y13 T14 Y14,
T15 T12 Y12 Y11 11,

Y11 12 13 Y12 Y15,
T14 T15 Y14 Y13 T10;

Y10 Y13 Y12 11 12 Y15 Y145
L14 X13 T10;

T11 Y11 Y12 T12 T15;
Y14 T14 Y13 T13 Y10,

T11 Y12 T 15,
Y14 T13 14 Y15 T12 Y13 Y10,

T10 13 Y14 Y15 T14;
T15 Y12 Y13 12 11,

210 Y13 Y14 T15 T14;
Y15 Y12 13 12 Y11-
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Case 2: t; =4 and g = 20. See Figures 46-52 in Appendix B.2.

Qo

Qs
Rs

Xe

Qs
R

T10 11 Y10 Y11 Z10;
Y13 T12 13 Y12;

Yo Y3 Ya T3 T4 Y7Ys T L7 T L9 Y9 Yo L5 Y5 T2 Y2 Y15

T8 11 Y8 Y11 Ts;
T12 Y12 13 T10 Y10 Y135
Y1 Y2Ys T Y9 L9 Yo Y7 L7 Y4 T5 Ty T3 T2 Y3 To;

T8 Yg T10 T9 T8,
Y12 Y11 T11 12 Y13 Y10 L13;
T1Y2X2Ys5 Ty T5Ye Lo 7Y’ Y7 Y4 Y3 T3 Yo,

Ys L9 Y10 Y9 Ys;
X13 T12 11 T10 Y11 Y12 Y135
Y1 T2T3Y3T4YsYsYe T7 T8 Y7 T T Y2 L1,

Ty Tg Yg T11 Tg;
T12 Y11 Y10 T10 Y13,
Y1 T1 T2 X5 Y4 T7Ye Y9 Te Y7 T4 Y5 Y2 Y3 Yo T3 Lo,

T8 Y11 Y8 Yo Tg;
Y13 10 13 Y10 T11 Y12 T12;
ToY3Y2X3Ys Ty T7Y7 Y6 T9 Lo Ys T5 T2 Y1,

L9 X10 Y9 Y10 Lo,
Y13 Y12 T11 Y11 T12;
ToX3Y2T5Te Y6 Ys Ya Y7 XY’ L7 T4 Y3 X2 T1 Y1,

So = Y12 Y15 T15 T14 T17 T16 Y165
To = Y17 Y14 V13;

S1 = Y13 T14 Y14 Y17;

T\ = 216 T17 Y16 T15 Y15 T12;

Sy = 13 T14 Y15 Y14 T17;

T5 = Y16 Y17 T16 T15 Y12;

Sy = Y13 Y14 T15 Y16 Y15 T16 Y175
T35 = w17 214 X13;

S4 = Y13 T13 Y14 T14 Y175

T, =

L16 Y15 Y12 L15 T12;

= T12 X15 T16;
= Y17 Y16 T17 Y14 Y15 T14 Y13;

= T12 Y15 Y16 T16;
= Y17 14 T15 Y14 T13 Y13-

Case 3: t; = 6 and ¢ = 14. See Figures 53-59 in Appendix B.2.

X0 = T4 Y7 X6 Y5 Yo T7 Ta; So
Qo = Y10 Yo Tg Ys T8 Y11; Tp
Ry = y1 2o 21 T2 5 Y2 T3 Ya Y3 Yo;

X1 = T4T7Y7 Ya Y5 T5 Ty; Sy
Q1= Y11 Y3 Yo Y6 Te Tg T8 T11; T,

Ry = 21 Y0 Y3 o X3 X2 Y2 Y1;
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= Y11 T10 %11 Y12 T12 Y15;
= Y14 Y13 T13 Y105

= T11 Y10 Y13 Y12 T15;
= Y15 T12 13 T10 Y115
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Xo = Y4 T5Ys5 Te Y7 T7 Ya; S = Y11 T11 T12 Y12 Y15:

Q2 L10 Y10 T9 Y6 Y9 T8 Y8 Y11, To = 214 Y14 T13 Y13 T10;

Ry = y1 21 Y2 22 Y3 T4 X3 X0;

X3 = T4T5Ys T7Ys Y7 Ta; S3 = Y10 T13 Y14;

Qs Y11 T8 Y9 T Ye L9 Y10, T3 = Y15 Y12 T11 T10 Y13 T12 Yi1;
Rs = yo 120 Y3 T3 Y2 Y5 T2 Y1;

X4 = T5Y6 Y7 T8 T7 T Ts; Sy = T11 Y11 T12 T15;

