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Abstract

We study two variations of the Gyárfás–Lehel conjecture on the minimum num-
ber of monochromatic components needed to cover an edge-coloured complete bi-
partite graph. Specifically, we show the following.

• For p ≫ (log n/n)1/2, w.h.p. every 2-colouring of the random bipartite graph
G ∼ G(n, n, p) admits a cover of all but O(1/p) vertices of G using at most
three vertex-disjoint monochromatic components.

• For every 2-colouring of a bipartite graph G with parts of size n and minimum
degree (13/16 + o(1))n, the vertices of G can be covered using at most three
vertex-disjoint monochromatic components.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

1.1 History of tree covers and partitions

An r-colouring of a graph G is a colouring of the edges of G with up to r different
colours. We are interested in determining the smallest number tpr(G) (tcr(G)) such
that in any r-colouring of G, the vertex set of G can be partitioned (covered) using at
most tpr(G) (tcr(G)) monochromatic trees. There is a large amount of literature on this
problem and its variants where trees are replaced by paths or cycles, and most of the
attention has focused on the case when G is either the n-vertex complete graph Kn or the
complete bipartite graph Kn,m with parts of size n and m. We recommend the excellent
surveys [7, 10] for further reading.

Determining tcr(Kn) is related to the celebrated conjecture [12] of Ryser on matchings
and transversals in hypergraphs (which was also conjectured by Lóvasz [17]). Ryser’s
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conjecture can be equivalently formulated as follows: The vertex set of any r-coloured
graph G can be covered by at most (r−1)α(G) monochromatic trees, where α(G) denotes
the independence number of G [6, 9]. In particular, Ryser’s conjecture would imply that
tcr(Kn) = r − 1 for all n ⩾ 1 and all r ⩾ 2, which is best possible for infinitely many
values of r (see e.g. [6]) and has been confirmed for r ⩽ 5 and all n ⩾ 1 (see [5, 9, 18]).
Further, it is easy to see that tcr(Kn) ⩽ r, since the set of all maximal monochromatic
stars having a fixed vertex v as their centre clearly covers V (Kn).

Erdős, Gyárfás, and Pyber [6] conjectured that the above bound holds even for tree
partitions, that is, they conjectured that tpr(Kn) = r − 1 for all r ⩾ 2. This conjecture
has been confirmed for r = 2, 3 [6], and it is known that tpr(Kn) ⩽ r if n ⩾ n0(r) is large
enough [1, 11].

Let us now turn to the complete bipartite graph Kn,m. It is easy to see that tcr(Kn,m) ⩽
2r− 1, as we can fix any edge vw and consider the maximal monochromatic stars having
v or w as their centre. Two of these stars are joined by the edge vw, and thus the total
number of monochromatic trees needed to cover Kn,m is at most 2r − 1. In [4], this
observation and the following conjecture are attributed to Gyárfás [9] and Lehel [16].

Conjecture 1 (Gyárfás and Lehel [9, 16]). For all n,m ⩾ 1 and r ⩾ 2, tcr(Kn,m) ⩽ 2r−2.

The conjecture has been verified for r ⩽ 5 by Chen, Fujita, Gyárfás, Lehel, and
Tóth [4]. Further, there are examples of r-colourings which show that the bound of
2r − 2 in Conjecture 1 is best possible [4, 9]. See Section 5.1 for more discussion of this
conjecture.

1.2 Tree covering problems in random graphs

In 2017, Bal and DeBiasio [1] initiated the study of covering problems in edge-colourings of
the binomial random graph G(n, p). They showed that, for r ⩾ 2 and p ≪ (r log n/n)1/r,
w.h.p.1 there is an r-colouring of G(n, p) which does not admit a cover with monochromatic
trees whose number is bounded by some function in r. In 2021, Bucić, Korándi, and
Sudakov [3] showed that indeed p = (log n/n)1/r is the threshold for the property of
admitting a cover with f(r) monochromatic trees for some function f .

In view of the results from the previous subsection, it seems natural to ask for the
threshold of the property that tcr(G(n, p)) ⩽ r or tpr(G(n, p)) ⩽ r. For r = 1, this
corresponds to the threshold at which G(n, p) becomes connected. Also note that, while
in the deterministic setting it was conjectured that tpr(Kn) ⩽ r − 1, it is not overly
difficult to see that r trees are needed if p ⩽ 1 − ε, for any constant ε > 0.

