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Abstract

We introduce some classes of increasing labeled and multilabeled trees, and we
show that these trees provide combinatorial interpretations for certain Thron-type
continued fractions with coefficients that are quasi-affine of period 2. Our proofs are
based on bijections from trees to labeled Motzkin or Schröder paths; these bijections
extend the well-known bijection of Françon–Viennot (1979) interpreted in terms of
increasing binary trees. This work can also be viewed as a sequel to the recent work
of Elvey Price and Sokal (2020), where they provide combinatorial interpretations
for Thron-type continued fractions with coefficients that are affine. Towards the end
of the paper, we conjecture an equidistribution of vincular patterns on permutations.
Mathematics Subject Classifications: 05A19 (Primary); 05A05, 05A15, 05A30,
05C05, 05C30, 30B70 (Secondary)
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1 Introduction

Let (an)n⩾0 be a sequence of combinatorial numbers or polynomials with a0 = 1. In this
paper we are interested in expressing the ordinary generating function

∑∞
n=0 ant

n as a
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continued fraction of Thron-type (T-fraction for short):

∞∑
n=0

ant
n =

1

1− δ1t−
α1t

1− δ2t−
α2t

1− δ3t−
α3t

1− · · ·

. (1)

(Both sides of this expression are to be interpreted as formal power series in the indeter-
minate t.)

The study of T-fractions, especially those in which all the coefficients δi and αi are
nonzero, is comparatively rare in the combinatorial literature. The most commonly stud-
ied continued fractions are those of Stieltjes-type (S-fraction),

∞∑
n=0

ant
n =

1

1−
α1t

1−
α2t

1−
α3t

1− · · ·

, (2)

and Jacobi-type (J-fraction),

∞∑
n=0

ant
n =

1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− γ2t−
β3t

2

1− · · ·

. (3)

Clearly, T-fractions are a generalization of the S-fractions, and reduce to them when δi = 0
for all i. A nontrivial example of a T-fraction along with combinatorial interpretations
was obtained recently by Elvey Price and one of us [17]: we considered the T-fraction
with coefficients that are affine in n,

αn = x+ (n− 1)u (4a)
δn = z + (n− 1)(w′ + w′′) (4b)

and we showed [17, Theorem 1.2] that the Taylor coefficients an are multivariate gen-
eralizations of the Ward polynomials that enumerate super-augmented perfect match-
ings or phylogenetic trees with respect to suitable statistics. Note that specializing to
z = w′ = w′′ = 0 gives the S-fraction for perfect matchings with a weight x for each
record and a weight u for each cycle-peak non-record [39, Theorem 4.1]. The most gen-
eral result in [17] — the so-called “master T-fraction” [17, Theorem 2.1] — enumerates
super-augmented perfect matchings with respect to an infinite number of statistics.
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Our initial goal in this project was to generalize (4) to the case in which the coefficients
αn and δn, rather than being affine in n, are instead “quasi-affine of period 2”:

α2k−1 = x+ (k − 1)u (5a)
α2k = y + (k − 1)v (5b)

δ2k−1 = a+ (k − 1)c (5c)
δ2k = b+ (k − 1)d (5d)

Note that specializing to a = b = c = d = 0 in this T-fraction gives the S-fraction
enumerating permutations with respect to exclusive records, antirecords and excedances
[39, Theorem 2.1]. And this is, in turn, a special case of an S-fraction or J-fraction
enumerating permutations with respect to an infinite number of statistics [39, Theorems
2.9 and 2.11].

When all eight parameters in (5) equal 1, the sequence (an)n⩾0 is

(an)n⩾0 = 1, 2, 6, 24, 124, 800, 6208, 56240, 582272, 6781888, 87769632, . . . , (6)

which is not in the OEIS [29] and for which we do not have any natural combinatorial
interpretation.1 However, for certain special cases we are able to find a natural combina-
torial interpretation. For instance, when c = 0 and the other seven variables equal 1, we
have

(an)n⩾0 = 1, 2, 6, 23, 109, 632, 4390, 35621, 330545, 3451774, 40059838, . . . ; (7)

and we will show that it enumerates increasing interval-labeled restricted ternary trees
— a class that will be defined later in this introduction. We have recently added this
sequence to the OEIS, see [29, A390399]. More generally, with the constraints c = 0,
x = u, y = v, b = d we are able to find a combinatorial interpretation of the polynomials
in four variables generated by

α2k−1 = kx , α2k = ky , δ2k−1 = a , δ2k = kb (8)

as enumerating increasing interval-labeled restricted ternary trees with respect to some
statistics counting node types and label surplus.

Our combinatorial interpretations will thus involve several classes of increasing trees,
i.e. labeled rooted trees in which the labels increase from parent to child. We will prove
each J-fraction or T-fraction by constructing a bijection from the given class of increasing
trees to a suitable class of labeled Motzkin or Schröder paths. These bijections will gen-
eralize the classical Françon–Viennot [22] bijection from permutations to labeled Motzkin
paths, reformulated [20,24] as a bijection from increasing binary trees to labeled Motzkin
paths. Some of our tree constructions have been studied previously by Kuba and Pan-
holzer [27], albeit not in the context of continued fractions.

1We have an “unnatural” combinatorial interpretation by taking a = b = c = d = f = 1 and ek = k + 1
in Theorem 23. This corresponds to increasing interval-labeled restricted ternary trees with the non-
minimal labels in vertices being “multicolored”.
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Figure 1: An example of an increasing binary tree on the vertex set [8]. To the left of
each vertex, its order as per the inorder traversal is recorded.

In the remainder of this introduction we introduce our families of increasing trees in
increasing levels of generality (Section 1.1) and then provide an outline of the rest of the
paper (Section 1.2). Before we proceed, we mention that for m,n ∈ Z with m ⩽ n, we
use [m,n] to denote the interval [m,n]

def
= {m,m+ 1,m+ 2, . . . , n}, and for n ⩾ 1, we set

[n]
def
= [1, n].

1.1 Combinatorial models for T-fractions

Our main combinatorial objects, as the title suggests, are several families of increasing
trees. We list them here:

Increasing binary trees. Our first family is the well-known set of all increasing
binary trees on the vertex set [n]. That is, there is a binary rooted tree with n vertices,
in which the vertices carry distinct labels from the label set [n]; furthermore, the label of
a child is always greater than the label of its parent. (In particular, the root must have
label 1, and the vertex with label n is necessarily a leaf.) It is well known [40, p. 45] that
the cardinality of such trees is n!. The sequence (n!)n⩾0 has the well-known S-fraction
with α’s given by 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . ., due to Euler [19, section 21].2 This is (5) with
x = y = u = v = 1 and a = b = c = d = 0. We denote by Bn the set of all increasing
binary trees on the vertex set [n].

Figure 1 is an example of an increasing binary tree on the vertex set [8].

Increasing restricted ternary trees. Our second family consists of increasing
ternary trees on the vertex set [n] such that middle children do not have any siblings. We
call these increasing restricted ternary trees (RTs for short). We will show (Corol-
lary 15) that the sequence of cardinalities of these trees is generated by the T-fraction with

2The paper [19], which is E247 in Eneström’s [18] catalogue, was probably written circa 1746; it was
presented to the St. Petersburg Academy in 1753, and published in 1760.
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Figure 2: An example of an increasing restricted ternary tree on the vertex set [6].

α’s given by 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . . and δ’s given by 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, . . .: that is,
(5) with x = y = u = v = b = d = 1 and a = c = 0. This sequence begins as

(an)n⩾0 = 1, 1, 3, 11, 51, 295, 2055, 16715, 155355, 1624255, 18868575, . . . (9)

and is [29, A230008].
The shifted sequence (an)n⩾1 was previously studied by Kuba and Panholzer in [27,

Section 5.2, Example 5 and Remark 8]. However, they considered a different combinatorial
interpretation: namely, binary free multilabeled increasing trees. They showed that the
exponential generating function F (t) =

∑∞
n=1 ant

n/n! satisfies the ordinary differential
equation

F ′(t) = F (t)2 + 3F (t) + 1 . (10)

It is not difficult to see, using the general theory of increasing trees [5], that the exponential
generating function for increasing restricted ternary trees satisfies this same differential
equation. Indeed, one can also show directly that, for n ⩾ 1, binary free multilabeled
increasing trees of size n are in bijection with increasing restricted ternary trees of size
n; we do this by using the bijection in [27, Theorem 10] and then redrawing the black
vertices in their bijection to have middle children (see Section 7.2). We denote by RT n

the set of all increasing restricted ternary trees on the vertex set [n].
Figure 2 is an example of an increasing restricted ternary tree on the vertex set [6].

Increasing interval-labeled restricted ternary trees. Our third family is defined
as follows: An increasing interval-labeled restricted ternary tree (IRT for short)
on the label set [0, n] is a vertex-labeled tree satisfying the following rules:

• The underlying tree is a ternary rooted tree in which middle children do not have
any siblings.

• Each vertex v in the tree is assigned an interval of integer labels Lv = [i1, i2] ⊆ [0, n]
such that for every i ∈ [0, n] there exists exactly one vertex v with i ∈ Lv. Thus,
the collection of vertex labels forms an interval-partition of [0, n].
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• If a vertex v has a middle child, then |Lv| = 1, i.e., the vertex v gets a single label.

• The labels are increasingly assigned, i.e., for every pair of vertices v, w such that v
is the parent of w, we impose that maxLv < minLw.

• The root (which is the vertex containing 0 in its label set) can only have a left child,
not a middle or right child.

We stress that n + 1 is the total number of integer labels ; the number of vertices can be
anything from 1 to n+ 1. We denote by IRT n the set of all IRTs on the label set [0, n].
In Figure 3 we show all IRTs on the label set [0, n] with n = 0, 1, 2, and in Figure 4 we
show an example of an IRT on the label set [0, n] with n = 16.

Clearly, if we impose the further condition that all label sets have cardinality 1, and we
then remove the root (which in this case necessarily has label set {0}), then what remains
is an increasing restricted ternary tree on the vertex set [n] (and conversely). These trees
therefore generalize RTs by allowing the vertex labels (including that of the root) to be
intervals of cardinality > 1.

We will show (Corollary 21) that the sequence of cardinalities of these trees is gen-
erated by the T-fraction with α’s given by 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . . and δ’s given by
1, 1, 1, 2, 1, 3, 1, 4, 1, 5, . . .: that is, (5) with x = y = u = v = a = b = d = 1 and c = 0. As
already mentioned, this sequence is (7) and is not at present in the OEIS.

Our motivation behind defining this class of trees is a simple identity on T-fractions
(Proposition 3). With this identity in mind, one can view our definition of interval-labeled
restricted ternary trees as a deformation of the definition of restricted ternary trees; and
we can in fact use Proposition 3 to prove some of our results on IRTs as corollaries of
those for RTs (Section 6.3).

Finally, we pose an open problem:

Open Problem 1. Find a “nice” combinatorial interpretation for the T-fraction with α’s
given by 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . . and δ’s given by 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . .: that is, (5)
with x = y = u = v = a = b = c = d = 1.

1.2 Outline of this paper

The remainder of this paper is structured as follows. We begin, in Section 2, by introducing
some necessary preliminaries. Then, in Section 3, we state our main results. After that
we proceed to the proofs: the preliminaries for the bijective proofs are given in Section 4,
and the bijective proofs are presented in Section 5. Also, for some of our less powerful
results we have very simple algebraic proofs: these are presented in Section 6. Finally,
in Section 7, we will provide some other combinatorial interpretations of our T-fractions;
this section includes a conjecture on the equidistribution of some vincular patterns on
permutations (Conjecture 46).

This work would not have been possible without the existence of the On-Line Ency-
clopedia of Integer Sequences [29]. Indeed, we began this project by doing an exhaustive
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n = 0 :

0

1 in (64)

1 in (71)–(74)

n = 1 :

0, 1

0

1

z in (64) y1 in (64)

e0 in (71)–(74) µ0 · b̂00 in (71)–(74)

n = 2

0, 1, 2

0, 1

2

0

1, 2

z2 in (64) y1z in (64) y1z in (64)

e20 µ0e0 · b̂00 µ0 · b̂00e0
in (71)–(74) in (71)–(74) in (71)–(74)

0

1

2

0

1

2

0

1

2

x2y1 in (64) wy1 in (64) y1y2 in (64)

µ0 · â0,0ν0 · b̂00 µ0 · f0,0 · b̂00 µ0 · b̂0,0µ0 · b̂00
in (71)–(74) in (71)–(74) in (71)–(74)

Figure 3: All IRTs on label set [0, n] with n = 0, 1, 2, along with their respective weights
as per equations (64) and (71)–(74).
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10:98:64:1
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12:116:3
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Figure 4: An example of an increasing interval-labeled restricted ternary tree on the label
set [0, 16]. To the left of each vertex are two numbers a:b, where a is the order of the
vertex as per the preorder traversal, and b is the order of the vertex as per traversal order
A′ defined as follows: the left child if any, then the root, then the middle child if any, and
then the right child if any, all implemented recursively.

search of the OEIS for sequences with quasi-affine T-fraction coefficients of period 2, as
in (5); we will explain our procedure and results in Appendix A. In Appendix B we show
how the sequences enumerating our families of trees can be obtained in a very simple way
using context-free (Chen) grammars. We used these formulae to help guess our families
of trees, and also to help check that the sequences obtained from the derivative operators
and the T-fractions match.

2 Preliminaries

2.1 Contraction and transformation formulae

The formulae for even and odd contraction of an S-fraction to an equivalent J-fraction are
well known: see e.g. [16, Lemmas 1 and 2] [14, Lemma 1] for very simple algebraic proofs,
and see [43, pp. V-31–V-32] for enlightening combinatorial proofs based on grouping pairs
of steps in a Dyck path. These formulae have also been extended to suitable subclasses
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of T-fractions [37] [10, Propositions 2.1 and 2.2]. In this paper we will need only odd
contraction [10, Proposition 2.2]:

Proposition 2 (Odd contraction for T-fractions with δ1 = δ3 = δ5 = . . . = 0).
We have

1

1−
α1t

1− δ2t−
α2t

1−
α3t

1− δ4t−
α4t

1− · · ·

=

1 +
α1t

1− (α1 + α2 + δ2)t−
α2α3t

2

1− (α3 + α4 + δ4)t−
α4α5t

2

1− · · ·

. (11)

That is, the T-fraction on the left-hand side of (11) equals 1 plus α1t times the J-fraction
with coefficients

γn = α2n+1 + α2n+2 + δ2n+2 (12a)
βn = α2nα2n+1 (12b)

Here (11)/(12) holds as an identity in Z[α, δeven][[t]], where δeven = (0, δ2, 0, δ4, . . .).

Both the algebraic and the combinatorial proofs of the contraction formulae for S-
fractions can be easily generalized [37] to prove the contraction formulae for T-fractions.

Please note that Proposition 2 allows the J-fraction on the right-hand side of (11) to
be converted to a T-fraction on the left-hand side in numerous ways: α1 can be chosen
arbitrarily; then each βn can be factored arbitrarily into α2n and α2n+1; and then δ2n+2

is defined by (12a). Of course, some of the resulting T-fractions may have coefficients δ
that are “nice” in one sense or another, while others will not.

We now prove a useful transformation formula for T-fractions:

Proposition 3 (T-fraction with no odd delta to generic T-fraction).

1/(1− δ1t)

1−
α1t/(1− δ1t)

1− δ2t−
α2t/(1− δ3t)

1−
α3t/(1− δ3t)

1− δ4t− . . .

=
1

1− δ1t−
α1t

1− δ2t−
α2t

1− δ3t−
α3t

1− . . .

. (13)

the electronic journal of combinatorics 33(1) (2026), #P1.5 10



Proof. This is obtained by repeated use of the identity

1/f(t)

1− g(t)/f(t)
=

1

f(t)− g(t)
(14)

at alternate levels of the left-hand side of (13), with f(t) = 1− δ1t, 1− δ3t, . . . . □

Let T (t;α, δ) denote the T-fraction (1). Also, let δeven = δ|δ2k−1=0, i.e., δeven denotes
the sequence δ with all odd-order δi set to 0. Then, Proposition 3 is equivalent to the
following:

1

1− δ1t
T

(
t; α|α2k−1 7→

α2k−1
1−δ2k−1t

, α2k 7→
α2k

1−δ2k+1t
, δeven

)
= T (t;α, δ) . (15)

This identity gives us a recipe to start from a T-fraction with δi only at even orders and
then insert δi at odd orders as well. This is what motivated our construction of increasing
interval-labeled restricted ternary trees. At the end of Section 4.1 we will also give a
combinatorial interpretation/proof of Proposition 3.

2.2 Types of labeled trees

In this paper, all trees are rooted and finite; we henceforth omit these two adjectives. A
labeled tree with vertex set V is a tree in which each vertex is assigned a distinct label
from V , such that each element of V is the label for some vertex of the tree (hence for
exactly one vertex). A multilabeled tree with label set L is a tree in which each vertex v
is assigned a nonempty label set Lv ⊆ L, such that each label i ∈ L belongs to exactly one
of the sets Lv. Specific types of multilabeled trees arise by restricting the subsets of L that
are allowed to be vertex label sets Lv. For instance, in k-labeled trees [28, Section 2.6],
all vertex label sets Lv must have cardinality k; in interval-labeled trees , the label set L
is some set of integers (usually an interval), and all vertex label sets Lv must be intervals.