Qa4 Y10 10 L9 Y9 Y8 L11; Ty = Y14 14 T13 Y12 Y13 Y10}
Ry = 191 Y2 Y3 T2 Y5 T4 Ya T3 Yo;

X5 = X5 X6 T7 T3 Y7 Y6 Ts; S5 = Y10 Y11 Y12 T13 T14 Y13 Y14;
Q5 = T11Ys Tg T10 Yo Y10; Ts = w15 712 T11;

Rs = Yo y1 T2 T3 Y3 Ya T4 Y5 Y2 T1;

X6 = Y5 Ya Y7 Y3 T7 Y6 Ys: Se = T10 T13 T12 Y13 T14;

Q6 = T11 T8 T9 Tg Yy T10; Ts = 215 Y12 Y11 Y10 T11-

Re = 2o y1 Yo T3 T4 Y3 Y2 T5 T T1;

Case 4: t; = 6 and ¢ = 18. See Figures 60-66 in Appendix B.2.

Xo = Z6 Yo T Y7 Ys Tg T¢; So = T13 Y12 Y13 T14 Y14 T17;
Qo = T12 Y11 T11 Y10 T10 T13; To = 16 T15 Y15 T12;
Ry = 1 Y0 Y1 T2 Y5 Y6 T5 T4 T7 Ya T3 Y2 Y3 T0;

X1 = T7%6T9 Yo Y6 Y7 T7; S1 = Y13 T13 T14 Y17;
Q1 = Y12 T12 T11 T8 Ys Y11 T10 Y10 Y135 T = Y16 T16 Y15 Y14 T15 Y12;
Ry = y1 01 T2 Yo Y5 T4 T5 Ya Y3 T3 Yo;

Xo = X7 Y7 XT3 Y9 Ty Y6 T7; S = Y13 T12 Y15 Y12 T15 Y14 Y17;
Q2 = T13Y10 Y11 Ys T11 T10 Y13; Ty = w17 214 7135
Ry = y1y2 T2 X5 T6 Y5 Ya T4 Y3 Yo T3 To T1;

X3 = T T7 Y6 T9 Y10 Yo T6; Ss = Y12 Y15 L14 T15 Y16}

Qs = Y13 10 T11 Y8 T8 Y11 Y12, T5 = Y17 Y14 T13 T12 Y13;
Rs = yoys3 T2 x324 Y7 Ya T5 Y5 Y2 T1 To Yi;
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Xy = T7Yg Yo T10 T T T7; S4 = T12 T13 Y14 Y15 Y16 T15 16}
Q4 = Y13Y10 T11 Y12 Y11 T12; Ty = Y17 T14 Y13,
Ry = ToY3 T4 Ysy7 T6Ys Y5 Ts Y2 T3 To T1 Y1;

X5 = X728 Tg T10 Yo Ys T7; S5 = X13 Y13 Y14 T14 T17;
Q5 = T12 Y12 T11 Y11 Y10 T13; Ts5 = %16 Y16 Y15 T15 T12;
Rs = x1 Y2 T5 Y6 T6 Y7 T4 T3 Y3 Ya Y5 T2 Y1 To;

X6 = Y7 Y6 Yo Y10 T9 Ys Yr; Se = T12 T15 T14 Y15 T16;
Qs 213 %10 Y11 T8 T11 T12;5 Ts = 217 Y14 Y13 Y12 T13-
Re = @0 T3 Y47 T4 Y5 T6 T5 T2 Y3 Y2 Y1 Yo T1;

A.3 Special cases

A (Cy, Cha)-factorization of Wi:

Fo ={524y3ya 5, o T3 %2 Y2 Y5 Yo T1 T6 Y1 Yo Y7 L7 To };
Fy = {26 Y6 T5 Y5 T6, ToY1 Y2 TaT1 Yo T7YaT3Y3Ts Y7 To);
Fy = {2526 Y7 T4 T5, ToT1 Y6 Ys Y2 Y1 T2 T3 Ya T7 Yo Y3 To };
F3 = { Y6 6 T7 Y7 Y6, T0oYo Y1 T1 T2 Y3 Y2 T5YaYs Ty T3 Lo };
Fy = {352 Ys Ya Y3 T2, To Y7 Yo T1Y2T3TgT7Te s Ye Y1 »To};
Fs ={y3y0T3y2y3, %07 Y6 Y7 YaTaysT5Ta Y1 Te T1 To};
Fs = {330 Y3 T3 Yo Lo, T1Y1Ye L7 TalYsY7 TeYsT2Ts Y2 Il}-