Bal and DeBiasio [1] conjectured that tpr(G(n, p)) ⩽ r holds w.h.p. when p ⩾
(1 + ε)(r log n/n)1/r and ε > 0 is fixed. This was confirmed for r = 2 by Kohayakawa,
Mota, and Schacht [15], and disproved for all r ⩾ 3 by Ebsen, Mota, and Schnitzer
(see [15, Proposition 4.1]) who showed that tpr(G(n, p)) ⩾ r + 1 holds w.h.p. when

1We say that G(n, p) satisfies a property P with high probability (w.h.p.) if P(G(n, p) ∈ P) = 1−o(1) as
n tends to infinity. We say that p̂ = p̂(n) is the threshold for the property P, if P(G(n, p) ∈ P) = 1−o(1)
when p = ω(p̂), and P(G(n, p) ∈ P) = o(1) if p = o(p̂).
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p ≪ (log n/n)1/(r+1). For r = 3, Bradač and Bucić [2] showed that p = (log n/n)1/4 is
indeed the threshold for tc3(G(n, p)) ⩽ 3, improving upon previous results from [1, 14].
However, as shown by Bucić, Korándi, and Sudakov [3], the threshold for tcr(G(n, p)) ⩽ r
is in general much higher, and lies somewhere between (log n/n)1/2

r
and (log n/n)

√
r/2r−2

.
A bipartite variant of these results, in the spirit of the Gyárfás–Lehel conjecture (Con-

jecture 1) is still missing. In this setting, the complete bipartite graph Kn,m from Con-
jecture 1 should be replaced with a random bipartite graph G(n,m, p), whose vertex set
are disjoint copies of [n] and [m], respectively, with every possible edge between these two
sets appearing independently with probability p.

We will focus here on the case r = 2 and n = m. (See Sections 5.2 and 5.3 for a
discussion of other options.) Similarly, as for complete graphs and G(n, p), the bound
given by Conjecture 1 does not carry over to G(n, n, p), even when p = 1 − o(1). Indeed,
we show that w.h.p. tc2(G(n, n, p)) ⩾ 3 when 1 − p exceeds 3 log n/n.

Proposition 2. For p ⩽ 1 − 3 log n/n, w.h.p. tc2(G(n, n, p)) ⩾ 3.

Thus motivated, we are interested in the threshold of the property tc2(G(n, n, p)) ⩽ 3.
We believe that this threshold should be the same as for the r = 2 case of the non-bipartite
setting.

Conjecture 3. The threshold for tc2(G(n, n, p)) ⩽ 3 is p̂ = (log n/n)1/2.

Evidence for Conjecture 3 is given by the following theorem, which contains the 0-
statement and an approximate form of the 1-statement.

Theorem 4. There exist positive constants c and C such that the following holds.

1. If p ⩽ c (log n/n)1/2, then w.h.p. tc2(G(n, n, p)) ⩾ 4.

2. If p ⩾ C (log n/n)1/2, then w.h.p., in every 2-colouring of G ∼ G(n, n, p), all but at
most 200/p vertices can be covered using at most three vertex-disjoint monochromatic
trees.

We prove Proposition 2 and Theorem 4 in Section 3.

1.3 Graphs of large minimum degree

In [1], Bal and DeBiasio asked whether a minimum degree version of the tree covering
problem exists, and proved that for every r ⩾ 2 there is a constant αr ∈ (0, 1) such
that if G is an n-vertex graph with δ(G) ⩾ αrn, then tcr(G) ⩽ r. They also found
an r-coloured n-vertex graph with minimum degree roughly rn/(r + 1) which cannot be
covered with r monochromatic trees and conjectured that this would be the worst-case
scenario.

Conjecture 5 (Bal and DeBiasio [1]). Let n, r ⩾ 2. If G is an n-vertex graph with

δ(G) >
r

r + 1
(n− r − 1), (1)

then tcr(G) ⩽ r.
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Shortly afterwards, Girão, Letzter, and Sahasrabudhe [8] proved a strengthening of
Conjecture 5 for r = 2, showing that every n-vertex 2-edge-coloured graph of minimum
degree exceeding (2n− 5)/3 can be partitioned into at most two monochromatic compo-
nents.

