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Abstract

For positive integers n > s > r, a Turdn (n, s, r)-system is an n-vertex r-graph
in which every set of s vertices contains at least one edge. Let T'(n, s, r) denote the
the minimum size of a Turan (n, s, r)-system.

Upper bounds on T'(n, s, r) were established by Sidorenko [20] for the case s—r =
Q(r/Inr), based on a construction of Frankl-Ra6dl [7], and by a number of authors
in the case s —r = O(1). Motivated by these results and recent work [16] of the
second author, we investigate in this note the intermediate regime where s = s(r)
satisfies both s —r = Q(1) and s —r = O(r/Inr), and establish upper bounds for
T(n,s,r) in this range as r — oo.

Mathematics Subject Classifications: 05D05

1 Introduction

Given an integer r > 2, an r-uniform hypergraph (henceforth an r-graph) H is a
collection of r-subsets of some set V. We call V' the vertex set of H and denote it by
V(H). When V is understood, we usually identify a hypergraph H with its set of edges.

For positive integers n > s > r, a Turan (n, s, r)-system is an r-graph H on an
n-set V such that every s-subset S C V contains at least one edge from H. Denote
by T'(n,s,r) the smallest size (i.e. the number of edges) of a Turdn (n,s,r)-system.
Observe that T'(n,s,r) = (") — ex(n, K7), where ex(n, K7) denotes the Turdn number
of the complete r-graph on s vertices K. A simple averaging argument shows that
ex(n, K7)/(") is non-increasing (see e.g. [10]), and hence the following limit exists:

t(s,r) = h_}m %

(1)

Determining the value of ¢(s, ) is a central topic in Extremal Combinatorics. The seminal
paper of Turdn [22] established that ¢(s,2) = 2 for all s > 3 (with the case s = 3
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solved earlier by Mantel [14]). Erdés [6] offered $500 for the determination of t(s,r) for
a single pair s,t with s > r > 3. This prize is still unclaimed, despite decades of active
attempts. Turdn and other researchers conjectured that ¢(s,3) = (5:41)2 for s > 4. Various
constructions achieving this bound are known (see e.g. [19]). For r > 4, there is no general
conjectured value for t(s,r), except for the case (s,r) = (5,4) (see [9, 15]). For further
related results, we refer the reader to surveys such as [8, 5, 19, 11].

In this note, we focus on the case where r — oo, and all asymptotics are taken with
respect to 7 unless otherwise specified. The trivial lower bound is #(s,r) > 1/(%), which
follows from the monotonicity of the ratio in (1). For convenience, let us define

(s, ) = t(s,r) - (3)

r

Note that u(s,r) is always at least 1.

The best-known general lower bound, ¢(s,r) > 1/(°"}) (i.e. u(s,r) > s/r) is due to de
Caen [3]. In particular, t(r + 1,7) > 1/r, a result that was independently proved by de
Caen [4], Sidorenko [18], and Tazawa-Shirakura [21]. Further improvements on ¢(r+1,r)
in lower order terms were made by Giraud (unpublished, see [5, Page 189]), Chung-Lu [2],
and Lu-Zhao [13].

Improving the previous upper bounds established by Sidorenko [17], Kim—Roush [12],
Frankl-Rédl [7], and Sidorenko [20], the second author established the following upper
bound, which disproved the $500 conjecture of de Caen [5] that r - t(r + 1,7) — 0.

Theorem 1 ([16]). For every integer R > 1, it holds that
p(r+ R,r) <a+o(l), asr— oo,

where a = (co + 1)/l with c¢o = co(R) being the largest real root of the equation
e” = (x + 1)®FL. In particular, u(r + 1,7) < 4.911 for all sufficiently large r.

An immediate corollary of Theorem 1 (for derivation see [16, Corollary 1.3]) is that,
for every sufficiently large R,

limsup u(r+ R,r) < RInR+3RInlnR = (1+0(1))RIn R. (2)

r—00

This improves asymptotically the previous bound by Frankl-Rodl [7] which states that,
for any fixed R > 1, we have

u(r+ R,r) < (14+o0(1))R(R+4)Inr, asr — oo.

For the case R > ——, Sidorenko [20] (by analyzing the construction of Frankl-Rédl [7]

logy 77
in this regime) proved that

u(r+ Ror) < (14 o(1))RIn (7" ;R). (3)
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Although Turan systems were actively studied, it seems that no general upper bounds
on t(r + R,r) have been published in the intermediate regime 1 < R < r/log, r. This is
the case we address in this note. In brief, we show that Sidorenko’s bound in (3) applies
in the whole range as long as R is sufficiently large, while the asymptotic bound in (2)
can be extended from constant R to any R = o(+/r).

Theorem 2. For every e > 0, there exists ro such that the following statements hold for
all r, R satisfying R > ry.

(1) It holds that pu(r + R,r) < (1 +¢)R1In (TER).
(i1) Suppose that R < v/18rlnr. Then

w(r+R,r) <™/ (1+e)RInR.