A (Cg, Cs)-factors of Wr,:

Fo = {550 Y1Y3Ts Y6 Yo Lo, T1T2Y2T3Y4TysYs5Te $1};
Fy = {Y0 1 T3 Y3 T4 T5 Yo, ToT1Y2 T2 Ya Ys Yo Te Lo}
Fy = {955 Ys Yo L1 Y3 T3 X5, To X2 TaTe Y1 Y2 Y4 Ye $0};
F3 = {y2Y3 Y5 T5 X0 Yo Y2, T1Y1 T2 T3 T4 Ya T6 Y6 T1};
Fy = {y3 Ya Ts5 Te Yo T2Y3, ToY2TalYe Y1 L1T3Y5 xo};
Fs = {¥6 Y5 Ya T3 Y2 Yo Y, L0 T5 Y3 Y1 Tg Ty T2 T1 To};
Fos = {x220 26 25 Y4 Y3 T2, Yo Ys T3 X1 Y6 Lo Y2 Y1 Yo };
Fr = {ys w5 14 03 02 Y1 Yo, To Y5 Y3 T1 Yo T Ya Y2 Lo };
Fy = {26 Y5 T4 Y3 Y2 ¥1 T6, Lo Ys Ya T2 Yo T5 T3 Y1 To}-

A (Cg, Cho)-factorization of Wi:

Fy = {yl ToT1Ye Ys Y2 Y1, Yo Y7 L4Y4Y3 T3 Lo L5 Tg 907?/0}%
Fy = {2427 20 Y1 Yo Y3 T4y T1 T2 T3 Ys Y7 Yo T Y2 Y5 T6 L1}
Fy = {y1 2292 T5 Y6 T6 Y1, ToYr T7 T4 Y5 Ya T3 Y3 Yo T1 To};
F3 = {$0 Y3 Y2 T1Yo T3 Lo, Y1 Y6 T7YaTsTaY7TeYs T2 y1};
Fy = {yo Y1 Te Y7 Lo T3 Yo, T1Y2Y3T2YsTaTslYaX7Ye 171};
Fy = {2126 T5 Y5 Yo Y1 T1, To Yo T7 Y7 Ya T4 T3 Y2 T2 Y3 To };
Fs = {yr Yo 2o X7 T6 Y6 Y7, T1Y1 Y2 T3 TaY3YaYs T To X1}
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A (Cs, Cha)-factorization of Wi:

Fo = {41 Ys ¥8 T6 T5 Y3 Y1, To L1 Yo T7 Y5 T3 Ya T2 Yo T4 Yo Y7 L0 };
Fi = {@ayo Yo ¥3 25 4 T2, To T7Ys T1 Y3 Ya Y6 T Y Y7 T8 Y1 Lo}
Fy = {yo Lo Ys Te L8 Y7 Yo, T1X3Y3L5YsYs5T7 Y6 TaY2Y1 T2 961};
F3 = {5 Y6 Ya 04 6 T7 T5, ToTsT1 T2 Y1 T3Y5 Y3 Y2 Yo Y7 Ys Lo}
Fy = {551 Y2Y3 Ty T3Y1 L1, ToYoT2Y4TeYsT7 Y7 TsYs Yo T 950};
Fs = {@ays w34 ya y2 T2, oY1 T8 Ys Y7 Ys T5 T6 Y6 T7 Yo T1 Lo}
Fy = {x0 Y2 ya x5 23 22 To, Yo T8 T7 T6 Y7 Yo Ys T4 Y3 T1 Ys Y1 Yo}
Fr = {yo Ys Yo L5 L7 T8 Yo, Lo Y7 T TalYs5Ya Y3 T2 T3T1Y1Y2 900}?
Fy = {20 1204 T5 Y7 T7 X0, Yo Y1 Y3 Ys T6 Ya T3 Y2 T1 T8 Y Y8 Yo }-
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B Illustration of all (¢, g)-base tuples given in Appendix A

B.1 The case t; + ¢ =2 (mod 4)
Case 1: t1 =4 and ¢ =10

o T Ty X3 Ty Ty Xg Tr T T7 Ty Ty L0 Tl T2
X - ONKX

fgﬁi . :
Yo Y1 Y2 Y3 Ya Ys  Ys Y g Yo Y8 Y9 yi0 Y11 Y12

Figure 3: The (4, 10)-base tuple (Xo, Qo, Ro, So, To)-

937 rg X9 Tio Ti1  T12

ZQ&W .

