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Abstract

For positive integers n ⩾ s > r, a Turán (n, s, r)-system is an n-vertex r-graph
in which every set of s vertices contains at least one edge. Let T (n, s, r) denote the
the minimum size of a Turán (n, s, r)-system.

Upper bounds on T (n, s, r) were established by Sidorenko [20] for the case s−r =
Ω(r/ ln r), based on a construction of Frankl–Rödl [7], and by a number of authors
in the case s − r = O(1). Motivated by these results and recent work [16] of the
second author, we investigate in this note the intermediate regime where s = s(r)
satisfies both s − r = Ω(1) and s − r = O(r/ ln r), and establish upper bounds for
T (n, s, r) in this range as r → ∞.

Mathematics Subject Classifications: 05D05

1 Introduction

Given an integer r ⩾ 2, an r-uniform hypergraph (henceforth an r-graph) H is a
collection of r-subsets of some set V . We call V the vertex set of H and denote it by
V (H). When V is understood, we usually identify a hypergraph H with its set of edges.

For positive integers n ⩾ s > r, a Turán (n, s, r)-system is an r-graph H on an
n-set V such that every s-subset S ⊆ V contains at least one edge from H. Denote
by T (n, s, r) the smallest size (i.e. the number of edges) of a Turán (n, s, r)-system.
Observe that T (n, s, r) =

(
n
r

)
− ex(n,Kr

s ), where ex(n,Kr
s ) denotes the Turán number

of the complete r-graph on s vertices Kr
s . A simple averaging argument shows that

ex(n,Kr
s )/
(
n
r

)
is non-increasing (see e.g. [10]), and hence the following limit exists:

t(s, r) := lim
n→∞

T (n, s, r)(
n
r

) . (1)

Determining the value of t(s, r) is a central topic in Extremal Combinatorics. The seminal
paper of Turán [22] established that t(s, 2) = 1

s−1
for all s ⩾ 3 (with the case s = 3
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solved earlier by Mantel [14]). Erdős [6] offered $500 for the determination of t(s, r) for
a single pair s, t with s > r ⩾ 3. This prize is still unclaimed, despite decades of active
attempts. Turán and other researchers conjectured that t(s, 3) = 4

(s−1)2
for s ⩾ 4. Various

constructions achieving this bound are known (see e.g. [19]). For r ⩾ 4, there is no general
conjectured value for t(s, r), except for the case (s, r) = (5, 4) (see [9, 15]). For further
related results, we refer the reader to surveys such as [8, 5, 19, 11].

In this note, we focus on the case where r → ∞, and all asymptotics are taken with
respect to r unless otherwise specified. The trivial lower bound is t(s, r) ⩾ 1/

(
s
r

)
, which

follows from the monotonicity of the ratio in (1). For convenience, let us define

µ(s, r) := t(s, r) ·
(
s

r

)
.

Note that µ(s, r) is always at least 1.
The best-known general lower bound, t(s, r) ⩾ 1/

(
s−1
r−1

)
(i.e. µ(s, r) ⩾ s/r) is due to de

Caen [3]. In particular, t(r + 1, r) ⩾ 1/r, a result that was independently proved by de
Caen [4], Sidorenko [18], and Tazawa–Shirakura [21]. Further improvements on t(r+1, r)
in lower order terms were made by Giraud (unpublished, see [5, Page 189]), Chung–Lu [2],
and Lu–Zhao [13].

Improving the previous upper bounds established by Sidorenko [17], Kim–Roush [12],
Frankl–Rödl [7], and Sidorenko [20], the second author established the following upper
bound, which disproved the $500 conjecture of de Caen [5] that r · t(r + 1, r) → ∞.

Theorem 1 ([16]). For every integer R ⩾ 1, it holds that

µ(r +R, r) ⩽ α + o(1), as r → ∞,

where α := (c0 + 1)R+1/cR0 with c0 = c0(R) being the largest real root of the equation
ex = (x+ 1)R+1. In particular, µ(r + 1, r) ⩽ 4.911 for all sufficiently large r.