Our construction for Theorem 2 (i) will be a straightforward modification of the ran-
dom construction used by Frankl and Ré6dl [7, Theorem 3], while the construction for
Theorem 2 (ii) will be an extension of the recursive construction of the second author [16].

2 Proofs

In this section, we prove Theorem 2. We will use the following notation. For an integer
n>1and aset X, we denote [n] := {1,...,n} and () :={Y C X :|Y|=n}.
Let us begin with the proof of Theorem 2 (i).

Proof of Theorem 2 (i). Given € > 0, let 7y be sufficiently large. Take any r, R with
R > 71y. By (3), we can assume that R < {—. Let s := 7 + R. Define

epo-aGen] e [Qm(GYC0)]

In the rest of the proof, we repeat the construction of Frankl and Rodl [7, Theorem 3],
arguing that our choices of N and ¢ give the stated bound.
Consider a random colouring c : (UX ]) — [¢]. For each s-set A € ([];[]) we have a bad

event that some colour is not present in (f) Its probability p is at most £(1 — 1/ E)(?S") <
e (R)/¢ (note that ( ) = ( ® ) = (s)) Define the obvious dependency graph D (with

r s—r R
loops) on (USV]) where A ~ B if |AN B| > r. It is regular of degree A := "7 (5)(V=7).
Our goal is to use the Lovasz Local Lemma to deduce the existence of a colouring in
which none of the bad events occur. In order to apply the variant of the Lovasz Local
Lemma given in [1, Corollary 5.1.2], it suffices to check that epA < 1, for which it suffices

to prove

e(R)/0 > etA. (4)
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First, we estimate A. Consider the ratio of two consecutive terms:

(z—il) (SJX;SI) _ (s —1)?
) (i+1)(N—-2s+i+1)

s—1

Since 3 < R < s/2 and N > (;) > (g), this ratio is at most 1/2 for every i € [r, s],
provided rq is sufficiently large. Thus, we can bound

es()(20) () 05)

Therefore, by the choice of ¢, we have

9= () () e mlg ) () >

as desired. (In fact, our definition of ¢ comes from (4), given N.)

Thus by the Lovasz Local Lemma, there exists a colouring ¢ with no bad events,
meaning that each colour gives a Turdn (N, s,r)-system on [N]. Let A C (U:ﬂ) be the
r-graph formed by the least frequent colour. We have

a<y(7) ©)

Now let n := mN with integer m — oo. Our Turan (n, s, r)-system B on [n] is made of a
blowup of A plus all r-sets that intersect at least one part in more than one vertex. We
have

Bl A N(?) (mrN—_2 2) s %(ZZ) i T(TZJ:TD (mTN) < <m7’N) £

where [ := %4—%. Since f does not depend on m, it gives an upper bound on ¢(r+ R, r)

and thus f - (;) > (s, 7). Note that we have N < (3)2 and In N < 2RIns. Therefore,

(&)

2 _
21n (;) +RInN

can be forced to be arbitrarily large if ry was sufficiently large. Thus the rounding in the
definition of ¢ gives only a multiplicative term that is arbitrarily close to 1 and we have

(;z) f<(te/y (2111 (;) +RlnN+%>

<(1+¢e/2) (21n <;> YR (21nr—|—ln (;)) +R) < (1+4¢)RIn (;)

proving Theorem 2 (i). Note that our choice of N was determined by using the fact that
the function In z + ¢/x, with fixed ¢ > 0, is minimized on the interval (0,00) at z = ¢. O
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Next, we prove Theorem 2 (ii). Before doing so, let us present some preliminary results.
The following lemma is derived from the proof of [16, Lemma 2.3].

Lemma 3 ([16]). For all integersr, R > 1, k € [R,r —1], and a real number c € [0, (;)} ,
it holds that

M(T+R,T)<(T+R> (%_f_#(r k‘t_]}i; k’)) (7)
R (%) e (")
Sketch of Proof. Let S be a random subset of (k[f]R) where each (k — R)-set is included
into S with probability p := ¢/ (}k%) Let S* C ([Z}) consist of those r-sets {z; < --- < z,}
such that {z1,...,x,_gr} € 5, that is, we include an r-set into S* if its initial (k — R)-
segment is in S. Let T C ([Z]) consist of those k-sets X such that (ki{R) NS = (), that
is, X does not contain any element of S as a subset. For each y € [n], take a minimum
Turdn (n —y,r — k+ R,r — k)-system F, on {y +1,...,n}. Let T* C ([:f]) be be union
over Y € T of the r-graphs {Y U Z : Z € Faxy }. Informally speaking, we extend every
Y € T by a minimum Turan system to the right of Y.