We propose a minimum degree version of the balanced case of the Gyárfás–Lehel con-
jecture (Conjecture 1). While in Conjecture 1, the bound on the number of monochromatic
components is 2r − 2, we will need to work with the bound 2r − 1, since a non-complete
bipartite host graph may need this many components, as witnessed by the random case
(Proposition 2).

Question 6. What is the smallest number αr > 0 such that if G is a spanning subgraph
of Kn,n with minimum degree at least αrn, then tcr(G) ⩽ 2r − 1?

The same question can be asked for partitioning.

Question 7. What is the smallest number βr > 0 such that if G is a spanning subgraph
of Kn,n with minimum degree at least βrn, then tpr(G) ⩽ 2r − 1?

Note that βr ⩾ αr > 1/2 for all r ⩾ 2. For this, it suffices to consider the graph G
consisting of two disjoint copies of Kn

2
,n
2
. Give each of these a colouring that cannot be

covered by fewer than r components to see that tcr(G) ⩾ 2r. (Such a colouring can be
obtained by taking a proper edge-colouring of Kr,r and blowing up one of the edges).

For two colours, we show that the answer to Question 7 is at most 13/16 + o(1).

Theorem 8. For every δ > 0, there is n0 such that for every n ⩾ n0 the following holds.
If G is a spanning subgraph of Kn,n with minimum degree at least (13/16 + δ)n, then
tp2(G) ⩽ 3.

The constant 13/16 in Theorem 8 is possibly not tight, and we have no clue which
constant should be the right answer. We prove Theorem 8 in Section 4.

2 Preliminaries

We collect some graph-theoretic notation, probabilistic inequalities and basic results on
random bipartite graphs.

2.1 Basic notation

Let G be a graph with vertex set V (G) and edge set E(G). For A,B ⊆ V (G), G[A] is the
graph induced by A, and, if A, B are disjoint, G[A,B] is the bipartite graph induced by A
and B, that is, the bipartite graph with parts A and B, and all the edges ab ∈ E(G) with
a ∈ A and b ∈ B. Write e(G) := |E(G)|, e(A,B) := |E(G[A,B])| and e(A) := |E(G[A])|.
For x ∈ V (G) and U ⊆ V (G), we write N(x, U) for the set of neighbours of x in U and
set d(x, U) := |N(x, U)|. If U = V (G), we just write N(x) and d(x). When working with
more than one graph, we add subscripts for the graph we are referring to, for example,
dG(x) is the degree of a vertex x in the graph G.
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Given a 2-colouring of G, with colours red and blue, we let GR and GB denote the
subgraphs consisting of the red and blue edges, respectively. We will use the subscripts R
and B instead of GR and GB when referring to the red and blue subgraph, respectively.
For example, for a vertex x ∈ V (G), we write dR(x) and dB(x) instead of dGR

(x) and
dGB

(x).
For a, b ∈ R and c > 0, we write a = b± c to denote that a satisfies b− c ⩽ a ⩽ b + c,

while a ≪ b means that given b one can choose a sufficiently small so that all the following
relevant statements hold. We omit floors and ceilings, if this does not affect the proofs.

2.2 Probabilistic inequalities

We will use the following standard probabilistic inequalities (see [13] for instance).

Lemma 9 (Markov’s inequality). Let X be a non-negative random variable. Then, for
any λ > 0, we have P(X ⩾ λ) ⩽ EX/λ.

Lemma 10 (Chernoff’s bound). Let X be a binomial random variable.

(i) If 0 < δ < 1, then P(X ⩽ (1 − δ)EX) ⩽ e−δ2EX/2.

(ii) If 0 < δ ⩽ 3/2, then P(|X − EX| ⩾ δEX) ⩽ 2e−δ2EX/3.

Lemma 11 (Paley–Zygmund inequality). Let X be a non-negative random variable with
finite variance. Then, for any 0 < δ < 1, we have

P(X ⩾ δEX) ⩾ (1 − δ)2
(EX)2

EX2
.