A labeled tree on a partially ordered vertex set V is called increasing if the label
of a child is always greater than the label of its parent. In most applications the vertex
set is totally ordered: this is the case for ordinary (unilabeled) increasing trees, in which
the vertex set is some set of integers (ordinarily either [n] or [0, n]) and each vertex has
a single integer label. However, for multilabeled trees the vertex set V is some collection
of nonempty subsets of the label set L, equipped with the partial order A < B ⇐⇒
maxA < minB. We remark that although the set of all intervals in [0, n] fails to be
totally ordered when n ⩾ 2, the set of intervals occurring as vertex labels for a given
interval-labeled restricted ternary tree (which is, by definition, the vertex set of that tree)
forms an interval-partition of [0, n] and hence is totally ordered.

2.3 Tree statistics: Node types and label surplus

We will use the notion of node types for k-ary trees, as introduced by Kuba and Varvak
[28]. Let T be a k-ary rooted tree, and let V (T ) be its vertex set. For v ∈ V (T ), we define
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the node type of v to be the string N(v, T )
def
= nv,1 · · ·nv,k ∈ {0, 1}k where nv,j = 1 if the

j-th child of the vertex v exists, and 0 if it does not. Let us mention the possible node
types in some families of trees:

• The possible node types in binary trees are 00, 01, 10, 11.

• The possible node types in ternary trees are 000, 001, 010, 100, 011, 101, 110, 111.

• The possible node types in restricted ternary trees are 000, 100, 010, 001, 101.

For a string s ∈ {0, 1}k with k ⩾ 1, we define IT (s) to be

IT (s)
def
= #{v : v ∈ V (T ) and N(v, T ) = s} . (16)

Thus, IT (s) counts the number of vertices in the tree T with node type s.
In some cases we will want to give weights only to non-root vertices. We therefore

define also
I ′T (s)

def
= #{v : v ∈ V (T ) \ root and N(v, T ) = s} , (17)

so that I ′T (s) counts the number of non-root vertices in the tree T with node type s.
In this paper we also study some k-ary trees in which the vertices are allowed to have

multiple labels. For this reason, given a multilabeled k-ary tree, we also introduce IT (ε)
(here ε is the empty string) to denote

IT (ε)
def
= #{i : i is a label in T} − #{v : v is a vertex in T} . (18)

We call the quantity IT (ε) the label surplus of the tree T . Using Lv to denote the
label set of the vertex v, we have equivalently

Iε(T ) =
∑

v∈V (T )

(|Lv| − 1) (19)

(since the label sets Lv are disjoint). We therefore call the quantity |Lv| − 1 the label
surplus of the vertex v.

2.4 Tree statistics: Crossings and nestings

We now introduce some new statistics on trees. Similar statistics were used implicitly
in [28,32,33] and will be used explicitly in [38].

Let T be an increasing tree on a totally ordered vertex set V . (This includes the case
of increasing interval-labeled trees, for which the vertex set is a totally ordered set of
intervals in [0, n].) Let v0, v1, . . . , vm be the vertices of T in this total order (here v0 must
be the root, v1 must be a child of the root, and vm must be a leaf). For any non-root
vertex v, we denote by p(v) the parent of v in T ; if v is the root, then p(v) is undefined.
We then define the level of a vertex v as

lev(v, T )
def
= #{w : p(w) < v < w} . (20)
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It is clear that lev(v0, T ) = lev(vm, T ) = 0. Note also that when v = v1, which is a child
of the root, any w contributing in (20) must be another child of the root; so if the root
has only one child — as is the case for our increasing interval-labeled restricted ternary
trees — then lev(v1, T ) = 0.

Now suppose further that the children of each vertex are linearly ordered. (This is
certainly the case for k-ary trees, which include binary, ternary and restricted ternary
trees as special cases.) We use this linear order to introduce two new statistics: croix and
nid (the French words for crossings and nestings, respectively). However, to introduce
these, we need to choose first a tree-traversal algorithm A: by this we mean a mapping
from triplets (T, V,<) of increasing ordered trees T on a totally ordered vertex set (V,<)
to new total orders <A on V , that satisfies the following consistency property :

For any j ∈ V , define V |j = {k ∈ V : k ⩽ j}. Then for every tree T on V
and every j ∈ V , the total order <A on T restricted to V |j is the same as the
total order <A on the tree T ↾ V |j.

In other words, the vertices of T ↾ V |j are traversed in the same relative order as they are
traversed in T . Some examples of consistent tree-traversal algorithms are:

• Preorder traversal. First the root, then the children in order, all implemented
recursively.

• Postorder traversal. The children in order, then the root, all implemented recur-
sively.

• Inorder (= symmetric) traversal for binary trees [40, pp. 44–45]. The left
child if any, then the root, then the right child if any, all implemented recursively.3

Now choose a consistent tree-traversal algorithm A. We refine the definition (20) of
level as follows. Consider a pair of vertices v, w in the tree T that satisfy p(w) < v < w.
We say that they form a

• croix if v <A w,

• nid if w <A v.

We then define the index-refined crossing and nestings statistics

croixA(v, T ) = {w : p(w) < v < w and v <A w} (21a)
nidA(v, T ) = {w : p(w) < v < w and w <A v} (21b)

3Inorder traversal can be generalized in a variety of ways to non-binary ordered trees. For instance, fix
your favorite integer c ⩾ 0; traverse the first c children (or all of the children if there are fewer than c of
them), then the root, then the remaining children, implemented recursively. Or alternatively: traverse
all but the last c children (if there are more than c of them), then the root, then the last c children (or
all of the children if there are fewer than c of them), implemented recursively.
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It is clear from definitions (20)/(21) that

lev(v, T ) = croixA(v, T ) + nidA(v, T ) . (22)

In the remainder of this paper we will lighten the notation by deleting the subscript
A from croix and nid, but we stress that meaning of croix and nid depends on the choice
of tree-traversal algorithm. Nevertheless, the resulting “master” continued fractions will
be identical for all consistent tree-traversal algorithms. Therefore, we will have proven
that the families (croixA, nidA) and (croixA′ , nidA′) are equidistributed , for any pair of
consistent tree-traversal algorithms A and A′.

Example 4. Let T be the increasing binary tree shown in Figure 1. It has three vertices
of node type 00, two vertices of node type 11, two vertices of node type 10, and one vertex
of node type 01.

Let A be the inorder traversal. The vertices are traversed as follows: 5 <A 7 <A 3 <A

1 <A 6 <A 2 <A 8 <A 4.
We now note down the node type N(v, T ) and the statistics lev(v, T ), nidA(v, T ) and

croixA(v, T ):

v N(v, T ) lev(v, T ) nid(v, T ) croix(v, T )
1 11 0 0 0
2 11 1 1 0
3 10 2 0 2
4 10 2 2 0
5 01 2 0 2
6 00 2 1 1
7 00 1 0 1
8 00 0 0 0

(23)

■

Example 5. Let T be the IRT shown in Figure 4. The total order on the vertices is
{0, 1} < {2, 3} < {4} < {5} < {6} < {7} < {8} < {9} < {10} < {11} < {12, 13} <
{14, 15} < {16}. There are three vertices of node type 000, two vertices each of node
types 101, 100, 001, and four vertices of node type 010.

Let A be the preorder traversal. The vertices as traversed as follows: {0, 1} <A

{2, 3} <A {4} <A {8} <A {9} <A {14, 15} <A {5} <A {7} <A {10} <A {6} <A

{11} <A {12, 13} <A {16}.
Next let A′ be the following traversal order: the left child if any, then the root, then

the middle child if any, and then the right child if any, all implemented recursively. As per
this order, the vertices are traversed as follows: {8} <A′ {9} <A′ {14, 15} <A′ {4} <A′

{2, 3} <A′ {7} <A′ {10} <A′ {5} <A′ {6} <A′ {11} <A′ {12, 13} <A′ {16} <A′ {0, 1}.
We now note down the node type N(v, T ) and the statistics lev(v, T ), nidA(v, T ) and

croixA(v, T ), nidA′(v, T ) and croixA′(v, T ):
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v N(v, T ) lev(v, T ) nidA(v, T ) croixA(v, T ) nidA′(v, T ) croixA′(v, T )
{0,1} 100 0 0 0 0 0
{2,3} 101 0 0 0 0 0
{4} 100 1 0 1 0 1
{5} 101 1 1 0 1 0
{6} 010 2 2 0 2 0
{7} 010 2 1 1 1 1
{8} 001 2 0 2 0 2
{9} 010 2 0 2 0 2
{10} 000 2 1 1 1 1
{11} 010 1 1 0 1 0

{12,13} 001 1 1 0 1 0
{14,15} 000 1 0 1 0 1
{16} 000 0 0 0 0 0

(24)
■

3 Statement of results

All our continued fractions will come in two levels of generality: “simple” continued frac-
tions, with finitely many indeterminates that count node types and label surplus [cf.
(16)/(18)]; and then “master” continued fractions, with infinitely many indeterminates
that count the pair (croix, nid) at each vertex [cf. (21)].

For pedagogical clarity, we begin by presenting these continued fractions for increasing
binary trees; some (but not all) of these formulae are well known and go back to Flajolet
[20]. After this, we present our new results in increasing order of generality: first increasing
restricted ternary trees, and then increasing interval-labeled restricted ternary trees.

3.1 Increasing binary trees

Let Bn denote the set of increasing binary trees on the vertex set [n]. It is well known
that this set has cardinality |Bn| = n!: see e.g. [40, pp. 44–45] for a bijective proof. Here
we define some polynomials that refine this counting, and provide continued fractions for
their ordinary generating functions.

3.1.1 Simple J-fraction and T-fraction

Consider first the polynomial in four variables that enumerates increasing binary trees
according to the node types: for n ⩾ 0, we define

Pn(x1, x2, y1, y2)
def
=

∑
T∈Bn

x
IT (11)
1 y

IT (00)
1 x

IT (10)
2 y

IT (01)
2 , (25)
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where we recall that IT (s) for a string s was defined in (16) as the number of vertices with
node type s. Thus, the variables x1, y1, x2, y2 are associated to the node types 11, 00, 10,
01, respectively. In particular, we have x1 or x2 when a vertex has a left child, and y1 or
y2 when it does not; we have a subscript 1 (resp. 2) when the vertex has even (resp. odd)
out-degree. By convention P0 = 1 (corresponding to the empty tree); for n ⩾ 1, the
polynomial Pn always has a factor y1 since the vertex n is always a leaf.

The polynomials (25) have the following beautiful J-fraction, which is essentially [20,
Theorem 3A] restated in terms of increasing binary trees using the correspondence in [40,
pp. 44–45]:

Theorem 6 ( [20, Theorem 3A]+ [40, pp. 44–45]). The ordinary generating function of
the polynomials Pn+1(x1, x2, y1, y2) has the J-fraction

∞∑
n=0

Pn+1(x1, x2, y1, y2) t
n =

y1

1− (x2 + y2)t−
2x1y1 t

2

1− 2(x2 + y2)t−
6x1y1t

2

1− . . .

(26)

with coefficients

γn = (n+ 1) (x2 + y2) , βn = n(n+ 1)x1y1 . (27)

When x1 = x2 = y1 = y2 = 1, this is a J-fraction for the sequence ((n + 1)!)n⩾0. It
arises by even contraction of the S-fraction with α2k−1 = k + 1, α2k = k.

We now obtain a T-fraction from Theorem 6 by using odd contraction (Proposition 2):

Theorem 7. The ordinary generating function of the polynomials Pn(x1, x2, y1, y2) has
the T-fraction

∞∑
n=0

Pn(x1, x2, y1, y2) t
n

=
1

1−
y1t

1− (x2 + y2 − x1 − y1)t−
x1t

1−
2y1t

1− 2(x2 + y2 − x1 − y1)t−
2x1t

1− . . .

(28)

with coefficients

α2k−1 = ky1 (29a)

α2k = kx1 (29b)

δ2k−1 = 0 (29c)

δ2k = k (x2 + y2 − x1 − y1) (29d)
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If we now choose some specialization of x1, x2, y1, y2 that satisfies x1 + y1 = x2 + y2,
then from (29d) we get δ2k = 0, so that the T-fraction (28) becomes an S-fraction. In
particular this happens if we take x1 = x2 and y1 = y2, or alternatively if we take x1 = y2
and y1 = x2 (among many other possibilities). Let us show the first of these:

Corollary 8. The ordinary generating function of the polynomials (40) under the substi-
tutions x1 = x2 = x and y1 = y2 = y has the S-fraction

∞∑
n=0

Pn(x, x, y, y) t
n =

1

1−
yt

1−
xt

1−
2yt

1−
2xt

1−−
3yt

1− . . .

(30)

with coefficients

α2k−1 = ky, α2k = kx . (31)

This is the S-fraction for the homogenized Eulerian polynomials [35, section 79] [39,
Section 2.2]. When x = y = 1, it gives Euler’s [19, section 21] S-fraction for the sequence
(n!)n⩾0.

3.1.2 Master J-fraction and T-fraction

Fix a consistent tree-traversal algorithm A. Now let a = (aℓ,ℓ′)ℓ,ℓ′⩾0, b = (bℓ,ℓ′)ℓ,ℓ′⩾0,
c = (cℓ,ℓ′)ℓ,ℓ′⩾0, d = (dℓ,ℓ′)ℓ,ℓ′⩾0 be infinite sets of indeterminates, and define polynomials
Qn(a,b, c,d) by

Qn(a,b, c,d)
def
=

∑
T∈Bn

∏
N(v,T )=11

acroix(v,T ),nid(v,T )

∏
N(v,T )=00

bcroix(v,T ),nid(v,T ) ×∏
N(v,T )=10

ccroix(v,T ),nid(v,T )

∏
N(v,T )=01

dcroix(v,T ),nid(v,T ) . (32)

Since the vertex n is always a leaf, the polynomials (32) have a common factor b00 when
n ⩾ 1.

We have the following master J-fraction, which is implicit in [20] when the tree-
traversal algorithm is taken to be inorder (= symmetric) traversal; but we write it out
explicitly and allow any consistent tree-traversal algorithm.
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Theorem 9. The ordinary generating function of the polynomials Qn+1(a,b, c,d) has the
J-fraction

∞∑
n=0

Qn+1(a,b, c,d) tn =

b00

1− (c00 + d00) t−
a00(b01 + b10) t

2

1− (c01 + c10 + d01 + d10) t−
(a01 + a10)(b02 + b11 + b20) t

2

1− . . .

(33)

with coefficients

βn =

(n−1∑
ξ=0

aξ,n−1−ξ

)( n∑
ξ=0

bξ,n−ξ

)
(34a)

γn =
n∑

ξ=0

cξ,n−ξ +
n∑

ξ=0

dξ,n−ξ (34b)

Here we will derive Theorem 9 as a special case of Theorem 16.

We can now obtain a T-fraction from Theorem 9 by using odd contraction (Proposi-
tion 2):

Theorem 10. The ordinary generating function of the polynomials Qn(a,b, c,d) has the
T-fraction

∞∑
n=0

Qn(a,b, c,d) tn =

1

1−
b00 t

1− (c00 + d00 − a00 − b00) t−
a00 t

1−
(b01 + b10) t

1− (c01 + c10 + d01 + d10 − a01 − a10 − b01 − b10) t−
(a01 + a10) t

1− . . .

(35)
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with coefficients

α2k−1 =
k−1∑
ξ=0

bξ,k−1−ξ (36a)

α2k =
k−1∑
ξ=0

aξ,k−1−ξ (36b)

δ2k−1 = 0 (36c)

δ2k =
k−1∑
ξ=0

cξ,k−1−ξ +
k−1∑
ξ=0

dξ,k−1−ξ −
k−1∑
ξ=0

aξ,k−1−ξ −
k−1∑
ξ=0

bξ,k−1−ξ (36d)

If we now choose some specialization of the variables a,b, c,d that satisfies
k−1∑
ξ=0

aξ,k−1−ξ +
k−1∑
ξ=0

bξ,k−1−ξ =
k−1∑
ξ=0

cξ,k−1−ξ +
k−1∑
ξ=0

dξ,k−1−ξ , (37)

then obviously the weights (36c,d) become δ = 0, so that we have an S-fraction. There
are many ways that this can be done, but the simplest is to take c = a and d = b: that
is, we just consider the status of the left child and ignore the status of the right child. We
then have:

Corollary 11. The ordinary generating function of the polynomials Qn(a,b, a,b) has the
S-fraction

∞∑
n=0

Qn(a,b, a,b) tn =
1

1−
b00 t

1−
a00 t

1−
(b01 + b10) t

1−
(a01 + a10) t

1− . . .