An immediate corollary of Theorem 1 (for derivation see [16, Corollary 1.3]) is that,
for every sufficiently large R,

lim sup
r→∞

µ(r +R, r) ⩽ R lnR + 3R ln lnR = (1 + o(1))R lnR. (2)

This improves asymptotically the previous bound by Frankl–Rödl [7] which states that,
for any fixed R ⩾ 1, we have

µ(r +R, r) ⩽ (1 + o(1))R(R + 4) ln r, as r → ∞.

For the case R ⩾ r
log2 r

, Sidorenko [20] (by analyzing the construction of Frankl–Rödl [7]

in this regime) proved that

µ(r +R, r) ⩽ (1 + o(1))R ln

(
r +R

R

)
. (3)
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Although Turán systems were actively studied, it seems that no general upper bounds
on t(r +R, r) have been published in the intermediate regime 1 ≪ R ⩽ r/ log2 r. This is
the case we address in this note. In brief, we show that Sidorenko’s bound in (3) applies
in the whole range as long as R is sufficiently large, while the asymptotic bound in (2)
can be extended from constant R to any R = o(

√
r).

Theorem 2. For every ε > 0, there exists r0 such that the following statements hold for
all r, R satisfying R ⩾ r0.

(i) It holds that µ(r +R, r) ⩽ (1 + ε)R ln
(
r+R
R

)
.

(ii) Suppose that R ⩽
√
18r ln r. Then

µ(r +R, r) ⩽ e18R
2/r · (1 + ε)R lnR.

Our construction for Theorem 2 (i) will be a straightforward modification of the ran-
dom construction used by Frankl and Rödl [7, Theorem 3], while the construction for
Theorem 2 (ii) will be an extension of the recursive construction of the second author [16].

2 Proofs

In this section, we prove Theorem 2. We will use the following notation. For an integer
n ⩾ 1 and a set X, we denote [n] := {1, . . . , n} and

(
X
n

)
:= {Y ⊆ X : |Y | = n}.

Let us begin with the proof of Theorem 2 (i).

Proof of Theorem 2 (i). Given ε > 0, let r0 be sufficiently large. Take any r, R with
R ⩾ r0. By (3), we can assume that R ⩽ r

ln r
. Let s := r +R. Define

N :=

⌊
r(r − 1)

(
s

R

)
/(2R)

⌋
and ℓ :=

⌊(
s

R

)
/ ln

((
s

R

)2(
N − s

R

))⌋
.

In the rest of the proof, we repeat the construction of Frankl and Rödl [7, Theorem 3],
arguing that our choices of N and ℓ give the stated bound.

Consider a random colouring c :
(
[N ]
r

)
→ [ℓ]. For each s-set A ∈

(
[N ]
s

)
we have a bad

event that some colour is not present in
(
A
r

)
. Its probability p is at most ℓ(1− 1/ℓ)(

s
r) ⩽

ℓe−(
s
R)/ℓ (note that

(
s
r

)
=
(

s
s−r

)
=
(
s
R

)
). Define the obvious dependency graph D (with

loops) on
(
[N ]
s

)
where A ∼ B if |A ∩B| ⩾ r. It is regular of degree ∆ :=

∑s
i=r

(
s
i

)(
N−s
s−i

)
.

Our goal is to use the Lovász Local Lemma to deduce the existence of a colouring in
which none of the bad events occur. In order to apply the variant of the Lovász Local
Lemma given in [1, Corollary 5.1.2], it suffices to check that ep∆ < 1, for which it suffices
to prove

e(
s
R)/ℓ > eℓ∆. (4)
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First, we estimate ∆. Consider the ratio of two consecutive terms:(
s

i+1

)(
N−s
s−i−1

)(
s
i

)(
N−s
s−i

) =
(s− i)2

(i+ 1)(N − 2s+ i+ 1)
.