Ys Yo Y1 Y12

Figure 4: The (4, 10)-base tuple (X1, Q1, R1,S1,Th).

T T T
To T To T7 Xy Tg 10 11 12

e <o o
° m °

Yo U1 Yo Y4 Us Yo Y11 Y12

Figure 5: The (4, 10)-base tuple (Xs, Q2, R2, S2, T5).

To X1 Ty T3 Ty4 Tz Tg Ty Ty Tio T

[ ]

Yo Y1 Y2 Y3 Y+ Ys Y 7 Ys y7 Yo Y11 Y12
Figure 6: The (4, 10)-base tuple (X3, Qs, R3, S3,T3).
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x
Zo g T2 12

T3 Ty Ty T Ty s
g A ' W '
%%: : :
Yo n Y2 Ys Ys Ys 6 Y7 Ys Yo Y11 Y12

Figure 7: The (4, 10)-base tuple (X4, Q4, Ry, Ss, T}).

Zo T T2 112

r3 T4 X5 T T Ty Ti0 In
. m
@

Yo n Y2 Ys Ya Ys Yo Y7 Ys Yo Y1 Y12

Figure 8: The (4, 10)-base tuple (X5, Qs, Rs, S5, T5).

Xo X1 X2 x3 Xyq

. Ef/ \’K/

Yo Y1 Yo 3 Y4 Yo Y1 Y12

Figure 9: The (4, 10)-base tuple (Xg, Q¢, Rs, S6, T6)-

Zo Xy X2

Yo n Ya Y10 yll Y12

Figure 10: The (4, 10)-base tuple (X7, Q7, R7, S7,T7).
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I oy

Ys Yo Y1 Y12

Figure 11: The (4, 10)-base tuple (Xs, Qs, Rs, Ss, T3)-

Case 2: ty =4 and g =14

Z10 10 T11 Ti12 T13 T14
Ys  Ya Y5 Yo Yo ylo Yo yio Y1 Y12 913 y14

Figure 12: The (4, 14)-base tuple (Xo, Qo, Ro, So, To)-

Tog X1 X9 Xz Ty Ty Tg Ty Tg Tg L10 Tg Ti0 Ti11 Ti2 T13 T4
Yo Y1 Y2 Ys Ys Ys Ys Y71 Ys Y9 Yo Yo Y0 Y11 Y12 Y13 Y4

Figure 13: The (4, 14)-base tuple (X1, Q1, Ry, S1,Th).

Tg X1 Xo Xz Ty Ts Tg T10 Tg T10 T11 T12 Ti13 T4
. DX T/K
Yo 1 Y2 Yz Ys Ys Yz Y9 Yo Y9 vio Yn Y2 Y13 Y14

Figure 14: The (4, 14)-base tuple (X3, Q2, R2, S2, T5).
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Z10 10 T11 Ti12 T13 T14

m SCZN,

Yo Yy Yo y10 Y9 Y10 Y11 Y12 Y13 Y14

Figure 15: The (4, 14)-base tuple (X3, Q3, R3, S5, T3).

.2:0 Tio T11 Ti2 T13 Ti4

1‘10
[ ]
yo Ys  Ys Y5 Y Ys Yo yw Yo w0 Y11 Y12 Y13 Yua

Figure 16: The (4, 14)-base tuple (X4, Q4, Ry, Sy, T4).

Z10 T10 T11 T12 T13 T4
Yo Ya Y7 Yo 3/10 Yo Y0 Y11 Yi2 Y13 914

Figure 17: The (4, 14)-base tuple (X5, Qs, Rs, S5, T5).

o 1 T10 Tio T11 Ti2 T13 Ti4
T H m y ) [ ]
/ 0/25;(\0—(—0 °

yO n ylo Yo yi0 Y11 Y12 Y13 Yua

Figure 18: The (4, 14)-base tuple (Xg, Qg, Re, Sg, Tt)-
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Z10 10 T11 Ti12 T13 T14
X’ R Se>—s
Yo

Y7 Y9 y10 Y9 vio Y11 Y12 Y13 Yua

Figure 19: The (4, 14)-base tuple (X7, Q7, Rz, S7,T7).

g L1 To9g X3 Ty Ty Tg Ty Tg Tg L10 Tg Ti10 Ti1 Ti12 T13 Ti4
m . M .