(38)

with coefficients

α2k−1 =
k−1∑
ξ=0

bξ,k−1−ξ (39a)

α2k =
k−1∑
ξ=0

aξ,k−1−ξ (39b)

3.2 Increasing restricted ternary trees

We now generalize the results of the preceding subsection from increasing binary trees
to increasing restricted ternary trees. We write RT n for the set of increasing restricted
ternary trees on the vertex set [n].
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3.2.1 Simple J-fraction and T-fraction

We first introduce a polynomial in five variables that enumerates increasing restricted
ternary trees according to the node types: for n ⩾ 0, we define

Pn(x1, x2, y1, y2, w)
def
=

∑
T∈RT n

x
IT (101)
1 y

IT (000)
1 x

IT (100)
2 y

IT (001)
2 wIT (010) . (40)

Thus, the variables x1, y1, x2, y2, w are associated to the node types 101, 000, 100, 001,
010, respectively. In particular, for vertices without a middle child we have x1 or x2 when
a vertex has a left child, and y1 or y2 when it does not; we have a subscript 1 (resp. 2)
when the vertex has even (resp. odd) out-degree; and finally, we have w for a vertex with
a middle child. By convention P0 = 1 (corresponding to the empty tree); for n ⩾ 1, the
polynomial Pn always has a factor y1 since the vertex n is always a leaf. When w = 0,
(40) reduces to (25).

The polynomials (40) have a beautiful J-fraction:

Theorem 12. The ordinary generating function of the polynomials Pn+1(x1, x2, y1, y2, w)
has the J-fraction

∞∑
n=0

Pn+1(x1, x2, y1, y2, w) t
n =

y1

1− (x2 + y2 + w)t−
2x1y1 t

2

1− 2(x2 + y2 + w)t−
6x1y1t

2

1− . . .

(41)

with coefficients

γn = (n+ 1) (x2 + y2 + w) , βn = n(n+ 1)x1y1 . (42)

We will prove Theorem 12 in Section 5.1, as a special case of the more general “master”
J-fraction; we will also give a very simple alternate proof in Section 6. Specializing
Theorem 12 to w = 0 yields Theorem 6.

Specializing Theorem 12 to x1 = x2 = y1 = y2 = w = 1, we deduce that the sequence
of cardinalities (|RT n+1|)n⩾0 has a nice J-fraction:

Corollary 13. The ordinary generating function of the sequence (|RT n+1|)n⩾0 has the
J-fraction

∞∑
n=0

|RT n+1| tn =
1

1− 3t−
2t2

1− 6t
6t

1− 9t−
12t2

1− . . .

(43)

with coefficients
γn = 3(n+ 1) , βn = n(n+ 1) . (44)
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We now obtain a T-fraction from Theorem 12 by using odd contraction (Proposition 2):

Theorem 14. The ordinary generating function of the polynomials Pn(x1, x2, y1, y2, w)
has the T-fraction

∞∑
n=0

Pn(x1, x2, y1, y2, w) t
n

=
1

1−
y1t

1− (x2 + y2 + w − x1 − y1)t−
x1t

1−
2y1t

1− 2(x2 + y2 + w − x1 − y1)t−
2x1t

1− . . .

(45)

with coefficients

α2k−1 = ky1 (46a)

α2k = kx1 (46b)

δ2k−1 = 0 (46c)

δ2k = k (x2 + y2 + w − x1 − y1) (46d)

Indeed, it is straightforward to check that the weights (42) and (46) satisfy (12). Special-
izing Theorem 14 to w = 0 yields Theorem 7.

If we now choose some specialization of x1, x2, y1, y2 that satisfies x1+y1 = x2+y2, then
the weight (46d) simplifies to δ2k = kw. In particular, when x1 = x2 = y1 = y2 = w = 1,
we obtain:

Corollary 15. The ordinary generating function of the sequence (|RT n|)n⩾0 has the T-
fraction

∞∑
n=0

|RT n| tn =
1

1−
t

1− t−
t

1−
2t

1− 2t−
2t

1−
3t

1− 3t−
3t

1− . . .

(47)

with coefficients

α2k−1 = α2k = k , δ2k−1 = 0 , δ2k = k . (48)

This is the sequence (9) [29, A230008].
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3.2.2 Master J-fraction and T-fraction

Fix a consistent tree-traversal algorithm A. Now let a = (aℓ,ℓ′)ℓ,ℓ′⩾0, b = (bℓ,ℓ′)ℓ,ℓ′⩾0,
c = (cℓ,ℓ′)ℓ,ℓ′⩾0, d = (dℓ,ℓ′)ℓ,ℓ′⩾0, f = (fℓ,ℓ′)ℓ,ℓ′⩾0 be infinite sets of indeterminates, and define
polynomials Qn(a,b, c,d, f) by

Qn(a,b, c,d, f) =
∑

T∈RT n

∏
N(v,T )=101

acroix(v,T ),nid(v,T )

∏
N(v,T )=000

bcroix(v,T ),nid(v,T ) ×∏
N(v,T )=100

ccroix(v,T ),nid(v,T )

∏
N(v,T )=001

dcroix(v,T ),nid(v,T ) ×∏
N(v,T )=010

fcroix(v,T ),nid(v,T ) . (49)

Of course P0 = 1; for n ⩾ 1, the polynomial Qn always has a factor b00 since the vertex
n is always a leaf.

We have the following master J-fraction:

Theorem 16. The ordinary generating function of the polynomials Qn+1(a,b, c,d, f) has
the J-fraction

∞∑
n=0

Qn+1(a,b, c,d, f) tn =

b00

1− (c00 + d00 + f00) t−
a00(b01 + b10) t

2

1− (c01 + c10 + d01 + d10 + f01 + f10) t−
(a01 + a10)(b02 + b11 + b20) t

2

1− . . .

(50)

where the coefficients are defined as follows:

βn =

(n−1∑
ξ=0

aξ,n−1−ξ

)( n∑
ξ=0

bξ,n−ξ

)
(51a)

γn =
n∑

ξ=0

cξ,n−ξ +
n∑

ξ=0

dξ,n−ξ +
n∑

ξ=0

fξ,n−ξ (51b)

We will prove Theorem 16 in Section 5.1, by bijection onto a suitable class of labeled
Motzkin paths. When fℓ,ℓ′ = 0 for all ℓ, ℓ′ ⩾ 0, this yields Theorem 9.

Once again we can obtain a T-fraction by using odd contraction (Proposition 2):

Theorem 17. The ordinary generating function of the polynomials Qn(a,b, c,d, f) has
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the T-fraction

∞∑
n=0

Qn(a,b, c,d, f) tn =

1

1−
b00 t

1− (c00+d00+f00−a00−b00) t−
a00 t

1−
(b01+b10) t

1− (c01+c10+d01+d10+f01+f10−a01−a10−b01−b10) t−
(a01+a10) t

1− . . .

(52)

with coefficients

α2k−1 =
k−1∑
ξ=0

bξ,k−1−ξ (53a)

α2k =
k−1∑
ξ=0

aξ,k−1−ξ (53b)

δ2k−1 = 0 (53c)

δ2k =
k−1∑
ξ=0

cξ,k−1−ξ +
k−1∑
ξ=0

dξ,k−1−ξ +
k−1∑
ξ=0

fξ,k−1−ξ −
k−1∑
ξ=0

aξ,k−1−ξ −
k−1∑
ξ=0

bξ,k−1−ξ

(53d)

If we now choose some specialization of the variables a,b, c,d that satisfies

k−1∑
ξ=0

aξ,k−1−ξ +
k−1∑
ξ=0

bξ,k−1−ξ =
k−1∑
ξ=0

cξ,k−1−ξ +
k−1∑
ξ=0

dξ,k−1−ξ , (54)

then obviously the weight (53d) simplifies to

δ2k =
k−1∑
ξ=0

fξ,k−1−ξ . (55)

There are many ways that this can be done, but the simplest is to take c = a and d = b:
that is, if the vertex does not have a middle child, we just consider the status of the left
child and ignore the status of the right child. We then have:
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Corollary 18. The ordinary generating function of the polynomials Qn(a,b, a,b, f) has
the T-fraction

∞∑
n=0

Qn(a,b, a,b, f) tn =
1

1−
b00 t

1− f00 t−
a00 t

1−
(b01 + b10) t

1− (f01 + f10) t−
(a01 + a10) t

1− . . .

(56)

with coefficients

α2k−1 =
k−1∑
ξ=0

bξ,k−1−ξ (57a)

α2k =
k−1∑
ξ=0

aξ,k−1−ξ (57b)

δ2k−1 = 0 (57c)

δ2k =
k−1∑
ξ=0

fξ,k−1−ξ

(57d)

3.2.3 A more general master T-fraction

But there is a more general way than Corollary 18 to obtain a T-fraction from the J-
fraction of Theorem 16, which we introduce now because it foreshadows in simpler form
what we will do in Section 3.3.2 for interval-labeled trees. Rather than take c = a and
d = b, we introduce indeterminates â = (âℓ,ℓ′)ℓ,ℓ′⩾0 and b̂ = (b̂ℓ,ℓ′)ℓ,ℓ′⩾0 with two subscripts,
and indeterminates µ = (µℓ)ℓ⩾0 and ν = (νℓ)ℓ⩾0 with one subscript, and then specialize
the formulae of the preceding subsection to

aℓ,ℓ′ = âℓ,ℓ′ µℓ+ℓ′+1 (58a)

bℓ,ℓ′ = b̂ℓ,ℓ′ νℓ+ℓ′−1 (58b)

cℓ,ℓ′ = âℓ,ℓ′ νℓ+ℓ′ (58c)

dℓ,ℓ′ = b̂ℓ,ℓ′ µℓ+ℓ′ (58d)

That is, the weights â and b̂ concern the status of the left child, taking full account of
both croix and nid; while the weights µ and ν concern the status of the right child, but
taking account only of lev = croix + nid. Another way of saying this is that we have
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assigned vertex weights

wt(v) =



âcroix(v,T ),nid(v,T ) µlev(v,T )+1 if N(v, T ) = 101

b̂croix(v,T ),nid(v,T ) νlev(v,T )−1 if N(v, T ) = 000

âcroix(v,T ),nid(v,T ) νlev(v,T ) if N(v, T ) = 100

b̂croix(v,T ),nid(v,T ) µlev(v,T ) if N(v, T ) = 001

fcroix(v,T ),nid(v,T ) if N(v, T ) = 010

(59)

When µ = ν = 1, this reduces to the previously considered case c = a and d = b.
Using the weights (59), we then define polynomials Q⋆

n(â, b̂,µ,ν, f) by

Q⋆
0(â, b̂,µ,ν, f) = 1 (60a)

Q⋆
n(â, b̂,µ,ν, f) = µ0 b̂00

∑
T∈RT n

n−1∏
v=1

wt(v) for n ⩾ 1 (60b)

Note that vertex n is not given a weight; instead we have the prefactor µ0 b̂00. Note also
that any leaf v ⩽ n− 1 must have lev(v, T ) ⩾ 1, since the parent of vertex v + 1 must be
< v; this means that the subscript on ν is always ⩾ 0, as it should be.

We then have the following theorem:

Theorem 19. The ordinary generating function of the polynomials Q⋆
n(â, b̂,µ,ν, f) has

the T-fraction
∞∑
n=0

Q⋆
n(â, b̂,µ,ν, f) t

n =
1

1−
µ0 b̂00t

1− f00t−
ν0 â00t

1−
µ1(b̂01 + b̂10)t

1− (f01 + f10)t−
ν1(â01 + â10)t

1− . . .

(61)

with coefficients

α2k−1 = µk−1

(
k−1∑
ξ=0

b̂ξ,k−1−ξ

)
(62a)

α2k = νk−1

(
k−1∑
ξ=0

âξ,k−1−ξ

)
(62b)

δ2k−1 = 0 (62c)

δ2k =
k−1∑
ξ=0

fξ,k−1−ξ (62d)
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When µ = ν = 1, this reduces to Corollary 18.

Proof of Theorem 19, assuming Theorem 16. We first define polynomials
Q̂n(â, b̂,µ,ν, f) by making the substitutions (58) in the polynomials (49). Since for n ⩾ 1

this gives the vertex n a weight b00 = b̂00ν−1, we have

Q⋆
n(â, b̂,µ,ν, f) = µ0 (ν−1)

−1 Q̂n(â, b̂,µ,ν, f) for n ⩾ 1 . (63)

Now, making the substitutions (58) in Theorem 16 shows that
∞∑
n=0

Q̂n+1(â, b̂,µ,ν, f) is

given by the J-fraction (50) with b00 = b̂00ν−1. Therefore,
∞∑
n=0

Q⋆
n+1(â, b̂,µ,ν, f) is given

by the same J-fraction but with the top coefficient b00 replaced by µ0b̂00. Applying odd
contraction (Proposition 2) to this latter J-fraction, with α and δ defined by (62), proves
Theorem 19: the key point is that (62a) gives α1 = µ0b̂00. □

We will see in Section 3.3.2 that Theorem 19 is a special case of a more general result
(Theorem 23) for increasing interval-labeled restricted ternary trees (for which we will
provide a bijective proof in Section 5.2).

3.3 Increasing interval-labeled restricted ternary trees

Finally, we state our results for increasing interval-labeled restricted ternary trees, which
are counted by the sequence (7). We write IRT n for the set of increasing interval-labeled
restricted ternary trees on the label set [0, n].

3.3.1 Simple T-fraction

We first introduce a polynomial in six variables that enumerates increasing interval-labeled
restricted ternary trees on the label set [0, n] according to the node types and the label
surplus:

Pn(x1, x2, y1, y2, w, z)
def
=

∑
T∈IRT n

x
I′T (101)
1 y

I′T (000)
1 x

I′T (100)
2 y

I′T (001)
2 wI′T (010)zIT (ε) . (64)

Please note that we are here using the weights I ′T (s) defined in (17): that is, we are
giving node-type weights only to non-root vertices. (Of course, using I ′T (s) instead of
IT (s) matters only for the node types 000 and 100, since these are the only possible node
types for the root in an increasing interval-labeled restricted ternary tree.) As before,
IT (ε) is the label surplus of the tree T , as defined in (18)/(19). Thus, the variables
x1, y1, x2, y2, w are associated to the node types 101, 000, 100, 001, 010, respectively,
while z is associated to the label surplus. Note that Pn is homogeneous of degree n in the
six variables x1, x2, y1, y2, w, z.

The polynomials (64) do not have a nice J-fraction; and as far as we know they do
not have a nice T-fraction either. However, under the two specializations x1 = x2 and
y1 = y2, they have a beautiful T-fraction:
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Theorem 20. The ordinary generating function of the polynomial (64) specialized to
x1 = x2 = x and y1 = y2 = y has the T-fraction

∞∑
n=0

Pn(x, x, y, y, w, z) t
n

=
1

1− zt−
yt

1− wt−
xt

1− zt−
2yt

1− 2wt−
2xt

1− zt−
3yt

1− 3wt−
3xt

1− . . .

(65)

with coefficients:

α2k−1 = ky (66a)

α2k = kx (66b)

δ2k−1 = z (66c)

δ2k = kw (66d)

We will prove Theorem 20 in Section 5.2, as a special case of the more general “master”
T-fraction; we will also give a very simple alternate proof in Section 6.3.

Setting x = y = w = z = 1, we obtain the following simple corollary:

Corollary 21. The ordinary generating function of the sequence (an)n⩾0 where an =
|IRT n| has the T-fraction

∞∑
n=0

ant
n =

1

1− t−
t

1− t−
1t

1− t−
2t

1− 2t−
2t

1− t−
3t

1− 3t−
3t

1− . . .

(67)

with coefficients
α2k−1 = α2k = δ2k = k , δ2k−1 = 1 . (68)
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This is the sequence shown in (7).

In fact, we can further generalize Theorem 20 to have only one specialization instead
of two; we state this now:

Theorem 22. The ordinary generating function of the polynomial (64) specialized to
y2 = x1 + y1 − x2 has the T-fraction

∞∑
n=0

Pn(x1, x2, y1, y2, w, z) t
n

=
1

1− zt−
y1t

1− wt−
x1t

1− zt−
2y1t

1− 2wt−
2x1t

1− zt−
3y1t

1− 3wt−
3x1t

1− . . .

(69)

with coefficients:

α2k−1 = ky1 (70a)

α2k = kx1 (70b)

δ2k−1 = z (70c)

δ2k = kw (70d)

Note that the result does not depend on the variable x2. In Section 6.3 we will give
an algebraic proof of Theorem 22, based on Proposition 3.

3.3.2 Master T-fraction

We now go farther, and introduce a polynomial in six infinite families of indeterminates:
â = (âℓ,ℓ′)ℓ,ℓ′⩾0, b̂ = (b̂ℓ,ℓ′)ℓ,ℓ′⩾0 and f = (fℓ,ℓ′)ℓ,ℓ′⩾0 with two subscripts, and µ = (µℓ)ℓ⩾0,
ν = (νℓ)ℓ⩾0 and e = (eℓ)ℓ⩾0 with one subscript. The notation is thus the same as in
Section 3.2.3, together with the new indeterminates e.