Since 3 ⩽ R ⩽ s/2 and N ⩾
(
s
R

)
⩾
(
s
3

)
, this ratio is at most 1/2 for every i ∈ [r, s],

provided r0 is sufficiently large. Thus, we can bound

∆ ⩽ 2

(
s

r

)(
N − s

s− r

)
= 2

(
s

R

)(
N − s

R

)
. (5)

Therefore, by the choice of ℓ, we have

e(
s
R)/ℓ ⩾

(
s

R

)2(
N − s

R

)
⩾ e ·

(
s
R

)
2 ln

(
s
R

) · 2( s

R

)(
N − s

R

)
⩾ eℓ∆,

as desired. (In fact, our definition of ℓ comes from (4), given N .)
Thus by the Lovász Local Lemma, there exists a colouring c with no bad events,

meaning that each colour gives a Turán (N, s, r)-system on [N ]. Let A ⊆
(
[N ]
r

)
be the

r-graph formed by the least frequent colour. We have

|A| ⩽ 1

ℓ

(
N

r

)
. (6)

Now let n := mN with integer m → ∞. Our Turán (n, s, r)-system B on [n] is made of a
blowup of A plus all r-sets that intersect at least one part in more than one vertex. We
have

|B| ⩽ mr|A|+N

(
m

2

)(
mN − 2

r − 2

)
⩽ mr · 1

ℓ

(
N

r

)
+

r(r − 1)

2N

(
mN

r

)
⩽

(
mN

r

)
f,

where f := 1
ℓ
+ r(r−1)

2N
. Since f does not depend onm, it gives an upper bound on t(r+R, r)

and thus f ·
(
s
R

)
⩾ µ(s, r). Note that we have N ⩽

(
s
R

)2
and lnN ⩽ 2R ln s. Therefore,

ℓ ⩾

(
s
R

)
2 ln

(
s
R

)
+R lnN

− 1

can be forced to be arbitrarily large if r0 was sufficiently large. Thus the rounding in the
definition of ℓ gives only a multiplicative term that is arbitrarily close to 1 and we have(

s

R

)
f ⩽ (1 + ε/4)

(
2 ln

(
s

R

)
+R lnN +

r(r − 1)
(
s
R

)
2N

)

⩽ (1 + ε/2)

(
2 ln

(
s

R

)
+R

(
2 ln r + ln

(
s

R

))
+R

)
⩽ (1 + ε)R ln

(
s

R

)
,

proving Theorem 2 (i). Note that our choice of N was determined by using the fact that
the function lnx+ c/x, with fixed c > 0, is minimized on the interval (0,∞) at x = c.
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Next, we prove Theorem 2 (ii). Before doing so, let us present some preliminary results.
The following lemma is derived from the proof of [16, Lemma 2.3].

Lemma 3 ([16]). For all integers r, R ⩾ 1, k ∈ [R, r− 1], and a real number c ∈
[
0,
(
k
R

)]
,

it holds that

µ(r +R, r) ⩽

(
r +R

R

)(
c(
k
R

) + µ(r − k +R, r − k)

ec ·
(
r−k+R

R

) )
. (7)

Sketch of Proof. Let S be a random subset of
(

[n]
k−R

)
where each (k − R)-set is included

into S with probability p := c/
(
k
R

)
. Let S∗ ⊆

(
[n]
r

)
consist of those r-sets {x1 < · · · < xr}

such that {x1, . . . , xk−R} ∈ S, that is, we include an r-set into S∗ if its initial (k − R)-
segment is in S. Let T ⊆

(
[n]
k

)
consist of those k-sets X such that

(
X

k−R

)
∩ S = ∅, that

is, X does not contain any element of S as a subset. For each y ∈ [n], take a minimum
Turán (n− y, r − k + R, r − k)-system Fy on {y + 1, . . . , n}. Let T ∗ ⊆

(
[n]
r

)
be be union

over Y ∈ T of the r-graphs {Y ∪ Z : Z ∈ FmaxY }. Informally speaking, we extend every
Y ∈ T by a minimum Turán system to the right of Y .

It is easy to check that G := S∗ ∪ T ∗ is a Turán (n, r+R, r)-system, regardless of the
choice of S. By taking S such that |G| is at most its expected value, it is routine to see
that

T (n, r +R, r) ⩽ E|S∗|+E|T ∗|

= p

(
n

r

)
+

n∑
y=k

(1− p)(
k
R)
(
y − 1

k − 1

)
· T (n− y, r − k +R, r − k)

⩽

(
c(
k
R

) + e−c(
r−k+R

R

) µ(r − k +R, r − k)

)(
n

r

)
,

giving the required bound.