L ] [ ] [ ]
Yo n Yo Ys Ya Ys Ye Yt Ys Yo Y10 Yo Y10 Y11 Y12 Yis Yia

Figure 20: The (4, 14)-base tuple (Xs, Qs, Rs, Ss, Ts)-

Case 3: t; =6 and ¢ = 16

g X1 To Xz Ty Ty Xg Ty Ty Tg Lo Ti1 T12

@ .
[ J
Yo Y1 Y2 Ys Ys Ys Ys Y71 Ys Yo Y0 Y11 Y12

11 T12 13 T4 Ti15 L6
°
°
Y1 Y12 Y13 Y4 Yis Yie

Figure 21: The (6, 16)-base tuple (Xo, Qo, Ro, So, To)-
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Tg X1 X9 Xz Ty Ty Tg Xy Tg L9 Lo Ti1 Ti2
[ ] [ ]

Yo Y1 Y2 Ys Ys+ Ys Y6 Yr Ys Yo Y0 Y11 Y12

X111 T12 T13 T14 T15 Tie
°® °

Y Y12 Y13 Y4 Yis Yie

Figure 22: The (6, 16)-base tuple (X, Q1, Ry, S1,71).

Tog X1 X9 Xz Ty Ty Tg Ty Xg Tg Tio Tl T12
o ° °

Yo Y1 Y2 Y3 Y4 Ys Ye Y7 Ys Yo Y190 Y11 Y12

11 T12 13 T4 T Tie
[ ] [ ]

Y11 Y12 Y13 Y14 Y15 Yie

Figure 23: The (6, 16)-base tuple (X3, Q2, Ra, S2, T5).

To X1 To ZT10 T11 T2
Y .?
Yo WY1 Y2 Ya Y¢ Y7 Ys Y9 Y0 Y11 Y12

X111 T12 13 T14 T15 Tie
[ J
Yin Yi2 Y13 Y4 Yis Yie

Figure 24: The (6, 16)-base tuple (X3, Qs, Rs, S, T53).
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X0 T11 T12

SRR AT

Y7 Yo Yo Yu ym

X111 T12 T13 T14 T15 Tie

SOGN

Y Y12 Y13 Y4 Yis Yie

Figure 25: The (6, 16)-base tuple (X4, Q4, Ry, Sy, T4).

Tog X1 X9 Xz Ty Ty Tg Ty Xg Tg Tio Tl T12
w
°
Yo Y1 Y2 Y3 Yo Ys Ye Y7 Ys Yo Y10 Y11 Y12
T11 Ti2 T13 T4 Tis Ti6
W
°

Y11 Y12 Y13 Y14 Y15 Yie

Figure 26: The (6, 16)-base tuple (X5, Qs, Rs, S5, T5).

X0 T11 T12

Yo Ya Y7 Yo Y10 Yu y12
X111 T12 13 T14 T15 Tie
°® ._)_.\)%/'

——r = °
Yin Yi2 Y13 Y4 Yis Yie

Figure 27: The (6, 16)-base tuple (Xg, Q¢, R¢, S¢, 15)-
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Tg X1 X9 Xz Ty Ty Tg Xy Ty Tg Lo L1l Ti2
:—)—X .

—>—0 [ J
Yo Y1 Y2 Y3 Ys Ys Ye¢ Yt Ys Y9 Y0 Y11 Y12

X111 T12 T13 T14 T15 Tie
°® o—(—o\w
o e °
Y Y12 Y13 Y4 Yis Yie

Figure 28: The (6, 16)-base tuple (X7, Q7, R7, S7,T%).

Trg L0 T11 T12

T, TR

Y. Y8 Yo Y10 Yn 912

11 T12 T13 T4 T Tie
m .

[ ]
Y11 Y12 Y13 Y14 Y15 Yie

Figure 29: The (6, 16)-base tuple (Xs, Qs, Rs, Ss, T3).
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Case 4: t; =6 and g = 20

T11  T12 T4

WP B

Yo Y11 Y2 Y13 yl4

X113 T14 X153 T T1r  X18
W .

[ ]
Yz Y4 Y15 Yie Yir  Yis

Figure 30: The (6, 20)-base tuple (Xo, Qo, Ro, So, To)-

Tog I X9 I3 Ty Ty T X7 Xy Tg Lo Ti1 Ti2 Ti3 T4

Yo U1 Y2 Y3 Ya Ys Ys Y Ys Yo Yo Y11 Y2 Y13 Yua

X113 T14 X153 T1e T1r  T18
°® o—(—o\osz</o
—— e e °

Y1z Yia Y15 Yie Y1 Y18

Figure 31: The (6, 20)-base tuple (X, Q1, R1,S1,T1).
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oy rn

Yo 6 Y7 Yo Y1 Y2 Y13 y14
13 T14 T15 Tie T17 T8
¢ T~
m °

Y13 Y4 Y5 Yie Yir Y18

Figure 32: The (6,20)-base tuple (X3, Q2, Ra, Sz, T5).