2.3 Random graphs and graph properties

In the binomial random graph model G(n, p) we consider a graph on the vertex set [n]
where every possible edge appears independently with probability p. By a graph property
P we mean a collection of finite graphs, and we say that P is monotone increasing (resp.
decreasing) if for any G ∈ P , any graph obtained by adding (resp. deleting) edges to G
also satisfies P . Note that the property of tcr being bounded from above by some fixed
number k is a monotone graph property.

The binomial random bipartite graph model G(n,m, p) is the bipartite graph whose
vertex classes are disjoint copies of [n] and [m], respectively, and each possible edge
appears independently with probability p. The terms with high probability and threshold
are defined in the same way as for random graphs.

In the following lemma, we collect all the properties of random bipartite graphs that we
will need for proving the approximate 1-statement of Theorem 4. This lemma is a bipartite
version of Lemma 2.1 in [15], and most of the proofs are straightforward applications of
Chernoff’s bound. For the sake of completeness, we include its proof in the appendix.

Lemma 12. For every 0 < ε < 1, there exists a constant C > 0 such that for p ⩾
C(log n/n)1/2, if G ∼ G(n, n, p) has bipartition classes V1 and V2, then w.h.p. the following
properties hold.
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(i) For every v, w ∈ V1 (resp. v, w ∈ V2), we have d(v) = (1±ε)pn and |N(v)∩N(w)| =
(1 ± ε)p2n.

(ii) For every v ∈ V2 (resp. v ∈ V1), U ⊆ N(v) with |U | ⩾ pn/100, and W ⊆ V2 (resp.
W ⊆ V1) with |W | ⩾ 100/p, we have e(U,W ) ⩾ p|U ||W |/2.

(iii) For every v ∈ V2 (resp. v ∈ V1) and U ⊆ N(v) with |U | ⩾ pn/100, all but at most
100/p vertices v′ ∈ V2 (resp. v′ ∈ V1) satisfy d(v′, U) ⩾ p2n/200.

(iv) Every subgraph H ⊆ G with δ(H) ⩾ (1/2 + ε)pn is connected.

We remark that for ensuring the degree condition d(x) = (1 ± ε)pn it suffices that

p ≫ log n/n rather than the stronger condition p ≫ (log n/n)
1
2 .

The next lemma is crucial for the construction of a colouring that shows the 0-
statement in Theorem 4.

Lemma 13. Let c > 0 be sufficiently small and let p = c(log n/n)1/2. Let G ∼ G(n, n, p)
with bipartition classes V1, V2. Then, for i ∈ [2], w.h.p. there are at least e−3c2 logn

(
n
2

)
pairs {u, v} of distinct vertices from Vi such that u, v have no common neighbours.

Proof. The probability that two distinct vertices u, v ∈ Vi have no common neighbours is
(1 − p2)n. So, letting X denote the random variable counting the number of such {u, v},
we have

EX =

(
n

2

)
(1 − p2)n ⩾

(
n

2

)
e−2p2n,

where we used that e−2x ⩽ 1 − x holds for all 0 ⩽ x ⩽ 3/4. On the other hand, we have

EX2 =

(
n

2

)(
n− 2

2

)
(1 − p2)2n + 6

(
n

3

)
(1 − 2p2 + p3)n +

(
n

2

)
(1 − p2)n

= (1 + o(1))(EX)2,

where the second term comes from pairs {u, v} and {u′, v′} that intersect in exactly one
element. Therefore, by the Paley–Zygmund inequality (Lemma 11) we have

P
(
X ⩾ e−3c2 logn

(
n
2

))
⩾ P(X ⩾ e−c2 lognEX) ⩾ (1 − e−c2 logn)2

(EX)2

EX2
= 1 − o(1).

3 Tree covers in random bipartite graphs

In this section, we prove Proposition 2 and Theorem 4. We start with Proposition 2.