It is easy to check that G := S*UT* is a Turdn (n,r + R, r)-system, regardless of the

choice of S. By taking S such that |G| is at most its expected value, it is routine to see
that

T(n,r+R,r) < E[S*|+E|[T
= p " +i(1—p)(§) -l Tn—y,r—k+R,r—k)
r gt kE—1 ’ ’

< <(T;+%u<r—k+m—k>> (7).

giving the required bound. O]

Fact 4. For any integers r1 > r9 > R, we have

r r e’ r—R\"
1 2 1 1=
Np)=1l =<0z
R R =0 9 7 T9 R
Fact 5. Let r > 1, R > 1 be integers and § be a real number satisfying 18R?/r < 0 < R.
Let k = ( Rr W + R. Then

R+6
r ) r 3R
" RS TR MRS
Proof of Fact 5. Since ¢ > @, straightforward calculations show that
or or — (R+6)(R+2) _ 18R> — (R+ R)(R+2)
—R-2= > >0 and
R+ R+36 R+36 o
Rr Rr orR 183

_ — > > 1.
R+6/2 R+d (R+0)@R+0) - R+ RCR+R) -7

o
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It follows that

Rr or
< 1+ R=7r—1— -R-2)<r—1,
Ryis 07T (R+5 ) g
r r R+9 o
< & = =14 —, and
k—R RR—M+R—R R R
r r r 2R+0 3R
< Rr g Rr = ) gT’
r—k r-gn-1-R - 5hn
which proves Fact 5. O

We are now ready to present the proof of Theorem 2 (ii).

Proof of Theorem 2 (ii). Given € > 0, choose a sufficiently small real number ¢ > 0
and then a sufficiently large integer ro. Take any integers r, R such that R > ry and

R <V18rlnr.

Case 1. Suppose that R > Inr.
We define

18 R? R 3R
0 = max {51, " }, k= [R_:(s-‘ + R, and c¢:= RIn (T) + In(2R?).

Clearly, ¢ < (Il“;) Since R is large (which can be ensured by choosing ry sufficiently
large) and Inr < R, it follows from Theorem 2 (i) that

r—k+ R

,u(r—k~|—R,r—k)<2Rln( R

) < 2R’ Inr < 2R3

Combining this with Lemma 3, Facts 4 and 5, we obtain
r+ R c 2R3
,u(r—l—R,r)S( ) T TR
R\ e (TR
< r R . r RoopRs
“\k-R r—k e

5\ " 3R\" 2R3
<(1+§> -c+(7> : <o et o) aR <ot
eC

If 18T—R2 < &1, that is, R < y/e17/18, then

3R
w(ir+ Ryr) <et-c+ 1< (14 2¢) <Rln (—) + 1n(2R3)> +1

€1

= (14 2¢) (R (lnR+ln (;)) —|—3lnR+ln2) +1
1
<(1+¢)RIR,
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as desired. Note that the last inequality holds since R > 7y (and we choose 7 sufficiently
large depending on 1) and £; < ¢.
If 18T—R2 > g1, that is, r < %, then

w(r+ Ror) BT/ cp 1 LB (Rln <é> + ln(2R3)> +1
L BB/ <R In (ﬁ> + 1n(2R3)> +1
€1
<eB®/"(1 4 )RR,
also as desired. Note that, as in the previous calculation, the last inequality holds since
R>2ry>1/e and 61 < .

Case 2. Suppose that R < Inr.
Let r; :== r and, inductively for i = 1,2, ..., define

RTZ‘
ki = ’VR+51—‘+R, and Tit1 :7’,—]{?1,

if r;1; < 18R?/e; then let ¢t := 7 and stop. Since r; decreases each time, this process
terminates.
We prove by backward induction on i € [t] that

pu(r; + Ryr;) < (14+¢)RInR. (8)
First, consider the base case i = t. Note that, for ¢ < ¢, we have by r; > 18 R? /& that

RT’Z‘ —1_-R= e1r;
R+€1 R+€1

Fign =1 — ki 2 ri — —(R+1)>2 U

(R—FEl).

2 2 R . .
_186113 . 2(Bte) ;1“‘51), which is clearly at most

eft. Thus R > Inr, and the desired conclusion follows by Case 1.
Now consider the inductive step for some ¢ € [t — 1]. Let

In particular this holds for ¢ = ¢, giving that r; <

c:=RIn(3R/e1) + n(2RIn R) < <2)

It follows from Lemma 3, Facts 4 and 5 (note that ; > 18R?*/r; > 18R?/r;), and the
inductive hypothesis that

‘ ' ri+ R c p(rivr + R, 7iq1)
/’L(Tz + R7 T’L) < ( R > <(kz> + eC . <T¢+1+R) )

R R

< T R-C—|— T R(1+€)R1HR
ki— R Tit1 ec

R R ]
< (1) e ()" A
1
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<ot (E) " orm R

3R
< (14 2¢) (Rln (—) +1n(2RlnR)) +1< (1+¢)RInR,

€1

as desired.
This completes the proof of Theorem 2. O

Remark 6. We did not optimise the bound in Theorem 2 (ii) when R = Q(y/r), since
our main aim was to extend the inequality p(r + R,7) < (1 + o(1))RIn R for constant R
from [16] to as large as possible range of functions R(r).
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