Fact 4. For any integers r1 ⩾ r2 > R, we have(
r1
R

)
/

(
r2
R

)
=

R−1∏
i=0

r1 − i

r2 − i
⩽

(
r1 −R

r2 −R

)R

.

Fact 5. Let r ⩾ 1, R ⩾ 1 be integers and δ be a real number satisfying 18R2/r ⩽ δ ⩽ R.
Let k :=

⌈
Rr
R+δ

⌉
+R. Then

k ⩽ r − 1,
r

k −R
⩽ 1 +

δ

R
, and

r

r − k
⩽

3R

δ
.

Proof of Fact 5. Since δ ⩾ 18R2

r
, straightforward calculations show that

δr

R + δ
−R− 2 =

δr − (R + δ)(R + 2)

R + δ
⩾

18R2 − (R +R)(R + 2)

R + δ
⩾ 0 and

Rr

R + δ/2
− Rr

R + δ
=

δrR

(R + δ)(2R + δ)
⩾

18R3

(R +R)(2R +R)
⩾ R + 1.
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It follows that

k ⩽
Rr

R + δ
+ 1 +R = r − 1−

(
δr

R + δ
−R− 2

)
⩽ r − 1,

r

k −R
⩽

r
Rr
R+δ

+R−R
=

R + δ

R
= 1 +

δ

R
, and

r

r − k
⩽

r

r − Rr
R+δ

− 1−R
⩽

r

r − Rr
R+δ/2

=
2R + δ

δ
⩽

3R

δ
,

which proves Fact 5.

We are now ready to present the proof of Theorem 2 (ii).

Proof of Theorem 2 (ii). Given ε > 0, choose a sufficiently small real number ε1 > 0
and then a sufficiently large integer r0. Take any integers r, R such that R ⩾ r0 and
R ⩽

√
18r ln r.

Case 1. Suppose that R ⩾ ln r.
We define

δ := max

{
ε1,

18R2

r

}
, k :=

⌈
Rr

R + δ

⌉
+R, and c := R ln

(
3R

δ

)
+ ln(2R3).

Clearly, c ⩽
(
k
R

)
. Since R is large (which can be ensured by choosing r0 sufficiently

large) and ln r ⩽ R, it follows from Theorem 2 (i) that

µ(r − k +R, r − k) ⩽ 2R ln

(
r − k +R

R

)
⩽ 2R2 ln r ⩽ 2R3.

Combining this with Lemma 3, Facts 4 and 5, we obtain

µ(r +R, r) ⩽

(
r +R

R

)(
c(
k
R

) + 2R3

ec ·
(
r−k+R

R

))

⩽

(
r

k −R

)R

· c+
(

r

r − k

)R

· 2R
3

ec

⩽

(
1 +

δ

R

)R

· c+
(
3R

δ

)R

· 2R
3

ec
⩽ eδ · c+ eR ln( 3R

δ )−c · 2R3 ⩽ eδ · c+ 1.

If 18R2

r
⩽ ε1, that is, R ⩽

√
ε1r/18, then

µ(r +R, r) ⩽ eε1 · c+ 1 ⩽ (1 + 2ε1)

(
R ln

(
3R

ε1

)
+ ln(2R3)

)
+ 1

= (1 + 2ε1)

(
R

(
lnR + ln

(
3

ε1

))
+ 3 lnR + ln 2

)
+ 1

⩽ (1 + ε)R lnR,
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as desired. Note that the last inequality holds since R ⩾ r0 (and we choose r0 sufficiently
large depending on ε1) and ε1 ≪ ε.

If 18R2

r
> ε1, that is, r <

18R2

ε1
, then

µ(r +R, r) ⩽ e18R
2/r · c+ 1 ⩽ e18R

2/r
(
R ln

( r

6R

)
+ ln(2R3)

)
+ 1

⩽ e18R
2/r

(
R ln

(
3R

ε1

)
+ ln(2R3)

)
+ 1

⩽ e18R
2/r(1 + ε)R lnR,

also as desired. Note that, as in the previous calculation, the last inequality holds since
R ⩾ r0 ≫ 1/ε1 and ε1 ≪ ε.