Let T ∈ IRT n be an increasing interval-labeled restricted ternary tree on the label set
[0, n], and let v be a vertex of T with label set Lv = {l, l+ 1, . . . , l+ j}; here j = |Lv| − 1
is the label surplus of the vertex v. To each vertex v we assign a weight wt(v) as follows:

• If l = 0 and l + j = n, we assign weight wt(v) = en0 . (71)

• If l = 0 and l + j < n, we assign weight wt(v) = µ0e
j
0 . (72)

• If l > 0 and l + j = n, we assign weight wt(v) = b̂00e
j
0 . (73)

• If l > 0 and l + j < n, we assign weight
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wt(v) =



âcroix(v,T ),nid(v,T ) µlev(v,T )+1 (elev(v,T )+1)
j if N(v, T ) = 101

b̂croix(v,T ),nid(v,T ) νlev(v,T )−1 (elev(v,T ))
j if N(v, T ) = 000

âcroix(v,T ),nid(v,T ) νlev(v,T ) (elev(v,T )+1)
j if N(v, T ) = 100

b̂croix(v,T ),nid(v,T ) µlev(v,T ) (elev(v,T ))
j if N(v, T ) = 001

fcroix(v,T ),nid(v,T ) if N(v, T ) = 010

(74)

(The reasons for these weights will be seen in Section 5.2 in the context of the bijective
proof.)

Thus, the case (71) corresponds to a trivial tree (i.e., a tree consisting only of the
root), in which the root v has label surplus n. The case (72) corresponds to v being the
root of a nontrivial tree. The case (73) corresponds to v being the final vertex (i.e., the
vertex having n in its label set) of a nontrivial tree. And finally, the case (74) corresponds
to v being neither the root nor the final vertex.

Notice that a vertex v with no middle child gets a letter â if it has a left child, and
b̂ if not, with subscripts indicating croix and nid; it also gets a letter µ if it has a right
child, and ν if not, with a single subscript indicating lev = croix + nid. A vertex v with
a middle child gets a letter f. And finally, a vertex with |Lv| > 1 gets a letter e raised to
the power |Lv| − 1 (which is the label surplus of v).

Note also that if l + j < n and N(v, T ) = 000 (i.e., v is a leaf), then we necessarily
have lev(v, T ) ⩾ 1, since some vertex higher-numbered than v must have a parent that is
lower-numbered than v; then the subscript on ν is ⩾ 0.

Now define polynomials Qn(â, b̂,µ,ν, e, f) as

Qn(â, b̂,µ,ν, e, f) =
∑

T∈IRT n

∏
v∈V (T )

wt(v) . (75)

For instance, the first few Qn (cf. Figure 3) are

Q0 = 1 (76a)

Q1 = µ0b̂00 + e0 (76b)

Q2 = (µ0b̂00 + e0)
2 + µ0b̂00(ν0â00 + f00) (76c)

We have the following theorem:

Theorem 23. The ordinary generating function of the polynomials Qn(â, b̂,µ,ν, e, f) has
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the T-fraction

∞∑
n=0

Qn(â, b̂,µ,ν, e, f) tn =

1

1− e0t−
µ0 b̂00t

1− f00t−
ν0 â00t

1− e1t−
µ1(b̂01 + b̂10)t

1− (f01 + f10)t−
ν1(â01 + â10)t

1− . . .

(77)

where the coefficients are defined as follows:

α2k−1 = µk−1

(
k−1∑
ξ=0

b̂ξ,k−1−ξ

)
(78a)

α2k = νk−1

(
k−1∑
ξ=0

âξ,k−1−ξ

)
(78b)

δ2k−1 = ek−1 (78c)

δ2k =
k−1∑
ξ=0

fξ,k−1−ξ (78d)

We will prove Theorem 23 in Section 5.2, by bijection onto a suitable class of labeled
Schröder paths.

Note that when eℓ = 0 for all ℓ, the tree T is forced to be single-labeled, and we simply
have the a restricted ternary tree T ′ on the vertex set [n] together with a root vertex 0
that has (when n ⩾ 1) the vertex 1 (which is the root of T ′) as its left child. When n = 0,
the tree T (which consists solely of the root 0) gets a weight Q0 = 1, which also equals
Q⋆

0 = 1 from (60a). When n ⩾ 1, the root of T (vertex 0) gets weight µ0 from (72), and
the vertex n gets weight b̂00 from (73); all other vertices get the same weight (74) as in
(59). This gives the same prefactor µ0 b̂00 as in (60b). It follows that

Qn(â, b̂,µ,ν,0, f) = Q⋆
n(â, b̂,µ,ν, f) , (79)

so that Theorem 19 is the special case e = 0 of Theorem 23.

4 Preliminaries for the proofs

Our proofs are based on Flajolet’s [20] combinatorial interpretation of continued fractions
in terms of Dyck and Motzkin paths and its generalization [17, 23, 26, 30, 37] to Schröder
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paths, together with some bijections mapping our tree models to labeled Motzkin or
Schröder paths. In Sections 4.1 and 4.2 we review briefly these two ingredients and fix our
notation. At the end of Section 4.1 we will also give a combinatorial interpretation/proof
of Proposition 3.

4.1 Combinatorial interpretation of continued fractions

Recall that a Motzkin path of length n ⩾ 0 is a path ω = (ω0, . . . , ωn) in the right
quadrant N × N, starting at ω0 = (0, 0) and ending at ωn = (n, 0), whose steps sj =
ωj − ωj−1 are (1, 1) [“rise” or “up step”], (1,−1) [“fall” or “down step”] or (1, 0) [“level
step”]. We write hj for the height of the Motzkin path at abscissa j, i.e. ωj = (j, hj);
note in particular that h0 = hn = 0. We write Mn for the set of Motzkin paths of
length n, and M =

⋃∞
n=0Mn. A Motzkin path is called a Dyck path if it has no level

steps. A Dyck path always has even length; we write D2n for the set of Dyck paths of
length 2n, and D =

⋃∞
n=0 D2n.

Let a = (ai)i⩾0, b = (bi)i⩾1 and c = (ci)i⩾0 be indeterminates; we will work in the
ring Z[[a,b, c]] of formal power series in these indeterminates. To each Motzkin path ω
we assign a weight W (ω) ∈ Z[a,b, c] that is the product of the weights for the individual
steps, where a rise starting at height i gets weight ai, a fall starting at height i gets
weight bi, and a level step at height i gets weight ci. Flajolet [20] showed that the
generating function of Motzkin paths can be expressed as a continued fraction:

Theorem 24 (Flajolet’s master theorem). We have

∑
ω∈M

W (ω) =
1

1− c0 −
a0b1

1− c1 −
a1b2

1− c2 −
a2b3

1− · · ·

(80)

as an identity in Z[[a,b, c]].

In particular, if ai−1bi = βit
2 and ci = γit (note that the parameter t is conjugate to

the length of the Motzkin path), we have

∞∑
n=0

tn
∑

ω∈Mn

W (ω) =
1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− · · ·

, (81)

so that the generating function of Motzkin paths with height-dependent weights is given
by the J-fraction (3). Similarly, if ai−1bi = αit and ci = 0 (note that t is now conjugate
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to the semi-length of the Dyck path), we have
∞∑
n=0

tn
∑

ω∈D2n

W (ω) =
1

1−
α1t

1−
α2t

1− · · ·

, (82)

so that the generating function of Dyck paths with height-dependent weights is given by
the S-fraction (2).

Let us now show how to handle Schröder paths within this framework. A Schröder
path of length 2n (n ⩾ 0) is a path ω = (ω0, . . . , ω2n) in the right quadrant N × N,
starting at ω0 = (0, 0) and ending at ω2n = (2n, 0), whose steps are (1, 1) [“rise” or “up
step”], (1,−1) [“fall” or “down step”] or (2, 0) [“long level step”]. We write sj for the step
starting at abscissa j − 1. If the step sj is a rise or a fall, we set sj = ωj − ωj−1 as
before. If the step sj is a long level step, we set sj = ωj+1 − ωj−1 and leave ωj undefined;
furthermore, in this case there is no step sj+1. We write hj for the height of the Schröder
path at abscissa j whenever this is defined, i.e. ωj = (j, hj). Please note that ω2n = (2n, 0)
and h2n = 0 are always well-defined, because there cannot be a long level step starting at
abscissa 2n− 1. Note also that a long level step at even (resp. odd) height can occur only
at an odd-numbered (resp. even-numbered) step. We write S2n for the set of Schröder
paths of length 2n, and S =

⋃∞
n=0 S2n.

There is an obvious bijection between Schröder paths and Motzkin paths: namely,
every long level step is mapped onto a level step. If we apply Flajolet’s master theorem
with ai−1bi = αit and ci = δi+1t to the resulting Motzkin path (note that t is now conjugate
to the semi-length of the underlying Schröder path), we obtain

∞∑
n=0

tn
∑
ω∈S2n

W (ω) =
1

1− δ1t−
α1t

1− δ2t−
α2t

1− · · ·

, (83)

so that the generating function of Schröder paths with height-dependent weights is given
by the T-fraction (1). More precisely, every rise gets a weight 1, every fall starting at
height i gets a weight αi, and every long level step at height i gets a weight δi+1. This
combinatorial interpretation of T-fractions in terms of Schröder paths was found recently
by several authors [23, 26,30,37].

Since the up steps i → i + 1 and the down steps i + 1 → i in a Schröder path can
be paired, we may alternatively distribute the weights on rises and falls by assigning a
weight 1 to all rises and falls starting at even heights, a weight α2k to a rise starting at
odd height 2k− 1, and a weight α2k−1 to a fall starting at odd height 2k− 1; a long level
step at height i gets a weight δi+1 as before.

Remark 25. With these preliminaries in place, we can now give a combinatorial interpre-
tation/proof of Proposition 3:
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Combinatorial Proof of Proposition 3. We will provide a bijective interpreta-
tion of the identity (15), which is equivalent to Proposition 3. We use our alternative
assignment of weights on Schröder paths.

By the initial long level steps of a Schröder path ω, we shall refer to the long level
steps occurring before the first rise, if any. We will add the adjective non-initial to refer
to all other long level steps. Also, by a restricted Schröder path, we mean a Schröder path
with no long level steps at even heights. Given a Schröder path ω, we define a restricted
Schröder path ω♭ by simply removing all the long level steps at even heights in ω. The
map ω 7→ ω♭ is clearly a surjection.

Notice that a non-initial long level step at an even height is preceded either by another
non-initial long level step at the same height or by a rise or fall starting at an odd height.
With this observation, we can immediately describe the preimage of a restricted Schröder
path ω♭ and hence prove equation (15): Firstly, we may choose to insert any number of

initial long level steps to ω♭; this contributes the prefactor
1

1− δ1t
on the left-hand side.

For a rise from height 2k−1 to height 2k (which has weight α2k), we may choose to insert
any number of non-initial long level steps at height 2k after this rise; this justifies the
substitution α2k 7→ α2k

1− δ2k+1t
. Likewise, for a fall from height 2k − 1 to height 2k − 2

(which has weight α2k−1), we may choose to insert any number of non-initial long level
steps at height 2k − 2 after this fall; this justifies the substitution α2k−1 7→ α2k−1

1− δ2k−1t
.

□

4.2 Labeled Dyck, Motzkin and Schröder paths

Let A = (Ah)h⩾0, B = (Bh)h⩾1 and C = (Ch)h⩾0 be sequences of finite sets. An (A,B, C)-
labeled Motzkin path of length n is a pair (ω, ξ) where ω = (ω0, . . . , ωn) is a Motzkin
path of length n, and ξ = (ξ1, . . . , ξn) is a sequence satisfying

ξi ∈


A(hi−1) if step i is a rise (i.e. hi = hi−1 + 1)

B(hi−1) if step i is a fall (i.e. hi = hi−1 − 1)

C(hi−1) if step i is a level step (i.e. hi = hi−1)

(84)

where hi−1 (resp. hi) is the height of the Motzkin path before (resp. after) step i. [For
typographical clarity we have here written A(h) as a synonym for Ah, etc.] We call ξi
the label associated to step i. We call the pair (ω, ξ) an (A,B)-labeled Dyck path if
ω is a Dyck path (in this case C plays no role). We denote by Mn(A,B,C) the set of
(A,B,C)-labeled Motzkin paths of length n, and by D2n(A,B) the set of (A,B)-labeled
Dyck paths of length 2n.

We define a (A,B, C)-labeled Schröder path in an analogous way; now the sets Ch
refer to long level steps. We denote by S2n(A,B,C) the set of (A,B,C)-labeled Schröder
paths of length 2n.
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Let us stress that the sets Ah, Bh and Ch are allowed to be empty. Whenever this
happens, the path ω is forbidden to take a step of the specified kind starting at the
specified height.

Remark 26. What we have called an (A,B,C)-labeled Motzkin path is (up to small
changes in notation) called a path diagramme by Flajolet [20, p. 136] and a history by
Viennot [43, p. II-9]. Often the label sets Ah,Bh, Ch are intervals of integers, e.g. Ah =
{1, . . . , Ah} or {0, . . . , Ah}; in this case the triplet (A,B,C) of sequences of maximum
values is called a possibility function. On the other hand, it is sometimes useful to employ
labels that are pairs of integers (e.g. [39, Section 6.2] and [10, Section 7]). It therefore
seems preferable to state the general theory without any specific assumption about the
nature of the label sets. ■

Following Flajolet [20, Proposition 7A], we can state a “master J-fraction” for
(A,B,C)-labeled Motzkin paths. Let a = (ah,ξ)h⩾0, ξ∈A(h), b = (bh,ξ)h⩾1, ξ∈B(h) and c =
(ch,ξ)h⩾0, ξ∈C(h) be indeterminates; we give an (A,B,C)-labeled Motzkin path (ω, ξ) a
weight W (ω, ξ) that is the product of the weights for the individual steps, where a rise
starting at height h with label ξ gets weight ah,ξ, a fall starting at height h with label ξ
gets weight bh,ξ, and a level step at height h with label ξ gets weight ch,ξ. Then:

Theorem 27 (Flajolet’s master theorem for labeled Motzkin paths). We have
∞∑
n=0

tn
∑

(ω,ξ)∈Mn(A,B,C)

W (ω, ξ) =
1

1− c0t−
a0b1t

2

1− c1t−
a1b2t

2

1− c2t−
a2b3t

2

1− · · ·

(85)

as an identity in Z[a,b, c][[t]], where

ah =
∑

ξ∈A(h)

ah,ξ , bh =
∑

ξ∈B(h)

bh,ξ , ch =
∑

ξ∈C(h)

ch,ξ . (86)

This is an immediate consequence of Theorem 24 together with the definitions.
By specializing to c = 0 and replacing t2 by t, we obtain the corresponding theorem

for (A,B)-labeled Dyck paths:

Corollary 28 (Flajolet’s master theorem for labeled Dyck paths). We have
∞∑
n=0

tn
∑

(ω,ξ)∈D2n(A,B)

W (ω, ξ) =
1

1−
a0b1t

1−
a1b2t

1−
a2b3t

1− · · ·

(87)

as an identity in Z[a,b][[t]], where ah and bh are defined by (86).
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Similarly, for labeled Schröder paths we have:

Theorem 29 (Flajolet’s master theorem for labeled Schröder paths). We have

∞∑
n=0

tn
∑

(ω,ξ)∈S2n(A,B,C)

W (ω, ξ) =
1

1− c0t−
a0b1t

1− c1t−
a1b2t

1− c2t−
a2b3t

1− · · ·

(88)

as an identity in Z[a,b, c][[t]], where ah, bh, ch are defined by (86), with ch,ξ now referring
to long level steps.

Bijective proofs

5 Bijective proofs of Theorems 16 and 23

Continued fractions for increasing binary trees go back to the celebrated bijection of
Françon and Viennot [21,22]: though ordinarily understood as a bijection from permuta-
tions to labeled Motzkin paths, the Françon–Viennot bijection can also be understood, by
virtue of the standard bijection from increasing binary trees to permutations [40, pp. 44–
45], as a bijection from increasing binary trees to labeled Motzkin paths; in this form it
was first written down by Flajolet [20] (see also [44, Ch. 4b]). This bijection was redis-
covered by Albert, Linton and Ruškuc [1], and in the permutation-patterns community it
is often referred to as insertion encoding .

This bijection has recently been generalized by Kuba and Varvak [28] and Pétréolle,
Sokal and Zhu [33] to the setting of increasing trees with higher arity, and equivalently to
generalized Stirling permutations. We will provide here yet another generalization.

5.1 Bijection for increasing restricted ternary trees: Proof of Theorem 16

In this section we will construct a bijection from increasing restricted ternary trees on
the vertex set [n + 1] to labeled Motzkin paths of length n, as follows: Given a tree
T ∈ RT n+1, we first define the path ω and then define the labels ξi, which will lie in the
sets

Ah = {0, . . . , h} (89a)
Bh = {0, . . . , h} for h ⩾ 1 (89b)
Ch = {1, 2, 3} × {0, . . . , h} (89c)

A level step that has label ξh ∈ {i} × {0, . . . , h} will be called a level step of type i
(i = 1, 2, 3).

Step 1: Definition of the Motzkin path.
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Given a restricted ternary tree T ∈ RT n+1, we classify the indices i ∈ [n] according to
their node type. We then define a Motzkin path ω = (ω0, . . . , ωn) starting at ω0 = (0, 0)
and ending at ωn = (n, 0), with steps s1, . . . , sn as follows:

• If N(i, T ) = 101, si is a rise.