Proof of Proposition 2. Let G ∼ G(n, n, p) and let V1 and V2 be the bipartition classes of
G. We first note that w.h.p. each vertex in Vi has at least two non-neighbours in V3−i,
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for i ∈ [2]. Indeed, for a vertex v ∈ V1 (say), the probability that v has less than 2
non-neighbours is

pn + npn−1(1 − p) ⩽ e−3 logn + ne−3n−1
n

logn ⩽ 2n−2,

and thus by a union-bound the probability that there is a vertex with less than 2 non-
neighbours is at most 2n · 2n−2 = o(1). So, we may pick, arbitrarily, vertices r ∈ V1 and
b ∈ V2 \N(r), and set X = V1 \ (N(b) ∪ {r}) and Y = V2 \ (N(r) ∪ {b}). Note that both
X and Y are non-empty as both r and b have at least 2 non-neighbours.

We colour in red the edges from r to N(r), the edges between X and N(r), and the
edges between Y and N(b). We colour in blue the edges from b to N(b), the edges between
N(r) and N(b), and the edges between X and Y . In this colouring, no two components
can cover all of V (G) (the monochromatic components that cover r and b cannot cover
Y ), which proves that tc2(G) ⩾ 3.

The following proposition proves Theorem 4 (i).

Proposition 14. Let c > 0 be sufficiently small and let p ⩽ c(log n/n)1/2. Then w.h.p.
tc2(G(n, n, p)) ⩾ 4.

Proof. First, as the property P = {H : tc2(H) ⩾ 4} is monotone decreasing, we can
assume that p = c(log n/n)1/2. Let G ∼ G(n, n, p) and let V1 and V2 be the bipartition
classes of G. By the remark after Lemma 12, we may assume that for each i ∈ [2],
w.h.p. every vertex v ∈ Vi satisfies d(v) = (1 ± 0.5)pn. By Lemma 13, w.h.p. there are
at least e−3c2 logn

(
n
2

)
pairs of distinct vertices in Vi, for each i ∈ [2], with no common

neighbours.
We now construct an edge-colouring of G which can only be covered if at least four

monochromatic components are used. We choose u1, v1 ∈ V1 with no common neighbours.
Then, we pick u2, v2 ∈ V2\(N(u1)∪N(v1)) with no common neighbours, which is possible
because we have at least

e−3c2 logn

(
n

2

)
− 4pn2 ⩾ e−3c2 logn

(
n

2

)
− 4c2n3/2(log n)1/2 ⩾ e−c2 logn

(
n

2

)
options for {u2, v2}, provided c is small enough. We use red for all edges between ui, vi
and their neighbours, for i ∈ [2], and blue for all the rest. Since u1, u2, v1, v2 each belong
to distinct singleton blue components and lie in four separate red components, we cannot
cover G with fewer than four components. Therefore tc2(G) ⩾ 4.

The proof of Theorem 4 (ii) is captured in the following theorem, whose proof is
inspired by the approach of Kohayakawa, Mota, and Schacht [15].

Theorem 15. There exists a constant C > 0 such that if p ⩾ C (log n/n)1/2, then
w.h.p. in every 2-colouring of G ∼ G(n, n, p), all but at most 200/p vertices of G can
be covered by at most three vertex-disjoint monochromatic trees.
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Proof. Let C be a sufficiently large constant. Since the property of being almost coverable
by m monochromatic trees is monotone, we can assume p = C(log n/n)1/2. Let G ∼
G(n, n, p), with partition classes V1 and V2. Then, for 0 < ε ≪ 1, by Lemma 12 we know
that w.h.p. G satisfies the following properties:

(B1) For i ∈ [2] and v, w ∈ Vi, we have d(v) = (1± ε)pn and |N(v)∩N(w)| = (1± ε)p2n.

(B2) For i ∈ [2], v ∈ Vi and subsets U ⊆ Vi and W ⊆ N(v), with |U | ⩾ 100/p and
|W | ⩾ pn/100, we have e(U,W ) ⩾ p|U ||W |/2.

(B3) For i ∈ [2], v′ ∈ V3−i and a subset W ⊆ N(v′) with |W | ⩾ pn/100, all but at most
100/p vertices v ∈ V3−i satisfy d(v,W ) ⩾ p2n/200.

(B4) Every subgraph H ⊆ G with δ(H) ⩾ (1/2 + ε)pn is connected.