Case 2. Suppose that R < ln r.
Let r1 := r and, inductively for i = 1, 2, . . . , define

ki :=

⌈
Rri

R + ε1

⌉
+R, and ri+1 := ri − ki;

if ri+1 < 18R2/ε1 then let t := i and stop. Since ri decreases each time, this process
terminates.

We prove by backward induction on i ∈ [t] that

µ(ri +R, ri) ⩽ (1 + ε)R lnR. (8)

First, consider the base case i = t. Note that, for i ⩽ t, we have by ri ⩾ 18R2/ε1 that

ri+1 = ri − ki ⩾ ri −
Rri

R + ε1
− 1−R =

ε1ri
R + ε1

− (R + 1) ⩾
ε1ri

2(R + ε1)
.

In particular this holds for i = t, giving that rt ⩽ 18R2

ε1
· 2(R+ε1)

ε1
, which is clearly at most

eR. Thus R ⩾ ln rt and the desired conclusion follows by Case 1.
Now consider the inductive step for some i ∈ [t− 1]. Let

c := R ln (3R/ε1) + ln(2R lnR) ⩽

(
ki
R

)
.

It follows from Lemma 3, Facts 4 and 5 (note that ε1 ⩾ 18R2/rt ⩾ 18R2/ri), and the
inductive hypothesis that

µ(ri +R, ri) ⩽

(
ri +R

R

)(
c(
ki
R

) + µ(ri+1 +R, ri+1)

ec ·
(
ri+1+R

R

) )

⩽

(
ri

ki −R

)R

· c+
(

ri
ri+1

)R

· (1 + ε)R lnR

ec

⩽
(
1 +

ε1
R

)R
· c+

(
3R

ε1

)R

· (1 + ε)R lnR

ec
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⩽ eε1 · c+ e
R ln

(
3R
ε1

)
−c · 2R lnR

⩽ (1 + 2ε1)

(
R ln

(
3R

ε1

)
+ ln(2R lnR)

)
+ 1 ⩽ (1 + ε)R lnR,

as desired.
This completes the proof of Theorem 2.

Remark 6. We did not optimise the bound in Theorem 2 (ii) when R = Ω(
√
r), since

our main aim was to extend the inequality µ(r +R, r) ⩽ (1 + o(1))R lnR for constant R
from [16] to as large as possible range of functions R(r).
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[13] L. Lu and Y. Zhao. An exact result for hypergraphs and upper bounds for the Turán
density of Kr

r+1. SIAM J. Discrete Math., 23(3):1324–1334, 2009.

[14] W. Mantel. Vraagstuk XXVIII. Wiskundige Opgaven, 10(2):60–61, 1907.

[15] K. Markström. Extremal hypergraphs and bounds for the Turán density of the
4-uniform K5. Discrete Math., 309(16):5231–5234, 2009.

[16] O. Pikhurko. Constructions of Turán systems that are tight up to a multiplicative
constant. Adv. Math., 464:Paper No. 110148, 11, 2025.

[17] A. Sidorenko. Systems of sets that have the T -property. Vestnik Moskov. Univ. Ser.
I Mat. Mekh., 36:19–22, 1981.

[18] A. Sidorenko. The method of quadratic forms in a combinatorial problem of Turán.
Vestnik Moskov. Univ. Ser. I Mat. Mekh., 76(1):3–6, 1982.

[19] A. Sidorenko. What we know and what we do not know about Turán numbers.
Graphs Combin., 11(2):179–199, 1995.

[20] A. Sidorenko. Upper bounds for Turán numbers. J. Combin. Theory Ser. A,
77(1):134–147, 1997.

[21] S. Tazawa and T. Shirakura. Bounds on the cardinality of clique-free family in
hypergraphs. Math. Sem. Notes Kobe Univ., 11:277–281, 1983.

[22] P. Turán. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok, 48:436–
452, 1941.

the electronic journal of combinatorics 33(1) (2026), #P1.4 9


	Introduction
	Proofs