Yo Y11 Y12 3/13 Y14

13 T14 T15 Tie Ti1r  T18

W

Y1z Y4 Y15 Yie Yir Y18

Figure 33: The (6,20)-base tuple (X3, Qs, R, S3,T3).

Ti0 T11 13 T4

Yo Y11 Y12 Y13 914

13 T14 L1 Tie Ti1r T8

W I

Y1z Y4 Y15 Yie Yir Y18

Figure 34: The (6,20)-base tuple (X4, Q4, R4, Ss, T}).
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) T To X3 Ty Ts Tg T Ts Tg Lo L1 T2 Ti13 T4
[ ] —(—.7

o @

Yo n Y2 Ys Ya Ys Yo Y7 Ys Yg Y10 Y11 Y12 Y13 Y14

13 T14 T15 Tie T17 T8

°
- XK
Y13 Y4 Y5 Yie Yir Y18

Figure 35: The (6,20)-base tuple (X5, Qs, Rs, S5, T5).

Xo X X2 X3 Ty Ts Te X7 Ts r9g L0 L1 T2 Ti13 Ti4

SIS

Yo n Yo Ys Ys Ys Yo Yo Y10

Y11 Y12 Y13 Y14

13 T14 T15 Tie T1r  T18
° °

Y1z Y4 Y15 Yie Yir Y18

Figure 36: The (6,20)-base tuple (Xg, Qg, Re, Sg, Tt)-

Zo T1 i) T3 Ty Ty Tg it s L9 Tio Ti1 Ti2 T13 Ti14
W. -
Yo n Yo Ys Ya Ys Ye Y Ys Yo Yo Y11 Y12 Y13 Y14

13 T14 L1 Tie Tir T8
[ ] [ ]

Y1z Y4 Y15 Yie Yir Y18

Figure 37: The (6,20)-base tuple (X7, Q7, Rz, S7,T7).
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Yo Y1 Y2 Y13 y14

T13 T4 L5 Tie L1 T18
m '
°
Yz Yia Y15 Yie Y17 Y18
Figure 38: The (6,20)-base tuple (Xs, Qs, Rs, Ss, T3).
B.2 The case t; + ¢ =0 (mod 4)
Case 1: ty =4 and ¢ = 16
Tg I XTo I3 Ty Ty Tg Xy Ty Tg Lo T
[ ] e
Yo Y Y2 Ys Y4 Ys  Ys Y7 Ys Yo Y10 Yn
Ti0 T T2 T13 T4 T1s
°
°
Yio Y Y2 Yz Y4 Y15
Figure 39: The (4, 16)-base tuple (Xo, Qo, Ro, So, Tp)-
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Tg I Xo I3 Ty Ty Tg Xy Ty Tg Lo Tl

Yo U1 Y2 Y3 Y4 Ys Ys Yr Ys Yo vyi0 Y11

T10 11 T12 T13 T4 Ti5
W
°

Yo Y1 Y12 Y13 Y4 Y15

Figure 40: The (4, 16)-base tuple (X1, Q1, Ry, S1,Th).

T
Ys y7 Ys Yo  yi0 yn

10 T11 T12 T13 T4 Tip

m
°

Yo Y1 Yz Y13 Y4 Y15

Figure 41: The (4, 16)-base tuple (X3, Q2, Ra, S2, T5).

R aYardeds o

Ys Ye Y Ys Yo  vi0 Y11

10 T11 T12 T13 T4 Tip
W

[ ]
Yo Y1 Y2 Y13 Y4 Y15

Figure 42: The (4, 16)-base tuple (X3, Q3, R3, S5, T3).
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Tg I XTo I3 Ty Ty Tg Xy Ty Tg Lo T

e Lo an G AN

Yo U1 Y2 Y3 Y4 Ys Ys Yr Ys Yo vyi0 Y11

T10 11 T12 T13 T4 Ti5

m
°

Yo Y1 Y12 Y13 Y4 Y15

Figure 43: The (4, 16)-base tuple (X4, Q4, R4, Ss, T}).

) T To T3 Ty Ts Tg X7 xTs r9g L0 T

Yo n Y2 Ys Ya Ys Yo Y Ys Yo Y0 Y11

10 T11 T12 T13 T4 Tip

RS at

Yio Y1 Y12 Y13 Y4 Y15

Figure 44: The (4, 16)-base tuple (X5, Qs, Rs, S5, T5).