• If N(i, T ) = 000, si is a fall.

• If N(i, T ) = 100, 010 or 001, si is a level step of type 1, 2 or 3, respectively.

These definitions can equivalently be written as

hi − hi−1 = deg(i) − 1 . (90)

Please note also that no step is assigned to vertex n+ 1, which is anyway always a leaf.
It is clear that ω consists of n steps which are rises, falls and level steps. Thus, it

remains to show that ω always stays on or above the x-axis and that it ends at (n, 0). We
will do this by obtaining a precise interpretation of the heights:

Lemma 30 (Interpretation of the heights). The height of ω at position i is given by

hi = lev(i+ 1, T ) . (91)

In particular, hi ⩾ 0 and hn = lev(n+ 1, T ) = 0.

Proof. We proceed by induction. By definition, the path ω starts at height h0 = 0.
On the other hand, the root is here vertex 1; and was observed following (20), we have
lev(root, T ) = 0. This proves the base case i = 0 of (91).

Consider now i ⩾ 1, and assume that hi−1 = lev(i, T ). We will compare lev(i+ 1, T )
with lev(i, T ), and we will show that

lev(i+ 1, T )− lev(i, T ) = deg(i)− 1 . (92)

By (90), this will complete the proof of the inductive step.
Let us start from the definitions

lev(i, T ) = #{j ∈ [n+ 1] : p(j) < i < j} (93a)

lev(i+ 1, T ) = #{j ∈ [n+ 1] : p(j) < i+ 1 < j} (93b)

We see that:

• A vertex j contributes to both lev(i, T ) and lev(i+1, T ) in case p(j) < i < i+1 < j.

• A vertex j contributes to lev(i, T ) but not to lev(i + 1, T ) in case p(j) < i and
j = i + 1 — or in other words, j = i + 1 is not a child of i. [Note that we must
always have p(i+ 1) ⩽ i.]
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• A vertex j contributes to lev(i + 1, T ) but not to lev(i, T ) in case p(j) = i and
j > i+ 1 — or in other words, j is a child of i other than i+ 1.

It follows that

lev(i+ 1, T ) − lev(i, T )

=
(
deg(i) − I[i+ 1 is a child of i]

)
− I[i+ 1 is not a child of i] (94a)

= deg(i)− 1 . (94b)

(Here I[proposition] = 1 if proposition is true, and 0 if it is false.) □

Remark 31. For a general increasing tree (not necessarily restricted ternary), the steps
(90) define in general an upper-Łukasiewicz path, i.e. hi − hi−1 ∈ {−1, 0, 1, 2, . . .}. The
key identity (92) continues to hold in this generality: see [32, Lemma 3.3] and [38]. ■

Step 2: Definition of the labels ξi. Fix a consistent tree-traversal algorithm A. We
will now describe the labels. We assign labels to the steps according to the status of the
corresponding vertices as follows:

ξi
def
= #{j : p(j) < i < j and j <A i} (95)

where <A is the total order on vertices given by the tree-traversal algorithm A. In other
words,

ξi = nid(i, T ) (96)

as defined in (21). To verify that the inequalities (89) are satisfied, we need to check
that 0 ⩽ ξi ⩽ hi−1, where hi−1 is the starting height of step si. The lower bound is
immediate from the definition of ξi. For the upper bound, notice that from Lemma 30 it
follows hi−1 = lev(i, T ). Thus, we need to show that ξi ⩽ lev(i, T ), which is clear from
the definitions (95)/(20). In fact, we also have an interpretation of the difference in terms
of the statistic croix:

hi−1 − ξi = lev(i, T )− ξi = croix(i, T ) (97)

by (22).

Step 3: Proof of bijection. We prove that the mapping T 7→ (ω, ξ) is a bijection,
by constructing the inverse bijection. To do this, we first use the path ω to identify the
node types of the vertices. We will then use the labels ξ to glue the vertices together and
construct our restricted ternary tree T ∈ RT n; the details are as follows.

We first define a class of intermediate objects in our bijection: a slotted restricted
ternary tree is an increasing restricted ternary tree whose set of vertex labels is [i]∪ {∞}
but we now allow the label ∞ to be assigned to multiple vertices (all of which must be
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leaves). (We think of the vertices labeled ∞ as placeholders where new vertices may be
inserted into the tree in the future.)

Given a tree T ∈ RT n+1, we define the tree T |i to be the subtree of T consisting
of vertices {1, 2, . . . , i} along with their children, in which the vertices with labels > i
are relabeled to ∞. Clearly, T |i is a slotted restricted ternary tree, and T |n+1 = T .
By the history of tree T , we will mean the sequence of slotted restricted ternary trees
T |1 → T |2 → . . . → T |n+1. Notice that for i < n+1, the number of vertices labeled ∞ in
the tree T |i is the number of vertices ⩾ i+1 in T whose parents are ⩽ i: by (93b) this is
lev(i+ 1, T ) + 1.

We are now ready to build the tree T from the pair (ω, ξ) by successively reading
the steps si and the labels ξi, using which we construct T |i from T |i−1. We select the
(ξi + 1)-th vertex labeled ∞ in the traversal algorithm A applied to T |i−1, and rename
this vertex to i. And then we choose to add children (labeled ∞) to vertex i, depending
on the status of the step si, as follows:

• If step si is a rise, we add a left child and a right child to i, and both children get
the label ∞.

• If step si is a fall, we do not add any children.

• If step si is a level step of type 1, we add a left child with label ∞.

• If step si is a level step of type 2, we add a middle child with label ∞.

• If step si is a level step of type 3, we add a right child with label ∞.

Finally, at the end of this process, the tree T |n will only contain a single vertex labeled
∞; we rename this vertex to n+ 1, thereby constructing T = T |n+1.

Step 4: Computation of the weights. We can now compute the weights associated
to the Motzkin path ω in Theorem 27, which we recall are ah,ξ for a rise starting at height
h with label ξ, bh,ξ for a fall starting at height h with label ξ, and ch,ξ for a level step
starting at height h with label ξ. We do this by putting together the information collected
in the description of the bijection. We write out the contribution of step i of the path ω
as per the different node types:

(a) Rise from height h to height h+ 1:

– This step corresponds to a vertex i having node type N(i, T ) = 101, so from
(49) it contributes the letter a.

– From (95)/(96) we know that ξi = nid(i, T ), and from (97) we get h − ξi =
croix(i, T ).

From (49), we get that the weight for this step is

ah,ξ = ah−ξ,ξ (98)
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(b) Fall from height h to height h− 1:

– This step corresponds to a vertex i having node type N(i, T ) = 000, so from
(49) it contributes the letter b.

– Once again we have ξi = nid(i, T ) and h− ξi = croix(i, T ).

From (49), we get that the weight for this step is

bh,ξ = bh−ξ,ξ (99)

(c) Level step at height h:

– This step corresponds to a vertex i having node type N(i, T ) = 100, 010 or
001, so from (49) it contributes the letter c, f or d, respectively.

– Once again we have ξi = nid(i, T ) and h− ξi = croix(i, T ).

From (49), we get that the weight for this step is

ch,ξ = ch−ξ,ξ + dh−ξ,ξ + fh−ξ,ξ (100)

Putting this all together in Theorem 27, we obtain a J-fraction with

βh = (rise from h− 1 to h) × (fall from h to h− 1)

=

(h−1∑
ξ=0

ah−1−ξ,ξ

)( h∑
ξ=0

bh−ξ,ξ

)
(101)

γh = level step at height h

=
h∑

ξ=0

ch−ξ,ξ +
h∑

ξ=0

dh−ξ,ξ +
h∑

ξ=0

fh−ξ,ξ (102)

This completes the proof of Theorem 16. □

We can now deduce Theorem 12 as a corollary:

Proof of Theorem 12. It suffices to make the substitutions

aℓ,ℓ′ = x1 , bℓ,ℓ′ = y1 , cℓ,ℓ′ = x2 , dℓ,ℓ′ = y2 , fℓ,ℓ′ = w (103)

in Theorem 16. □
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5.2 Bijection for increasing interval-labeled restricted ternary trees: Proof
of Theorem 23

In this section we will construct a bijection from increasing interval-labeled restricted
ternary trees on the label set [0, n] to labeled Schröder paths of length 2n, as follows:
Given a tree T ∈ IRT n, we first define the path ω and then define the labels ξi, which
will lie in the sets

Ah = {0} for h even (104a)
Ah = {0, . . . , ⌊h/2⌋} for h odd (104b)
Bh = {0} for h even (104c)
Bh = {0, . . . , ⌊h/2⌋} for h odd (104d)
Ch = {0} for h even (104e)
Ch = {0, . . . , ⌊h/2⌋} for h odd (104f)

Notice that only steps starting at an odd height may have a non-unique choice of label.
We will then interpret the heights and labels, which will show that our path and labels
are well-defined. Finally, we will prove that the map T 7→ (ω, ξ) is indeed a bijection, by
describing the inverse bijection.

Step 1: Definition of the Schröder path. Recall that in an increasing interval-
labeled restricted ternary tree T ∈ IRT n, the vertex labels are disjoint intervals in [0, n].
The vertices therefore have a natural total order, obtained by comparing their label sets.
Let the vertices of T be v0 < v1 < . . . < vm in this total order; note that v0 is the root,
vm is a leaf, 0 ∈ Lv0 and n ∈ Lvm . Let us call the tree trivial if it consists only of a root
(then m = 0 and the root has label set [0, n]), and nontrivial otherwise (then m > 0
and the root has a label set [0, j] with j < n).

We will now describe a Schröder path ω of length 2n; to do this we will assign a segment
ω(vi) to every vertex vi in the tree, and the path ω will be obtained by concatenating the
segments: ω = ω(v0)ω(v1) · · ·ω(vm).

Let v be a vertex of T with Lv = {l, l + 1, . . . , l + j}, so that the label surplus of
this vertex is j = |Lv| − 1. We now describe the segment ω(v) as a word in the letters
{↗,↘,−→}, which represent rise, fall and long level step, respectively:

• If l = 0 and j = n then ω(v) = (−→)n. (105)
(Here v is the root of a trivial tree.)

• If l = 0 and j < n then ω(v) = (−→)j ↗. (106)
(Here v is the root of a nontrivial tree.)

• If l > 0 and l + j = n, then ω(v) =↘ (−→)j. (107)
(Here v is the last vertex vm of a nontrivial tree.)
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• If l > 0 and l + j < n then

ω(v) =



↗ (−→)j ↗ if N(v, T ) = 101

↘ (−→)j ↘ if N(v, T ) = 000

↗ (−→)j ↘ if N(v, T ) = 100

↘ (−→)j ↗ if N(v, T ) = 001

−→ if N(v, T ) = 010

(108)

(Here v is neither v0 nor vm, and of course the tree is nontrivial.)

Notice that:
1) The cases l = 0 correspond to the possibilities when v is the root vertex v0, while

the cases l > 0 correspond to the possibilities when v is a non-root vertex vi with i ⩾ 1.
2) Similarly, the cases l + j = n correspond to the possibilities when v is the final

vertex vm, while the cases l + j < n correspond to the possibilities when v is a non-final
vertex vi with i ⩽ m− 1.

3) When N(v, T ) = 010, we must have j = 0, by virtue of our condition that vertices
with a middle child are always single-labeled.

4) In (108) with N(v, T ) ̸= 010, we see that the first step is a rise if v has a left child,
and a fall if not; likewise, the last step is a rise if v has a right child, and a fall if not.

5) The length of ω(v) is

|ω(v)| =


2j = 2|Lv| − 2 if l = 0 and j = n

2j + 1 = 2|Lv| − 1 if l = 0 and j < n

2j + 1 = 2|Lv| − 1 if l > 0 and l + j = n

2j + 2 = 2|Lv| if l > 0 and l + j < n

(109)

Since l = 0 must occur exactly once, and l+ j = n must also occur exactly once, we have
n∑

i=0

|ω(vi)| =
n∑

i=0

2|Lvi | − 2 = 2n . (110)

So the path ω is indeed of length 2n.

It is clear that ω consists of rises, falls and long level steps and that it starts at (0, 0)
and ends at (2n, k) for some k ∈ Z. To show that ω is a Schröder path, we need to show
that it always stays on or above the x-axis and that it ends at (2n, 0). We will do this by
obtaining a precise interpretation of the heights. In particular, we interpret the starting
and ending heights of the segments ω(v), as follows:

Lemma 32 (Interpretation of the heights). Let v be a vertex of T with label set Lv. If
Lv = [0, n] (which corresponds to v being the root of a trivial tree), then the path consists
of n long level steps at height 0. Otherwise the tree is nontrivial, and:
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(a) The segment ω(v0) starts at height 0 and ends at height 1.

(b) For v = vi with 1 ⩽ i ⩽ m, the segment ω(v) starts at height 2 lev(v, T ) + 1;
when 1 ⩽ i < m, it ends at height h where h is given by

h =


2 lev(v, T ) + 3 if Nv(T ) = 101

2 lev(v, T ) + 1 if Nv(T ) = 100, 001 or 010

2 lev(v, T )− 1 if Nv(T ) = 000

(111)

(c) The segment ω(vm) starts at height 1 and ends at height 0.

In particular, all the segments ω(vi) for i ̸= 0 start at an odd height, and all the segments
ω(vi) for i ̸= m end at an odd height.

Proof. (a) is clear from the definition.
(b) Let us now look at the segments ω(vi) for 1 ⩽ i ⩽ m. It suffices to prove

the statement about the starting height, because the statement (111) about the ending
height when i < m then follows immediately from this, using the definition (108) of the
step (note that for 1 ⩽ i ⩽ m − 1 we are always in the case l > 0 and l + j < n). We
proceed by induction on i.

From (a) it follows that the segment ω(v1) starts at height 1. On the other hand,
lev(v1, T ) = 0 because the root has only one child (this was observed already following
(20)). This proves the base case i = 1 of the induction.

Consider now i ∈ [2,m], and assume the inductive hypothesis that the segment ω(vi−1)
starts at height 2lev(vi−1, T ) + 1. We now compare lev(vi, T ) with lev(vi−1, T ), and claim
that the following equality holds:

lev(vi, T )− lev(vi−1, T ) = deg(vi−1)− 1 . (112)

The proof of (112) is identical to the proof of (92) in the preceding subsection: indeed,
the proof holds without alteration for any increasing tree on a totally ordered vertex set.
On the other hand,

deg(vi−1)− 1 =


+1 when Nvi−1

(T ) = 101

0 when Nvi−1
(T ) = 100, 001 or 010

−1 when Nvi−1
(T ) = 000

(113)

It then follows from (111) that the ending height of the segment ω(vi−1), which is also
the starting height of the segment ω(vi), is 2lev(vi, T ) + 1.

(c) Since lev(vm, T ) = 0, it follows from (b) that ω(vm) starts at height 1. From the
case l > 0 and l + j = n of the definition, it therefore ends at height 0. □

Corollary 33. ω is a Schröder path.
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Figure 5: Schröder path corresponding to the IRT shown in Figure 4. The red dots
indicate the endpoints of the segments ω(v) corresponding to the vertices v of the tree.

Proof. All that remains to prove is that the path stays always at height ⩾ 0, even
in-between the starting and ending points of steps. The only potential danger is a step
↘ (−→)j ↗ starting at height 0. But this cannot happen, because Lemma 32 guarantees
that for 1 ⩽ i ⩽ m− 1 the step ω(vi) starts at a height ⩾ 1. □

Example 34. The Schröder path ω corresponding to the IRT shown in Figure 4 has been
drawn in Figure 5. ■

Remark 35. When m ⩾ 1 (i.e. the tree consists of more than just a root), the quantities
lev(v1, T ), . . . , lev(vm, T ) describe the heights of a Motzkin path of length m− 1. ■

Step 2: Definition of the labels ξi. Fix a consistent tree-traversal algorithm A. We
will now describe the labels. However, notice first that for every vertex v ̸= v0, only the
first step in the segment ω(v) starts at an odd height, and hence by (104) it will be the
only step of the segment ω(v) that gets a choice of labels; all the other steps have only
one choice (namely, ξ = 0). Thus, it suffices to assign a label ξv to each vertex v, which
we define as follows:

ξv
def
= #{w : p(w) < v < w and w <A v} , (114)

or in other words
ξv = nid(v, T ) (115)

[exactly as in (95)/(96)]. To verify that the inequalities (104) are satisfied, we need to
check that 0 ⩽ ξv ⩽ ⌊h/2⌋, where h is the starting height of the segment ω(v). The
lower bound is immediate from the definition of ξv. For the upper bound, notice that
from Lemma 32 it follows ⌊h/2⌋ = lev(v, T ); and ξv ⩽ lev(v, T ) is immediate from the
definitions (114)/(20).

In fact, we also have an interpretation of the difference in terms of the statistic croix:⌊
h

2

⌋
− ξv = croix(v, T ) (116)
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by (22).

Step 3: Proof of bijection. We now prove that the mapping T 7→ (ω, ξ) is a bijection,
by describing the inverse bijection.