Moreover, as we may assume that n is sufficiently large, we have

max
{

(1 + ε)p2n, 100/p
}
⩽

pn

100
. (2)

Suppose we are given a red and blue edge-colouring of G. If there is a monochromatic
spanning component, we are done, so assume otherwise. Set VR = {v ∈ V (G) : dR(v) >
1
3
d(v)} and VB = {v ∈ V (G) : dB(v) > 1

3
d(v)}. We claim that

VR ̸= ∅ ≠ VB. (3)

For contradiction, assume that VR = ∅. Then (B1) implies that for every v ∈ V (G),

dB(v) ⩾
2

3
(1 − ε)pn ⩾

(
1

2
+ ε

)
pn.

Therefore, by (B4), the blue graph GB is connected and thus G has a monochromatic
spanning tree. The same argument applies to VB, which completes the proof of (3).

By (3), and after possibly swapping the names of V1 and V2, we can assume that there
are vertices

r ∈ V1 ∩ VR and b ∈ V2 ∩ VB.

(Indeed, if V1 only meets VR, say, then V2 necessarily meets VB, and the case that V1

meets both sets is easy.) We will define a red tree T1 and a blue tree T2 having r and b as
their respective roots (and later, depending on the structure of the colouring, we might
define a third tree T3). To define T1 and T2, we will define a vertex-colouring ρ, where v
will have colour ρ(v) if there are many monochromatic paths (in the edge-coloured graph)
in colour ρ(v) connecting v with the root of the tree in colour ρ(v). Later, T1 will consist
of all vertices v with ρ(v) = red and T2 will consist of all vertices v with ρ(v) = blue. To
avoid any confusion, neighbourhoods will always be considered with respect to the edge
colouring.

So let us define ρ. We set ρ(r) = red and ρ(b) = blue, and set for each v ∈ NR(r)\{b}

ρ(v) = red .
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Since r ∈ VR and b ∈ VB, we have |NR(r)|, |NB(b)| ⩾ pn/100, which, together with (B2),
implies e(NR(r), NB(b)) ⩾ p|NR(r)||NB(b)|/2. By colour symmetry, we may assume with-
out loss of generality that

eR(NR(r), NB(b)) ⩾
p

4
|NR(r)||NB(b)|. (4)

Let
J1 = {v ∈ NB(b) : |NR(v) ∩NR(r)| > p2n/25}.

The letter J stands for the word ‘joker’, as the vertices from J1 can be used in both
colours (each vertex from J1 can be connected to r by a red path of length two and to b
by a blue edge). We set ρ(v) = blue for each v ∈ NB(b) \ J1 and claim that J1 is large,
namely,

|J1| ⩾ pn/100. (5)

To see (5), we start by setting L := NB(b) \ J1. Then

eR(L,NR(r)) ⩽ |L| · p
2n

25
⩽ |NB(b)| · (1 − ε)p2n

24
⩽

p

8
|NR(r)||NB(b)|,

where we used (B1) and the fact that r ∈ VR, which implies that |NR(r)| ⩾ (1 − ε)pn/3.
Thus, by (4), we have

eR(J1, NR(r)) ⩾ p|NR(r)||NB(b)|/8.

As |N(v) ∩N(r)| ⩽ (1 + ε)p2n for every v ∈ V , we conclude that

|J1| ⩾
p|NR(r)||NB(b)|

(1 + ε)8p2n
⩾

pn

100
,

where in the last inequality we used that dR(r), dB(b) ⩾ (1 − ε)pn/3. This proves (5).
Next, set

Z2 = {z ∈ V2 \ (NR(r) ∪ {b}) : |N(z, J1)| ⩾ p2n/200}

and set K2 = V2 \ (NR(r) ∪ Z2 ∪ {b}). Because of (B3) and (5), we have

|K2| ⩽ 100/p. (6)

For z ∈ Z2, we set

ρ(z) =

red if |NR(z, J1)| ⩾
p2n

400
,

blue otherwise.

Note that each vertex in Z2 has at least p2n/400 neighbours in J1 in at least one of the
colours. So, if ρ(z) = blue, then |NB(z, J1)| ⩾ p2n/400.