Tog I X9 T3 Ty Xz Tg Ty Ty Tg Tio Tl

Yo U1 Yo Y3 Y4 Ys Ye Y Ys Yo vi0 Y11

10 T11 T12 T13 T4 Tip

AL

Yo Y1 Y2 Y13 Y4 Y15

Figure 45: The (4, 16)-base tuple (Xg, Qg, Re, S6, Tt)-
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Case 2: t; =4 and g = 20

Xog X1 To X3 X4 Ty Tg X7 Xg Tg Lo Ti1 Ti2 T13

— —] X

Yo Yr Y2 Ys Ysa Y5 Y Y7 Ys Yo Yo Y11 Yi2 Y13

X112 T13 T4 T15 T16 L1t
[ J [ J [

7 Y

A __¢

Y12 Y13 Y14 Y15 Yie Y17

Figure 46: The (4, 20)-base tuple (Xo, Qo, Ro, So, To)-

o 1 X9 X3 Ty Ty Tg Ty Tg Tg Lo Ti1 Ti2 T13

I

Yo Y1 Y2 Y3 Ys Ys Ys¢ Yr Y Yo Y10 Y11 Yi2 Y13

T12 T13 T14 T15 Tie T17
°

[ ]
Y12 Y13 Yia Y15 Yie Y17

Figure 47: The (4,20)-base tuple (X1, Q1, Ry, S1,Th).

T T i) T3 Ty Ty Tg Ty s
[ ]

m
Yo Y1 Y2 Ys Ys Y5 Yo Y71 Y8

rg L0 T11 Ti2 T13

Y9 Y10 Y11 Yi2 Y13

T12 T13 T4 T15 T16 L1t
[ J o

Y12 Y13 Y4 Y15 Yie Y17

Figure 48: The (4,20)-base tuple (X3, Q2, Ra, S2, T5).
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10 T11 T12 T13

WAY::

Y9 vio Y11 Y12 Y13

T12 T13 T4 T15 T1e6 T17

° —<o— 8 e

° o—)—/%\

Y2 Y3 Yia Yis Yie Y7
Figure 49: The (4, 20)-base tuple (X3, @3, Rs, S3,T53).

T10 T11 T12 X313

To T i) T3 Ty Ty Tg T s L9
®

[ )
Yo Y1 Y2 Ys Ys« Ys Ys¢ Yr Y Yo Y10 Y11 Yi2 Y13

T12 T13 T14 T15 Tie T17
[ ]

[ ]
Y12 Y13 Y4 Y15 Yie Yir

Figure 50: The (4, 20)-base tuple (X4, Q4, R4, Ss, T}).

T3 Ty Ty Tg Xy Tg Tg Lo Ti1 Ti2 T13

Yo Y1 Y2 Ys Ys4 Ys Y Y7 Y Yo Yo Y11 Yi2 Y13

X12 T13 T4 T15 T16 L17

P4

Y12 Y13 Yia Yis Yie Yir

Figure 51: The (4, 20)-base tuple (X5, Qs, R5, S5, T5).
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g X1 T2 XT3 T4 Ty Tg Ty Ty Tio Ti1 Ti2 T13

T K

Yo Y1 Y2 Ys Ys4 Ys Y Y7 Y Yo Yo Y11 Yi2 Y13

T12 T13 T4 T15 T16 T17

\m\'
[ ]
Y2 Y13 Yia Yis Yie Yir

Figure 52: The (4, 20)-base tuple (Xg, Q¢, Rg, S¢, 15)-

Case 3: ty =6 and g =14

1‘10 x11
Yz Yo Yo Yu

T10 T11 T12 T13 T4 X5

S

Yo Y11 Y12 Y13 Y4 Yis

Figure 53: The (6, 14)-base tuple (Xo, Qo, Ro, So, 1)-

Tg X1 X9 Xz Ty Ty Tg Xy Tg Tg Lo L1
Y - Y
L 2 \
ra -  Ce=e o e

Yo Y1 Y2 Ys Ys+ Ys Ye Yr Ys Yo Y0 Y11

10 T11 T12 T13 T4 Ti1s

W
®

Yo Y11 Y12 Y13 Y4 Yis

Figure 54: The (6, 14)-base tuple (Xy, Q1, Ry, S1,Th).
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10 11

Wﬁ/ﬁiﬁx\

Y7 Yo Yo Yu

X0 T11 12 X13 T4 T1s

TR

Yo Y11 Y12 Y13 Y4 Yis

Figure 55: The (6, 14)-base tuple (X3, Q2, Rs, So, T5).