To construct the inverse bijection, we first use the path ω to determine the label sets
Lv0 , . . . , Lvm and the node types N(v0, T ), . . . , N(vm, T ). This is not entirely trivial (in
contrast to the corresponding step in Section 5.1); we present it in Step 3a. Next we
use the labels ξ to glue the vertices together and construct our increasing interval-labeled
restricted ternary tree T ∈ IRT n; we present this in Step 3b. In what follows, we find it
convenient to think of the Schröder path as a word in the alphabet {↗,↘,−→}.

If the path ω consists of n long level steps at height 0 [i.e., the word (−→)n], then T is
the trivial tree (m = 0) consisting of a root v0 with label set Lv0 = [0, n]. In what follows
we assume that ω has at least one rise and one fall.

Step 3a: Description of vertices. We begin by partitioning the label set [0, n] into
some intervals, which will give us our set of vertex labels. We do this by splitting our
path ω into segments ω0, ω1, . . . , ωm such that the word ω can be factorized as

ω = ω0ω1 · · ·ωm−1ωm ; (117)

then each segment ωi will correspond to a vertex vi. The segments are determined as
follows:

• ω0 is the segment of ω that consists of all steps before and including the first rise
from height 0. Thus, it corresponds to a word (−→)j ↗ for some j ⩾ 0.

• The last segment ωm is the segment of ω that consists of all steps of ω starting at
the last fall to height 0 and including all steps after it. Thus, it corresponds to a
word ↘ (−→)j for some j ⩾ 0.

• Now consider the path ω♭ obtained from ω by removing the prefix ω0 and the suffix
ωm: it starts and ends at height 1 and never goes below the x-axis. We then split
ω♭ into minimal collections of steps starting and ending at odd heights. This gives
us the factorization ω♭ = ω1 · · ·ωm−1.

We will now obtain the label sets for the vertices v0, . . . , vm, as follows: Consider the
unique set-partition [0, n] = l0 ∪ l1 ∪ . . . ∪ lm where the set li is an interval such that
max li < min li+1 and has cardinality given by

• If ω0 = (−→)j ↗, then |l0| = j + 1.

• If ωm =↘ (−→)j, then |lm| = j + 1.

• For 1 ⩽ i ⩽ m− 1:

(a) If ωi contains j long level steps at even height, then |li| = j + 1.

(b) If ωi contains of a single long level step at odd height, then |li| = 1.
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Equivalently, let leven(ωi) count the number of long level steps of ωi at an even height.
The cardinality |li| is simply given by |li| = leven(ωi) + 1. Then, to the vertex vi we
assign the label set Lvi = li.

We are now ready to assign node types to our vertices. The vertex v0 gets node type
N(v0, T ) = 100, and the vertex vm gets node type N(vm, T ) = 000. For a vertex vi with
1 ⩽ i ⩽ m− 1, its node type is determined by the segment ωi as follows:

• If ωi =↗ (−→)j ↗, then N(vi, T ) = 101.

• If ωi =↘ (−→)j ↘, then N(vi, T ) = 000.

• If ωi =↗ (−→)j ↘, then N(vi, T ) = 100.

• If ωi =↘ (−→)j ↗, then N(vi, T ) = 001.

• If ωi =−→, then N(vi, T ) = 010.

Step 3b: Constructing the tree using the vertices. We now use our labels ξ to glue
together the vertices obtained in Step 3a. Before doing this, notice that each segment ωi

with 1 ⩽ i ⩽ m− 1 has exactly one step starting at an odd height, namely, its first step.
From (104), we know that only this step may get a non-unique choice of labels. We refer
to its label as ξωi

.
To describe the construction, we first define a class of intermediate objects in our

bijection: a slotted interval-labeled restricted ternary tree is an increasing interval-labeled
restricted ternary tree whose vertices may also have a label set {∞} and we now allow
the label set {∞} to be assigned to multiple vertices (all of which must be leaves). (We
think of the vertices labeled {∞} as slots where new vertices may be inserted into the
tree in the future.)

Given a tree T ∈ IRT n with vertices v0, v1, . . . , vm, and i ∈ [0,m], we define the tree
T |i to be the subtree of T consisting of vertices v0, v1, . . . , vi along with their children, in
which the vertices with labels > maxLvi are relabeled to {∞}. Clearly, T |i is a slotted
interval-labeled restricted ternary tree, and T |m = T . By the history of tree T , we
will mean the sequence of slotted interval-labeled restricted ternary trees T |0 → T |1 →
. . . → T |m. Notice that for i < m the number of vertices labeled {∞} in the tree T |i is
lev(vi+1, T ) + 1.

We begin with the tree T |0, which consists of a root v0 labeled [0, j] with j =
(|ω(v0)| − 1)/2 and a left child labeled {∞}. For i > 0, we will now construct the tree T |i
from T |i−1 by using the label ξωi

. We select the (ξωi
+ 1)-th vertex in the tree-traversal

order chosen in Step 2, and we replace this vertex with vi. And then we choose to add
children (labeled {∞}) to vi according to the node type N(vi, T ). The resulting tree is
T |i.

Finally, at the end of this process, the tree T |m−1 will contain only a single vertex
labeled {∞}; we rename this vertex to vm, thereby constructing T = T |m.

Step 4: Computation of the weights. We can now compute the weights associated to
the Schröder path ω in Theorem 29, which we recall are ah,ξ for a rise starting at height
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h with label ξ, bh,ξ for a fall starting at height h with label ξ, and ch,ξ for a long level step
starting at height h with label ξ. The weight wt(v) defined in (71)–(74) is in general a
product of factors; we will distribute this weight among the steps of the segment ω(v), as
follows:

a2k−1,ξ = âk−1−ξ,ξ (118a)

a2k,ξ = µk (118b)

b2k−1,ξ = b̂k−1−ξ,ξ (118c)

b2k,ξ = νk−1 (118d)

c2k−1,ξ = fk−1−ξ,ξ (118e)

c2k,ξ = ek (118f)

Let us now verify that these step weights give to each vertex v the correct weights (71)–
(74) when taking the product over all the steps in the segment ω(v).

We examine individually each type of step, starting with the steps starting at odd
heights:

(a) Rise from height 2k − 1 to height 2k:

– By definition of the Schröder path, we know that this step must correspond to
the first step of a segment ω(v) for some vertex v ̸= v0, vm in the tree.

– Since the first step of ω(v) is a rise, v can have node type N(v, T ) = 100 or
101. In either case we see from (74) that it will need one factor â.

– From (114)/(115), we know that ξv = nid(v, T ); and from (116), we get
k − 1− ξv = croix(v, T ).

We therefore assign to this step a weight

a2k−1,ξ = âk−1−ξ,ξ (119)

(b) Fall from height 2k − 1 to height 2k − 2:

– By definition of the Schröder path, we know that this step must correspond to
the first step of a segment ω(v) for some vertex v ̸= v0 in the tree.

– Since the first step of ω(v) is a fall, v can have node type N(v, T ) = 000 or
N(v, T ) = 001. In either case it contributes a letter b̂.

– Once again we have ξv = nid(v, T ) and k − 1− ξv = croix(v, T ).

We therefore assign to this step a weight

b2k−1,ξ = b̂k−1−ξ,ξ (120)

(c) Long level step at height 2k − 1:
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– By definition of the Schröder path, we know that this step must correspond to
ω(v) for some vertex v with node type N(v, T ) = 010. Thus, it contributes the
letter f.

– Once again we have ξv = nid(v, T ) and k − 1− ξv = croix(v, T ).

We therefore assign to this step a weight

c2k−1,ξ = fk−1−ξ,ξ (121)

The remaining steps begin at an even height and hence have ξ = 0 [cf. (104)].

(d) Rise from height 2k to height 2k + 1:

– By definition of the Schröder path, we know that this step must correspond to
the last step of a segment ω(v) for some vertex v in the tree. (Here v = v0 is
a possibility.)

– As the last step of ω(v) is a rise, v can have node type N(v, T ) = 101 or
N(v, T ) = 001. In either case, we see from (74) that we will need one factor µ.

– If N(v, T ) = 101, the segment ω(v) started at height 2k−1, so from Lemma 32
we have lev(v, T ) = k−1; if N(v, T ) = 001, the segment ω(v) started at height
2k + 1, so from Lemma 32 we have lev(v, T ) = k. In either case, (74) tells us
to assign a weight

a2k,ξ = µk (122)

(e) Fall from height 2k to height 2k − 1:

– By definition of the Schröder path, we know that this step must correspond to
the last step of a segment ω(v) for some vertex v ̸= v0, vm in the tree.

– As the last step of ω(v) is a fall, v can have node type N(v, T ) = 000 or 100.
In either case, we see from (74) that it contributes the letter ν.

– If N(v, T ) = 000, the segment ω(v) started at height 2k+1, so from Lemma 32
we have lev(v, T ) = k; if N(v, T ) = 100, the segment ω(v) started at height
2k − 1, so from Lemma 32 we have lev(v, T ) = k − 1. In either case, (74) tells
us to assign a weight

b2k,ξ = νk−1 (123)

(f) Long level step at height 2k:

– By definition of the Schröder path, we know that this step must correspond to
one of the long level steps in a segment ω(v) for some vertex v with |Lv| > 1.

– The vertex v can have any node type except 010. Thus, we know from (71)–(74)
that it contributes a letter e.

– If v is the root, it must have node type 000 (if the tree is trivial) or 100 (if it is
nontrivial), by definition of IRT. In either case we have k = 0 and lev(v, T ) = 0.
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– If v is not the root: If N(v, T ) = 000 or 001, the segment ω(v) started at
height 2k + 1, so from Lemma 32 we have lev(v, T ) = k; if N(v, T ) = 100 or
101, the segment ω(v) started at height 2k − 1, so from Lemma 32 we have
lev(v, T ) = k − 1.

In all cases, (71)–(74) tell us to assign a weight

c2k,ξ = ek (124)

The number of such long level steps in the segment ω(v) is j = |Lv| − 1, which
agrees with (71)–(74).

We can now check, for each of the eight types of segments ω(v) shown in (105)–(108),
that the weight of the segment, taken as the product of the step weights (118), indeed
coincides in all cases with wt(v) as defined in (71)–(74).

Putting this all together in Theorem 29, we obtain a T-fraction with

α2k−1 = (rise from 2k − 2 to 2k − 1) × (fall from 2k − 1 to 2k − 2)

= µk−1

(k−1∑
ξ=0

b̂k−1−ξ,ξ

)
(125)

α2k = (rise from 2k − 1 to 2k) × (fall from 2k to 2k − 1)

=

(k−1∑
ξ=0

âk−1−ξ,ξ

)
νk−1 (126)

δ2k−1 = long level step at height 2k − 2

= ek−1 (127)

δ2k = long level step at height 2k − 1

=
k−1∑
ξ=0

fk−1−ξ,ξ (128)

This completes the proof of Theorem 23. □

We can now deduce Theorem 20 as a corollary:

Proof of Theorem 20. Consider the following substitutions:

âℓ,ℓ′ = x (129a)

b̂ℓ,ℓ′ = y (129b)
fℓ,ℓ′ = w (129c)
µℓ = 1 (129d)
νℓ = 1 (129e)
eℓ = z (129f)
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It is clear that inserting these into (78) yields the continued fraction coefficients (66).
To finish the proof we will need to argue that substituting (129) into the polynomials

Qn(â, b̂,µ,ν, e, f) defined in (75) yields the polynomials Pn(x, x, y, y, w, z) defined in (64).
To do this, we show that the summands corresponding to the tree T ∈ IRT n are the
same in both polynomials.

Let us first examine the weights of the vertices of T in the polynomials
Qn(â, b̂,µ,ν, e, f) — which are given by (71)–(74) — under the substitutions (129). Con-
sider a vertex v with Lv = {l, l+1, . . . , l+j}. If l = 0 or l+j = n or both, by substituting
(129) into (71)–(73) we obtain

wt(v) =


zn if l = 0 and l + j = n

zj if l = 0 and l + j < n

yzj if l > 0 and l + j = n

(130)

Note that these three cases correspond, respectively, to the root of a trivial tree, the root
of a nontrivial tree, and the final vertex of a nontrivial tree (note that this is a non-root
vertex and a leaf). In the other cases (i.e. l > 0 and l+ j < n), by substituting (129) into
(74) we obtain

wt(v) =



xzj if N(v, T ) = 101

yzj if N(v, T ) = 000

xzj if N(v, T ) = 100

yzj if N(v, T ) = 001

w if N(v, T ) = 010

(131)

These vertices are all non-root and non-final.
In all cases, the power of z contributed by a vertex v is j = |Lv| − 1 (the label surplus

of v), so by (19) the total power of z contributed by the tree T is IT (ε). We then get a
factor x for each non-root vertex with node type 101 or 100, a factor y for each non-root
vertex with node type 000 or 001, and a factor w for each non-root vertex with node type
010. Therefore, ∏

v∈V (T )

wt(v) = xI′T (100)+I′T (101) yI
′
T (000)+I′T (001)wI′T (010) zIT (ε) . (132)

This matches the contribution of tree T in the polynomial Pn(x, x, y, y, w, z) defined
in (64). □

6 Algebraic proofs of Theorems 12, 20 and 22

In the preceding section we deduced the “simple” continued fractions (Theorems 12 and
20) as special cases of the “master” continued fractions (Theorems 16 and 23), which were
proved bijectively. Here we would like to show how these “simple” continued fractions

the electronic journal of combinatorics 33(1) (2026), #P1.5 49



can be given an alternate, and extremely simple, algebraic proof using the theory of
exponential Riordan arrays and their production matrices. We begin (Section 6.1) by
recalling these two concepts and their application to the enumeration of rooted trees.
Then we apply this theory to prove Theorem 12 (Section 6.2) and Theorems 20 and 22
(Section 6.3). In the latter proof, a crucial role is played by Proposition 3.

6.1 Exponential Riordan arrays, production matrices, and the enumeration
of rooted trees

Let R be a commutative ring containing the rationals, and let F (t) =
∑∞

n=0 fnt
n/n! and

G(t) =
∑∞

n=1 gnt
n/n! be formal power series with coefficients in R; we set g0 = 0. Then

the exponential Riordan array [4,12,13,34] associated to the pair (F,G) is the infinite
lower-triangular matrix R[F,G] = (R[F,G]nk)n,k⩾0 defined by

R[F,G]nk =
n!

k!
[tn]F (t)G(t)k . (133)

That is, the kth column of R[F,G] has exponential generating function F (t)G(t)k/k!.
Let us now explain briefly about production matrices [11,12] [36, sections 2.2 and 2.3].

Let P = (pij)i,j⩾0 be an infinite matrix with entries in a commutative ring R, and assume
that P is either row-finite or column-finite (so that powers of P are well-defined). Now
define a matrix A = (ank)n,k⩾0 by

ank = (P n)0k (134)

(note in particular that a0k = δk0). We call P the production matrix and A the output
matrix , and we write A = O(P ). It is not difficult to see that AP = ∆A, where ∆ is the
matrix with 1 on the superdiagonal and 0 elsewhere. Note that if P is lower-Hessenberg
(i.e. vanishes above the first superdiagonal), then O(P ) is lower-triangular; this is the
most common case, and will be the case here. Conversely, when A is lower-triangular
with invertible diagonal entries and a00 = 1, then there exists a unique production matrix
generating A, and it is the lower-Hessenberg matrix P = A−1∆A.

The production matrix of an exponential Riordan array R[F,G] is given as follows
(see e.g. [36, Theorem 2.19] [34, Theorem 6.1] for a proof):

Theorem 36 (Production matrices of exponential Riordan arrays). Let L be a lower-
triangular matrix (with entries in a commutative ring R containing the rationals) with
invertible diagonal entries and L00 = 1, and let P = L−1∆L be its production matrix.
Then L is an exponential Riordan array if and only if P = (pnk)n,k⩾0 has the form

pnk =
n!

k!
(zn−k + k an−k+1) (135)

for some sequences a = (an)n⩾0 and z = (zn)n⩾0 in R. (We set an = zn = 0 for n < 0.)
More precisely, L = R[F,G] if and only if P is of the form (135) where the ordinary

generating functions A(s) =
∑∞

n=0 ans
n and Z(s) =

∑∞
n=0 zns

n are connected to F (t) and
G(t) by

G′(t) = A(G(t)) ,
F ′(t)

F (t)
= Z(G(t)) . (136)
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We refer to A(s) and Z(s) as the A-series and Z-series of the exponential Riordan
array R[F,G].

We now apply this theory to the enumeration of rooted trees, following [32]. Recall
first [40, p. 573] that an ordered tree (also called plane tree) is a rooted tree in which
the children of each vertex are linearly ordered. An unordered forest of ordered trees is
an unordered collection of ordered trees. An increasing ordered tree is an ordered
tree in which the vertices carry distinct labels from a linearly ordered set (usually some
set of integers) in such a way that the label of each child is greater than the label of its
parent; otherwise put, the labels increase along every path downwards from the root. An
unordered forest of increasing ordered trees is an unordered forest of ordered trees
with the same type of labeling.