Up to this point, we have assigned a colour to every vertex in V (G) except for those
in V1 \ (NB(b)∪{r}) and in K2. Moreover, every vertex v sends an edge of colour ρ(v) to
either b or r (according to ρ(v)), or many edges of the same colour to J1. In order to be
able to define T1 and T2 as disjoint trees, we will need to assign colours to the vertices of
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J1 so that the vertices from Z2 can all be connected with monochromatic paths to either
r or b. For this reason, we will define ρ(v) for the vertices of J1 as follows:

For each v ∈ J1, define ρ(v) by choosing a colour from {red, blue}
independently and uniformly at random.

Let Zr
2 be the set of all vertices v ∈ Z2 with ρ(v) = red, and set Zb

2 = Z2 \ Zr
2 . Note that

for each v ∈ Zr
2 , the probability that ρ(w) = blue for each vertex w ∈ NR(v, J1) is

2−|NR(v,J1)| ⩽ 2−p2n/400 = o(n−1).

The same argument holds for v ∈ Zb
2, which proves that

w.h.p. each v ∈ Z2 has at least one neighbour of colour ρ(v) in J1. (7)

To avoid any ambiguity, (7) means that each vertex in v ∈ Z2 has at least one neighbour
v′ ∈ N(v)∩J1 such that ρ(v) = ρ(v′) and, by definition of ρ, the edge vv′ has colour ρ(v).
Therefore, by (7), there is a red tree T1 with vertex set ρ−1(red) such that the vertices
of Zr

2 are leaves of T1. We define a blue tree T2 analogously, with V (T2) = ρ−1(blue).
Note that by our choice of ρ,

T1 and T2 are disjoint and cover all of (NB(b) ∪ {r}) ∪ (V2 \K2). (8)

We still need to cover most of the vertices in V1 \ (NB(b)∪{r}). For this, we will consider
two cases.

Case 1. There is a vertex ṽ ∈ V1 \ (NB(b) ∪ {r}) such that

dB(ṽ, Zr
2) ⩾ pn/100 or dR(ṽ, Zb

2) ⩾ pn/100.

We will assume that |NB(ṽ, Zr
2)| ⩾ pn/100, as the other case is completely analogous

(with all colours switched). So for J2 = NB(ṽ, Zr
2) we have

|J2| ⩾ pn/100.

We will use ṽ as the root of a third monochromatic tree. This tree will be blue, and in
order to define it, we will use a function ρ′.

Let Z1 = {x ∈ V1 \ (NB(b) ∪ {r, ṽ}) : |N(x, J2)| ⩾ p2n/200}. We define, for each
x ∈ Z1,

ρ′(x) =

{
red if |NR(x) ∩ J2| ⩾ p2n

400
,

blue otherwise.

As each vertex x ∈ Z1 sends at least p2n
400

edges in the same colour to J2, vertices with blue

assignment have at least p2n
400

blue neighbours in J2.
Now, for each v ∈ J2, we choose ρ′(v) ∈ {red, blue} uniformly at random, making all

choices independently from each other. Similarly as above,

w.h.p. each x ∈ Z1 has at least one neighbour of colour ρ′(x) in J2. (9)
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As before, if x ∈ Z1 has a neighbour x′ ∈ N(x) ∩ J2 with ρ(x) = ρ(x′), then the edge
xx′ has colour ρ(x). Let K1 = V1 \ (NB(b) ∪ Z1 ∪ {r, ṽ}), and note that by (B3) we have
|K1| ⩽ 100/p. So, by (6), we know that

|K1 ∪K2| ⩽
200

p
.

We let T3 be a blue tree with vertex set {ṽ} ∪ {v ∈ J2 ∪ Z1 : ρ′(v) = blue}. We let T ′
1

be the tree obtained from T1 − {v ∈ J2 : ρ′(v) = blue} by adding as leaves all x ∈ Z1

with ρ′(x) = red. Then the three trees T ′
1, T2 and T3 are vertex-disjoint and cover all of

V (G) \ (K1 ∪K2), that is, they cover all but 200/p vertices from G, which is as desired.

Case 2. For every vertex v ∈ V1 \ (NB(b) ∪ {r}), we have

dB(v, Zr
2) ⩽

pn

100
and dR(v, Zb

2) ⩽
pn

100
.