Tog X1 X9 Xz Ty Ty Tg Ty Xg Tg Tio Tl

T T RO
Yo Yr Y2 Ys Y+ Ys Ys Y71 Ys Yo Y0 Y11

L0 T11 T12 T13 T4 Tis
m
Yo Y11 Yi2 Y13 Y4 Yis

Figure 56: The (6, 14)-base tuple (X3, Qs, R3, S3,T3).

X0 11

Nl

Y¢ Y7 Ys Y9 Y0 Y11

6

x
Ya
X10 T11 12 X13 T4 T15
m
[ ]
Yo Y11 Y12 Y13 Y4 Y15

Figure 57: The (6, 14)-base tuple (X4, Q4, Ry, Sy, Ty).
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10 11

6 y7 Ys Yo o y11

X0 T11 12 X13 T4 T1s
:»—::7?.

[ ]
Yo Y11 Y12 Y13 Y4 Yis

Figure 58: The (6, 14)-base tuple (X5, Qs, R5, S5, T5).

Tog X1 X9 Xz Ty Ty Tg Ty Xg Tg Tio Tl

P S

Yo Yr Y2 Ys Y+ Ys Ys Y71 Ys Yo Y0 Y11

L0 T11 T12 T13 T4 Tis

L5

Yo Y11 Yi2 Y13 Y4 Yis

Figure 59: The (6, 14)-base tuple (Xg, Qg, Re, Sg, Tt)-
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Case 4: t; =6 and ¢ = 18

rg L0 T11 Ti2 T13

MW

Yo Yo Y11 Yi2 Y13

X112 T13 T4 T15 T16 L1t

L7

Y12 Y13 Y14 Y15 Yie Y17

Figure 60: The (6, 18)-base tuple (Xo, Qo, Ro, So, To)-

o 1 X9 X3 Ty Ty Tg Ty Tg Tg Lo Ti1 Ti2 T13

° L . ®
ATLX ]

)\4‘ 5

L ]

Yo Y1 Y2 Y3 Ys Ys Ys Yr Y Yo Y10 Y11 Yi2 Y13

T12 T13 T14 T15 Tie T17
A
Y2 Y13 Y4 Y15 Y6 Y17

Figure 61: The (6, 18)-base tuple (X1, Q1, Ry, S1,Th).

Xog X1 XTo X3 X4 Ty Tg X7 Xg Tg Lo Ti1 Ti2 T13

AT AL ]

Yo Yr Y2 Ys Ys Y5 Ys Y7 Ys Yo Y0 Y11 Yi2 Y13

T12 T13 T4 T15 T16 L1t

SoZ
[ ]
Y12 Y13 Y4 Y15 Yie Y17

Figure 62: The (6, 18)-base tuple (X3, Q2, Ra, S2, T5).
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Tog X1 X9 Xz Ty Ty Tg Xy Tg Tg Lo Ti1 Ti2 Ti13
S [ ] [ ]

Yo Y1 Y2 Ys Ys4 Ys Y Y7 Y Yo Yo Y11 Yi2 Y13

T12 T13 T4 T15 T16 T17

m;:
Y2 Y13 Yia Yis Yie Yir

Figure 63: The (6, 18)-base tuple (X3, Qs, Rs, S3,T53).
Tg Ti0 T11 Ti2 T13

Yo Y0 Y11 Yi2 Y13

T12 T13 T14 T15 Tie T17

RSN
[ ]
Y12 Y13 Y4 Y15 Yie Yir

Figure 64: The (6, 18)-base tuple (X4, Q4, R4, Ss, T}).

ZT1i0 T11 T12 T13

\BCM'\H/ X

Y9 vio Y11 Y12 Y13

X12 T13 T4 T15 T16 L17

0\0 Q/Q
Y Y

Y12 Y13 Yia Yis Yie Yir

Figure 65: The (6, 18)-base tuple (X5, Qs, Rs, S5, T5).
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Tog X1 X9 Xz Ty Ty Tg Xy Tg Tg Lo Ti1 Ti2 Ti13

[ ] [ ]
Yo Y1 Y2 Ys Ys4 Ys Y Y7 Y Yo Yo Y11 Yi2 Y13

T12 T13 T4 T15 T16 T17

Y2 Y13 Yia Yis Yie Yir

Figure 66: The (6, 18)-base tuple (Xg, Q¢, R¢, S¢, 15)-
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