Now let ϕ = (ϕi)i⩾0 be indeterminates, and let Ln,k(ϕ) be the generating polynomial
for unordered forests of increasing ordered trees on the vertex set [n], having k components
(i.e. k trees), in which each vertex with i children gets a weight ϕi. Clearly Ln,k(ϕ) is
a homogeneous polynomial of degree n with nonnegative integer coefficients; it is also
quasi-homogeneous of degree n−k when ϕi is assigned weight i. The polynomials Ln,k(ϕ)
are called the generic Lah polynomials ; the lower-triangular matrix L = (Ln,k(ϕ))n,k⩾0

is called the generic Lah triangle .
We now follow [32, sections 7 and 8]. Define the exponential generating function for

trees:

G(t) =
∞∑
n=1

Ln,1(ϕ)
tn

n!
. (137)

It is easy to see that the exponential generating function for k-component unordered
forests is then

G(t)k

k!
=

∞∑
n=0

Ln,k(ϕ)
tn

n!
. (138)

Therefore, the generic Lah triangle L is the exponential Riordan array R[1, G]. Fur-
thermore, standard enumerative arguments [5, Theorem 1] show that G(t) satisfies the
ordinary differential equation

G′(t) = Φ(G(t)) , (139)

where Φ(s)
def
=
∑∞

k=0 ϕks
k is the ordinary generating function for ϕ. Therefore, from (136)

we see that A(s) = Φ(s).
Here we would like to get the trees into column 0 rather than column 1 of the output

matrix, and shifted down to start at n = 0 rather than n = 1. This is easy: it suffices to
consider the exponential Riordan array R[F,G] with

F (t)
def
= G′(t) =

∞∑
n=0

Ln+1,1(ϕ)
tn

n!
. (140)

Differentiating (139), we deduce that

G′′(t) = Φ′(G(t))G′(t) (141)
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and hence that
F ′(t)

F (t)
= Φ′(G(t)) . (142)

Therefore, from (136) we see that Z(s) = Φ′(s).
Inserting these formulae for A(s) and Z(s) into (135), we obtain the extraordinarily

simple formula

pnk =
(n+ 1)!

k!
ϕn−k+1 (143)

for the production matrix of R[G′, G].

6.2 Application to increasing restricted ternary trees: Proof of Theorem 12

It is now easy to apply the foregoing theory to restricted ternary trees with the weights
(40), in which the variables x1, y1, x2, y2, w are associated to the node types 101, 000, 100,
001, 010, respectively. It suffices to take

ϕ0 = y1 , ϕ1 = x2 + y2 + w , ϕ2 = x1 , ϕi = 0 for i ⩾ 3 . (144)

The production matrix (143) is then tridiagonal with

pn,n+1 = y1 (145a)

pn,n = (n+ 1)(x2 + y2 + w) (145b)

pn,n−1 = n(n+ 1)x1 (145c)

This generates Motzkin paths with these weights for rises, level steps and falls, respec-
tively. On the other hand, for walks that end at height 0 we can transfer all the weights
from rises to falls; we thus obtain a J-fraction with coefficients

γn = (n+ 1)(x2 + y2 + w) , βn = n(n+ 1)x1y1 . (146)

These are precisely the coefficients (42); we have therefore proven Theorem 12.

6.3 Application to increasing interval-labeled restricted ternary trees: Proof
of Theorems 20 and 22

An increasing interval-labeled restricted ternary tree T ′ on the label set [0, n′] can be
obtained from an increasing restricted ternary tree T on the vertex set [n], as follows:

• If n = 0, then T is the empty tree; it gets a weight 1 in (40). The tree T ′ is a trivial
tree consisting of only a root with label set [0, n′]; it gets a weight zn

′
= zIT ′ (ε) in

(64).

• If n ⩾ 1, the tree T is nonempty. The tree T ′ is obtained from T by creating a root
with label set [0, j] for some j ⩾ 0, and making the root of T be the left child of the
root of T ′; also, every vertex of T other than one with a middle child can become
interval-labeled. The weight of T ′ in (64) is the same as the weight of T in (40),
multiplied by zIT ′ (ε).
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It follows that the ordinary generating functions of the polynomials (40) and (64) are
related as follows:

∞∑
n=0

Pn(x1, x2, y1, y2, z, w) t
n =

1

1− zt

∞∑
n=0

Pn

( x1

1− zt
,

x2

1− zt
,

y1
1− zt

,
y2

1− zt
, w
)
tn .

(147)
Theorem 22 is then an immediate consequence of Theorem 14 together with Proposition 3:
the key fact is that x1 + y1 = x2 + y2, so that δ2k does not receive any factor 1/(1− zt).
In particular, specializing x1 = x2 = x and y1 = y2 = y gives us Theorem 20.

7 Other interpretations

In this section we use bijections to reinterpret our results in terms of other combinatorial
objects: increasing binary trees are in bijection with permutations (Section 7.1), and
increasing restricted ternary trees are in bijection with binary free multilabeled increasing
trees (Section 7.2).

7.1 Increasing binary trees ≃ Permutations

It is well known [40, pp. 44–45] that the set Bn of increasing binary trees on the vertex set
[n] is in bijection with the set Sn of permutations of [n]. In this section, we will translate
our statistics for increasing binary trees to permutation statistics via this bijection. This
will allow us to translate our continued fractions for increasing binary trees (Section 3.1) to
continued fractions counting various statistics on permutations: namely, linear statistics
and vincular patterns.

Let σ = (σ1 · · · σn) ∈ Sn be a permutation of [n], which we shall consider principally
as a word. We declare σ0 = σn+1 = 0. An index i ∈ [n] (or a letter σi ∈ [n]) is called a

• peak (pk) if σi−1 < σi > σi+1,

• valley (val) if σi−1 > σi < σi+1,

• double ascent (dasc) if σi−1 < σi < σi+1,

• double descent (ddes) if σi−1 > σi > σi+1.

Clearly every index i belongs to one of these four types; we refer to this classification as
the linear classification.

Remark 37. The boundary condition σ0 = σn+1 = 0 plays a key role in our definition of
the linear classification. Other boundary conditions can also be used: for instance, Han,
Mao and Zeng [25] use σ0 = 0, σn+1 = n + 1. Different boundary conditions give rise to
different linear classifications. ■

Next we introduce certain permutation statistics given by the occurrence of some
vincular patterns [2] (see also the survey article [41]). We recall that a vincular pattern is
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similar in meaning to an ordinary permutation pattern, except that the absence of a dash
indicates that the two letters are required to be consecutive in the word. For instance,
the pattern 31–2 means that we have three letters ℓ1 < ℓ2 < ℓ3 such that ℓ3 occurs
immediately before ℓ1 in the word, while ℓ2 occurs after ℓ1 (possibly but not necessarily
immediately after it).4

For a letter ℓ ∈ [n], we define (31–2)(ℓ, σ) and (2–13)(ℓ, σ) as follows:

(31–2)(ℓ, σ) def
= #{j : 1 < j < σ−1

ℓ and σj < ℓ < σj−1} (148)

(2–13)(ℓ, σ) def
= #{j : σ−1

ℓ < j < n and σj < ℓ < σj+1} (149)

Thus, (31–2)(ℓ, σ) counts the number of occurrences of the vincular pattern 31–2 in which
the letter ℓ is the 2 in the pattern, while σj and σj−1 are the 1 and the 3. Similarly,
(2–13)(ℓ, σ) counts the number of occurrences of the vincular pattern 2–13 in which the
letter ℓ is the 2 in the pattern, while σj and σj+1 are the 1 and the 3. Note that these
definitions do not require any boundary condition.

Let Φn : Bn → Sn denote the reverse bijection in [40, pp. 44–45] from increasing binary
trees to permutations. The permutation Φn(T ) in word form is obtained by writing out
the vertices of tree T as per the inorder (= symmetric) traversal: that is, (left, root, right),
implemented recursively. The letters of the word Φn(T ) thus correspond to the vertex
labels of the tree T , and the order of those letters in the word Φn(T ) corresponds to the
inorder traversal A on those vertex labels: ℓ <A ℓ′ ⇐⇒ σ−1

ℓ < σ−1
ℓ′ . Furthermore, the

table in [40, p. 45] records the correspondence between the node types of a tree T ∈ Bn

and the linear classification in the permutation Φn(T ), using the boundary condition
σ0 = σn+1 = 0:

Node type N(σi, T ) in tree T Linear classification of index i in σ = Φn(T )
00 Peak
11 Valley
10 Double descent
01 Double ascent

(150)

Next, we translate the crossing and nesting statistics; we stress that they are defined
with respect to the inorder traversal.

Proposition 38. Let T ∈ Bn be an increasing binary tree and let σ = Φn(T ). Then the
following identities hold:

nid(ℓ, T ) = (31–2)(ℓ, σ) (151a)
croix(ℓ, T ) = (2–13)(ℓ, σ) (151b)

where nid and croix are defined with respect to the inorder traversal.
4There is an alternative (and perhaps preferable) notation for vincular patterns in which terms that
must be adjacent are underlined. For instance, the pattern 31–2 would be written in this notation as
312. This notation has the advantage of reducing to the ordinary notation for permutation patterns
when there are no underlinings.

the electronic journal of combinatorics 33(1) (2026), #P1.5 54



w̃

w

p(w)

ŵ

(a) When w is left child of p(w)

w̃

w

ŵ = p(w)

(b) When w is right child of p(w).
In this case ŵ = p(w).

Figure 6: An illustration of ŵ and w̃ for a given w contributing in the definition of
croix(ℓ, T ).

Proof. We recall that

croix(ℓ, T ) = #{w : p(w) < ℓ < w and ℓ <A w} (152)

where p(w) denotes the parent of w in T , and A is the inorder traversal. Let w be a
vertex in T that contributes to the right-hand side above. We first claim that either w is
a right child of its parent or it has an ancestor that is the right child of its parent. For if
not, then w lies on the leftmost branch of T , and the only possibility of having ℓ <A w
is if ℓ occurs in the left subtree of w (recall that we are using inorder traversal); but this
contradicts ℓ < w since the tree T is increasing.

Let ŵ be the largest ancestor of w (that is, the ancestor closest to w) that contains
w in its right subtree. In other words, ŵ is the parent vertex of the first right edge that
occurs on the path from w to the root. In particular, ŵ = p(w) if w is the right child of
its parent p(w).

Let w̃ denote the leftmost descendant of w in T (that is, w̃ is a descendant of w that
does not have a left child, and the path downward from w to w̃ consists only of left edges).
In particular, w̃ = w if w does not have a left child.

See Figure 6 for an illustration of ŵ and w̃ for a given w.
It is immediate that ŵ ⩽ p(w) < ℓ < w ⩽ w̃. Let j = σ−1

ŵ . It is clear, from
the definition of inorder traversal, that the letter ŵ is immediately followed by w̃ in σ;
therefore σj+1 = w̃. Thus, the triple (ℓ1, ℓ2, ℓ3) = (ŵ, ℓ, w̃) forms a vincular pattern 2–13
in σ.

Also, notice that if we have two distinct vertices w1 ̸= w2 contributing to croix(ℓ, T ),
then necessarily ŵ1 ̸= ŵ2 (since for a given vertex ŵ there is at most vertex w in the
relevant chain that satisfies p(w) < ℓ < w). Therefore, for every w that contributes to
croix(ℓ, T ), we have obtained a distinct j that contributes to (2–13)(ℓ, σ); this shows that

croix(ℓ, T ) ⩽ (2–13)(ℓ, σ) . (153)

On the other hand, given j such that σ−1
ℓ < j < n and σj < ℓ < σj+1, we observe

that σj must be an ancestor of σj+1 in tree T . For if not, let v be the closest common
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ancestor of σj and σj+1; then the vertices σj and σj+1 are in different subtrees of v. As σ
is obtained from T by inorder traversal, the letter v must occur between σj and σj+1 in
σ, which is a contradiction.

As σj is an ancestor of σj+1, it is clear that σj+1 is in the right subtree of σj and is
the leftmost vertex on the right subtree of σj. Also notice that the vertex ℓ is not in the
right subtree of σj, as that would contradict σ−1

ℓ < j. In particular, ℓ does not occur in
the path from σj to σj+1. Since σj < ℓ < σj+1, on the path from σj to σj+1 there is a
unique vertex w such that p(w) < ℓ < w. This vertex w is in the right subtree of σj and
hence σj <A w. As we also have ℓ <A σj (since this is equivalent to σ−1

ℓ < j), we get
ℓ <A w. Furthermore, since w lies in the left branch of the right child of σj, we have
σj = ŵ; therefore j = σ−1

ŵ is uniquely determined by w. Thus, for every j that contributes
to (2–13)(ℓ, σ), we have obtained a distinct w that contributes to croix(ℓ, T ). This shows
that

(2–13)(ℓ, σ) ⩽ croix(ℓ, T ) . (154)

This finishes the proof of (151b).
The proof for (151a) is obtained by simply switching left and right in the above proof;

we leave it as an exercise for the reader. □

Remark 39. The fact that nid(ℓ, T ) translates to (31–2)(ℓ, σ) is implicitly mentioned by
Viennot [44, Chapter 4b] using “x-decomposition” on permutations.5 ■

Now define the polynomials P ⋆
n(a,b, c,d) as

P ⋆
n(a,b, c,d) =

∑
σ∈Sn

∏
ℓ∈Val(σ)

a(2–13)(ℓ,σ),(31–2)(ℓ,σ)

∏
ℓ∈Pk(σ)

b(2–13)(ℓ,σ),(31–2)(ℓ,σ) ×∏
ℓ∈Ddes(σ)

c(2–13)(ℓ,σ),(31–2)(ℓ,σ)

∏
ℓ∈Dasc(σ)

d(2–13)(ℓ,σ),(31–2)(ℓ,σ) (155)

where Val(σ) denotes the set of all valley letters of σ, and likewise for the others.
From (150) and Proposition 38 we immediately obtain the following theorem:

Theorem 40 (Master J- and T-fractions for permutations with linear statistics). The poly-
nomials P ⋆

n(a,b, c,d) defined in (155) and the polynomials Qn(a,b, c,d) defined
in (32) are equal:

P ⋆
n(a,b, c,d) = Qn(a,b, c,d) . (156)

Therefore, the ordinary generating function of the polynomials P ⋆
n(a,b, c,d) has the same

J-fraction of Theorem 9 and the same T-fraction of Theorem 10.
5Video link address: https://www.youtube.com/watch?v=Cp8adiOL_6Q&t=865
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Example 41. For σ = 57316284, the quantities (31–2)(ℓ, σ) and (2–13)(ℓ, σ) are as follows:

ℓ (31–2)(ℓ, σ) (2–13)(ℓ, σ)
1 0 0
2 1 0
3 0 2
4 2 0
5 0 2
6 1 1
7 0 1
8 0 0

(157)

Notice that when T is increasing binary tree shown in Figure 1, we have Φ8(T ) = σ =
57316284. Comparing (23) and (157), we can verify that (151) holds for this example. ■

Remark 42. Substituting aℓ,ℓ′ = 1, bℓ,ℓ′ = u, cℓ,ℓ′ = w and dℓ,ℓ′ = v gives us [20, Theo-
rem 3A]. ■

Here is an important special case: by setting

aℓ,ℓ′ = bℓ,ℓ′ = cℓ,ℓ′ = dℓ,ℓ′ = pℓqℓ
′

(158)

in Corollary 11 (which is a special case of Theorem 10) and using Theorem 40, we obtain
an S-fraction for the joint generating function of the statistics 2–13 and 31–2:

Corollary 43. We have the S-fraction
∞∑
n=0

∑
σ∈Sn

p(2–13)(σ) q(31–2)(σ) tn =
1

1−
[1]p,q t

1−
[1]p,q t

1−
[2]p,q t

1−
[2]p,q t

1− . . .

(159)

with coefficients
α2k−1 = α2k = [k]p,q . (160)

Furthermore, by combining this continued fraction with previous work of Claesson and
Mansour [9], we can learn more about the joint distributions of various vincular patterns.
For starters, Claesson [8, Proposition 1] showed that the four vincular patterns 2–13, 2–31,
13–2, 31–2 are equidistributed. Now consider the eight possible ordered pairs formed by
taking one pattern of the form 2–ab and one of the form ab–2:

1. (2–13, 31–2)
2. (31–2, 2–13)
3. (2–31, 13–2)
4. (13–2, 2–31)
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5. (2–13, 13–2)
6. (31–2, 2–31)
7. (2–31, 31–2)
8. (13–2, 2–13)

It is easy to see that the first four of these are equidistributed, and also the last four:

• The equivalences 1 ↔ 3, 2 ↔ 4, 5 ↔ 7 and 6 ↔ 8 are obtained by using comple-
mentation σ 7→ σc (that is, mapping letters ℓ 7→ n+ 1− ℓ).

• The equivalences 1 ↔ 2, 3 ↔ 4, 5 ↔ 6 and 7 ↔ 8 are obtained by using reversal
σ 7→ σr (that is, mapping indices i 7→ n+ 1− i).

But here is the surprise: it turns out that all eight ordered pairs are equidistributed!
This follows from the fact that Claesson and Mansour’s continued fraction for the gener-
ating function

∑∞
n=0

∑
σ∈Sn

p(2–31)(σ) q(31–2)(σ) tn [9, Theorem 22 with x = y = 1] coincides
with ours in Corollary 43 for

∑∞
n=0

∑
σ∈Sn

p(2–13)(σ) q(31–2)(σ) tn. The combination of these
two continued fractions therefore proves:6

Proposition 44. In permutations of [n], the pairs of statistics (2–13, 31–2) and
(2–31, 31–2) are equidistributed.

But we do not know any direct bijective proof of this equidistribution; we therefore pose
it as an open problem:

Open Problem 45. Find a bijective proof of Proposition 44.

Indeed, we can go farther, by considering the joint distribution of all four vincular
patterns. Define the polynomials in four variables

Pn(p, q, r, s) =
∑
σ∈Sn

p(13–2)(σ) q(31–2)(σ) r(2–13)(σ) s(2–31)(σ) . (161)

Then the identity Pn(p, q, r, s) = Pn(q, p, s, r) is a consequence of complementation sym-
metry, while the identity Pn(p, q, r, s) = Pn(s, r, q, p) is a consequence of reversal symme-
try. By combining these we obtain the Z2 × Z2 symmetry

Pn(p, q, r, s) = Pn(q, p, s, r) = Pn(s, r, q, p) = Pn(r, s, p, q) . (162)

Furthermore, it can be checked that for n ⩾ 5 these are the only permutations of the four
variables that leave the polynomial Pn invariant.

But by setting one of the variables equal to 1, we obtain empirically some interesting
identities, which we state as a conjecture:

6Let us remark that Vajnovszki [42] proved a special case of the equivalence 3 ↔ 5, and thus of
Proposition 44: namely, he proved that 2–13 and 2–31 are equidistributed among permutations avoiding
132 (or equivalently, avoiding 13–2) — that is, for the subclass for which (13–2)(σ) = 0. We thank
Anders Claesson for drawing our attention to Vajnovszki’s work.
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Conjecture 46 (Trivariate symmetries on vincular patterns).
We have the relations

Pn(1, q, r, s) = Pn(1, q, s, r) (163a)

Pn(p, 1, r, s) = Pn(p, 1, s, r) (163b)

Pn(p, q, 1, s) = Pn(q, p, 1, s) (163c)

Pn(p, q, r, 1) = Pn(q, p, r, 1) (163d)

We have verified Conjecture 46 for n ⩽ 11. Please note that the four conjectured relations
are equivalent by virtue of the symmetries (162), so it suffices to prove one of them. Please
note also that Proposition 44 is the identity Pn(1, q, r, 1) = Pn(1, q, 1, r), which is the s = 1
special case of (163a). So Conjecture 46 generalizes Proposition 44.

Remark 47. After the initial preprint of this paper was posted, Chen, Fu and Zeng [7]
have resolved Conjecture 46 and have also provided an answer to the Open Problem 45.
■

Finally, it is worth comparing our master polynomials (155) with the polynomials [25,
eqs. (3.1) and (3.2)] of Han, Mao and Zeng, for which they demonstrate a master J-
fraction [25, eq. (1.19)]. There are three differences between their polynomials and ours:

• Their polynomials involve the joint distribution of the patterns (2–31, 31–2) — as in
Claesson and Mansour [9, Theorem 22] — whereas ours involve the joint distribution
of (2–13, 31–2).

• They took the boundary conditions σ0 = 0, σn+1 = n+1, while we took the boundary
conditions σ0 = σn+1 = 0. This difference in the boundary conditions does not affect
the meanings of the vincular patterns, but it does affect the meanings of the linear
classification and hence of the master polynomials.

• Their linear classification was more refined than ours: they refined double ascents
into foremaxima (double ascents that are also records) and the rest.

Finally, their master J-fraction is different from ours, because it concerns the ogf of Qn

and coincides with that of [39, Theorem 2.9], which generalizes the J-fraction for the
sequence (n!)n⩾0, while our master J-fraction in Theorem 9 concerns the ogf of Qn+1 and
hence generalizes the J-fraction for the sequence ((n+ 1)!)n⩾0.

If we call [25, Theorems 3.1 and 3.2 with Theorem 1.10] the first and second mas-
ter J-fractions for permutations with linear statistics , then we can call the result
obtained by combining Theorem 9 with Theorem 40 the third master J-fraction for
permutations with linear statistics . Also, the result obtained by combining Theo-
rem 10 with Theorem 40 can be called the master T-fraction for permutations with
linear statistics .
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Figure 7: An example of a binary free multilabeled increasing tree on the label set [6].

7.2 Increasing restricted ternary trees ≃ Binary free multilabeled increasing
trees

In [27, Section 5.2, Example 5], Kuba and Panholzer consider binary free multilabeled
increasing trees. A binary free multilabeled increasing tree with label set [n] is a
binary tree T in which each vertex v is assigned a nonempty set of labels Lv such that
(a) {Lv}v∈V (T ) is a set-partition of [n], and (b) every label of a child is larger than every
label of its parent.

There is a simple bijection between binary free multilabeled increasing trees on the
label set [n] and increasing restricted ternary trees on the vertex set [n]. In fact, this
bijection is a slight modification of the bijection in [27, Theorem 10] that is illustrated
in [27, Fig. 7]. Namely, consider a binary free multilabeled increasing tree T on the label
set [n]. We define an increasing restricted ternary tree T ′ on the vertex set [n] as follows:
Replace each vertex u in T , having label set Lu = {u1 < . . . < ui}, by a chain of vertices
u1−u2−· · ·−ui in T ′, where the node uj has uj+1 as its middle child for 1 ⩽ j ⩽ i−1. If
u has a left (resp. right) child v in T , then in T ′ the final vertex ui has the initial vertex v1
as its left (resp. right) child. The reverse bijection can be obtained by simply contracting
the middle edges in a restricted ternary tree to a single multilabeled vertex.

Example 48. Figure 7 is an example of a binary free multilabeled increasing tree on the
label set [6]. This tree is in bijective correspondence with the increasing restricted ternary
tree shown in Figure 2.

■
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A Table of OEIS matches for some T-fractions with quasi-affine
coefficients

In order to come up with our conjectures, we used a reverse-engineering approach. That
is, rather than starting from a combinatorial family and attempting to find a T-fraction
enumerating it, we started instead from a “nice” T-fraction and attempted to find a
combinatorial interpretation for it. More precisely, we considered a generic quasi-affine T-
fraction of the form (5) in which we let each of the variables x, y, u, v, a, b, c, d be either 0 or
1. For each of the 28 = 256 cases we generated the first 10 terms an using a Mathematica
code, and we then searched the OEIS [29] for the given sequence, deleting the initial
term a0 = 1. Of course, the lack of an OEIS entry does not necessarily mean that the
sequence is combinatorially uninteresting; indeed, the sequence (7) is a counterexample.
And conversely, an OEIS entry sometimes lacks a combinatorial interpretation. But
we figured that the OEIS would be a good place to start. Our idea was that if the
OEIS entry for an integer sequence arising from x, y, u, v, a, b, c, d ∈ {0, 1} mentions some
combinatorial interpretation, then by refining that combinatorial interpretation we might
conjecture (and then prove) a T-fraction in which one or more of the coefficients are
variables conjugate to some statistic in the combinatorial model. This strategy turned
out to pay off.

In reality we imposed some restrictions. To begin with, we imposed x = y = 1,
because taking either x = 0 or y = 0 would make α1 = 0 or α2 = 0, leading to a finite
(and quite trivial) continued fraction; this restriction reduces the number of cases to
26 = 64. Likewise, we disallowed a = b = c = d = 0, since that would give an S-fraction.
We excluded those because the main goal of this project was to discover new T-fractions
that cannot be represented as an S-fraction or J-fraction. This further brought down the
number of cases to 60.

We performed an automated search for these 60 sequences on the OEIS. Among the
resulting searches, we further omitted the sequences with c = d = 0, since they correspond
to simple linear transforms of S-fractions7; this reduced the number of sequences to 48.

7See [3, Propositions 3 and 15] for some special cases, and [37] for the general case.
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Our Mathematica code returned the following OEIS matches:

• A187251 — On setting x = y = v = c = 1 and u = a = b = d = 0 in (5) we obtain
a sequence that starts as

1, 1, 2, 6, 22, 94, 460, 2532, 15420, 102620, 739512, . . . . (164)

This sequence matches the OEIS entry A187251, which has the description “Number
of permutations of [n] having no cycle with 3 or more alternating runs (it is assumed
that the smallest element of a cycle is in the first position).”

• A105072 — On setting x = y = v = a = c = 1 and u = b = d = 0 in (5) we obtain
a sequence that starts as

1, 2, 5, 16, 63, 290, 1511, 8756, 55761, 386394, 2889181, . . . . (165)

This sequence matches the OEIS entry A105072, which has the description “Number
of permutations on [n] whose local maxima are in ascending order.”

• A230008 — On setting x = y = u = v = b = d = 1 and a = c = 0 in (5) we obtain
a sequence that starts as

1, 1, 3, 11, 51, 295, 2055, 16715, 155355, 1624255, 18868575, . . . (166)

This sequence [which is (9)] matches the OEIS entry A230008, which has as a
comment (by Markus Kuba) “Counts binary free multilabeled increasing trees with
m labels.” This comment was the starting point for the present research. In this
paper we have shown in Theorem 12, and independently in Section 7.2, that this
sequence also counts increasing restricted ternary trees: an = |RT n|.

After finishing the bulk of this research, we performed yet another automated search,
this time including also the value 2 in addition to 0 and 1. This gives 38 = 6561 cases.
We imposed x, y ∈ {1, 2} to avoid a finite continued fraction; this reduced the number of
cases to 4 × 36 = 2946. Then we disallowed a = c = 0 and b = d = 0, as either would
give us a J-fraction by using the odd and even contraction formulae, respectively. The
resulting number of cases is further reduced to 2304. Our Mathematica code returned
13 OEIS matches; we list these in Table 1.

As an aid to researchers who may wish to implement similar reverse-engineering
searches — possibly with a very large number of test sequences — we share our Mathe-
matica code for automated searches of the OEIS:

llToString[ll_] := TextString[ll, ListFormat -> {"", ",", ""}]

OEISquerystring[ll_] :=
"http://oeis.org/search?q=" <> llToString[ll] <> "&fmt=json"
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OEIS A number First few terms (x, y, u, v, a, b, c, d) Description
A258173 1, 1, 3, 12, 58, 321, 1975, 13265 (1,1,0,0,0,1,2,2) Sum over all Dyck paths of semilength n

of products over all peaks p of yp, where
yp is the y-coordinate of peak p.

A006318 1, 2, 6, 22, 90, 394, 1806, 8558 (1,1,0,0,1,1,0,0) Large Schröder numbers

A302285 1, 2, 7, 33, 185, 1170, 8121 (1,1,0,0,1,2,2,2) No combinatorial description

A047891 1, 3, 12, 57, 300, 1686, 9912 (1,1,0,0,2,2,0,0) Number of planar rooted trees
with n nodes and tricolored end nodes.

A155866 1, 2, 6, 22, 91, 413, 2032 (1,1,0,1,1,1,0,0) A ‘Morgan-Voyce’ transform
of the Bell numbers

A155857 1, 2, 6, 23, 107, 590, 3786 (1,1,1,1,1,1,0,0) Row sums of triangle
A155856 (

(
2n−k

k

)
(n− k)!)

A000311 1, 1, 4, 26, 236, 2752, 39208 (1,2,2,2,0,1,2,2) Schröder’s fourth problem;
also series-reduced rooted trees
with n labeled leaves;
also number of total partitions of n.

A001515 1, 2, 7, 37, 266, 2431, 27007 (1,2,2,2,1,1,0,0) Bessel polynomial yn(x)
evaluated at x = 1.

A006351 1, 2, 8, 52, 472, 5504, 78416 (1,2,2,2,1,2,2,2) Number of series-parallel networks
with n labeled edges.
Also called yoke-chains
by Cayley and MacMahon.

A043301 1, 3, 13, 77, 591, 5627, 64261 (1,2,2,2,2,2,0,0) a(n) = 2n
∑n

k=0(n+ k)!/((n− k)!k!4k).

A155867 1, 3, 13, 65, 355, 2061, 12501 (2,1,0,0,1,1,0,0) A ‘Morgan-Voyce’ transform
of the large Schröder numbers A006318.

A103210 1, 3, 15, 93, 645, 4791, 37275 (2,2,0,0,1,1,0,0) a(0) = 1

a(n) = (1/n)
∑n−1

i=0

(
n
i

)(
n

i+1

)
2i3n−i

A156017 1, 4, 24, 176, 1440, 12608 (2,2,0,0,2,2,0,0) Schröder paths with two rise colors
and two level colors.

Table 1: OEIS entries having various T-fractions.

getOEISJSON[ll_] := Import[OEISquerystring[ll], "JSON"]

ToAForm[num_] :=
Module[{str1 = ToString[num]},

If[StringLength[str1] >= 6,
Return["A" <> str1],
Return["A" <> StringRepeat["0", 6 - StringLength[str1]]

<> str1]
]

]
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SequenceInOEIS[ll_, delete_:1, verbose_: False] :=
Module[{res = getOEISJSON[Drop[ll, delete]]},

If[verbose, Print[Length[res], " results"]];
If[res === Null,

Return[{}],
Return[{Map[ToAForm, ("number" /. res)], ll}]

]
]

B Context-free grammars (= derivative operators) for our gen-
erating polynomials

In this appendix, we show how the sequences enumerating our families of trees can be
obtained in a very simple way using context-free (Chen) grammars [6] (see also [15]),
also known as derivative operators. This approach was very helpful to us in guessing our
families of trees, and also in helping us to check the correctness of our T-fractions. Indeed,
whenever we conjectured a family of trees to match a given sequence arising from a T-
fraction, we checked our conjecture by first writing out a derivative operator to generate
that family of trees; this was a quick way of obtaining a weighted count of the trees in
our family without having to construct them explicitly. We then checked whether the
weighted count of the trees matched the sequence generated by our T-fraction.

We applied this approach to increasing binary trees and increasing restricted ternary
trees. However, for increasing interval-labeled restricted ternary trees, our approach was
different: instead, we generated the first few terms of the ordinary generating function
for increasing restricted ternary trees using a derivative operator, and then checked our
construction by using the identity (147).

In the rest of this section, we write out our grammar rules and derivative operators
for binary trees and restricted ternary trees.

B.1 Increasing binary trees

We shall construct a differential operator that generates the polynomials Pn(x1, x2, y1, y2)
defined in (25), which enumerate increasing binary trees with weights x1, y1, x2, y2 for the
node types 11, 00, 10, 01, respectively.

To do this, we start with an increasing binary tree T on the vertex set [n− 1], and we
consider the various ways in which a new vertex with label n can be attached to this tree
as a child of some vertex j ∈ [n− 1]:

• If j is a leaf in T , with weight y1, then n can be attached as either a left child or a
right child of j. In either case n has node type 00, and j gets node type 10 or 01,
respectively. This gives the grammar rule y1 7→ y1x2 + y1y2.

• If j has node type 10 (resp. 01) in T , with weight x2 (resp. y2), then n can be
attached as a right (resp. left) child of j. After n is attached, j has node type 11
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and n has node type 00. This gives us the grammar rules {x2 7→ x1y1 , y2 7→ x1y1}.

• If j has node type 11 in T , then n cannot be attached there.

Combining this information, we define the differential operator

D def
= y1(x2 + y2)

∂

∂y1
+ x1y1

(
∂

∂x2

+
∂

∂y2

)
. (167)

Since P1 = y1, we have proven the following proposition:

Proposition 49. The polynomials Pn(x1, x2, y1, y2) defined in (25) satisfy

Pn(x1, x2, y1, y2) = Dn−1y1 for n ⩾ 1 (168)

where D is defined by (167).

Remark 50. Specializing our grammar rule {y1 7→ y1x2 + y1y2 , x2 7→ x1y1 , y2 7→ x1y1} to
x1 = 1, y1 = x, x2 = y2 = y gives the grammar rule {x 7→ 2xy , y 7→ x} studied in [15,
section 2.4]. ■

B.2 Increasing restricted ternary trees

We shall construct a differential operator that generates the polynomials
Pn(x1, x2, y1, y2, w) defined in (40), which enumerate increasing restricted ternary
trees with weights x1, y1, x2, y2, w for the node types 101, 000, 100, 001, 010, respectively.

To do this, we start with an increasing restricted ternary tree T on the vertex set
[n − 1], and we consider the various ways in which a new vertex with label n can be
attached to this tree. The reasoning is the same as for increasing binary trees, except
that:

• If j is a leaf in T , then n can also be attached as a middle child of j. This gives the
grammar rule y1 7→ y1(x2 + y2 + w).

• If j has node type 010 in T , then n cannot be attached there.

We therefore define the differential operator

D def
= y1(x2 + y2 + w)

∂

∂y1
+ x1y1

(
∂

∂x2

+
∂

∂y2

)
. (169)

Since P1 = y1, we have proven the following proposition:

Proposition 51. The polynomials Pn(x1, x2, y1, y2, w) defined in (40) satisfy

Pn(x1, x2, y1, y2, w) = Dn−1y1 for n ⩾ 1 (170)

where D is defined by (169).
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