Consider any vertex v ∈ V1 \ (Nb(b) ∪ {r}). Note that by (B1), (2) and (6),

d(v, Z2) ⩾ d(v) − d(v,K2) − d(v,NR(r)) − 1 ⩾
pn

2
, (10)

and therefore, v either has at least pn/10 neighbours in Zr
2 or at least pn/10 neighbours

in Zb
2. In the former case, we have dR(v, Zr

2) ⩾ pn/100 ⩾ 1, as dB(v, Zr
2) ⩽ pn/100. In

the latter case, we have dB(v, Zb
2) ⩾ pn/100 ⩾ 1.

So, we can add each vertex v ∈ V1 \ (Nb(b) ∪ {r}) as a leaf to one of the trees T1, T2,
and the obtained two trees cover all but at most 100/p vertices of G.

4 Graphs of large minimum degree

The whole section is devoted to the proof of Theorem 8.
Let n0 be sufficiently large and let G be a bipartite graph with parts V1 and V2, each

of size n ⩾ n0, and with minimum degree δ(G) ⩾ (13/16 + δ)n. Let VR and VB be the set
of vertices with at least (9/16 + 3δ/4)n neighbours in red and blue, respectively. If one
of these sets is empty, say VB, then the red graph has minimum degree at least(

13

16
+ δ

)
n−

(
9

16
+

3δ

4

)
n > n/4,

and thus G can be covered using at most 3 red components, and we are done. So we can
assume both sets VR, VB are non-empty. This implies that there are vertices r ∈ VR and
b ∈ VB from different partition classes of G (see the proof of Theorem 15 for an analogous
argument).

Suppose without loss of generality that r ∈ V1 and b ∈ V2, and choose sets X ⊆
NR(r)\{b} and Y ⊆ NB(b)\{r} such that |X| = |Y | = (9/16+ δ/2)n. Note that because
of our condition on δ(G), for every vertex v ∈ Y we have

d(v,X) ⩾

(
9

16
+

δ

2

)
n−

(
3

16
− δ

)
n ⩾

(
3

8
+ δ

)
n,
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and thus we have e(X, Y ) ⩾ (3/8 + δ)n|Y |. Therefore, there are at least (3/16 + δ/2)n|Y |
edges of the same colour between X and Y . Say this colour is red, and let JY ⊆ Y be
the set of all vertices v ∈ Y satisfying dR(y,X) ⩾ δn/100. (If the most popular colour
between X and Y was blue, then we take JX ⊆ X instead, and accordingly change the
rest of the proof.)

We claim that |JY | ⩾ 3n/16. Indeed, otherwise, we would have that(
3

16
+

δ

2

)
n|Y | ⩽ eR(X, Y ) ⩽

3n

16
· |X| + |Y | · δn

100
,

which is a contradiction as |X| = |Y |. Therefore, and because of our condition on δ(G),
every vertex v ∈ V2 satisfies

d(v, JY ) ⩾
3n

16
−

(
3n

16
− δ

)
n = δn. (11)

Before starting to assign colours to vertices as in the proof of Theorem 4, we need to
shrink the size of X for reasons that will become clear later in the proof. Let p ∈ (0, 1)
be a small enough constant and take a subset X ′ ⊆ X so that each vertex x ∈ X is
included in X ′ with probability p and all choices are made independently. Note that
E|X ′| = p|X| = (9/16 + δ/2)pn and, by definition of JY , each vertex y ∈ JY satisfies
E[dR(y,X ′)] ⩾ δpn/100. So, by Lemma 10, with probability 1 − o(1) we have that

• pn
2
⩽ |X ′| ⩽ pn, and

• for each vertex y ∈ JY , dR(y,X ′) ⩾ δpn/200.

Let W = V2 \ ({b} ∪X ′). Now, as in the proof of Theorem 4, we will choose a preferred
colour ρ(v) for each vertex v. We set

ρ(v) =

{
red if v ∈ X ′ ∪ {r}, and

blue if v ∈ (Y ∪ {b}) \ JY ,

and for each v ∈ JY , we choose ρ(v) ∈ {red, blue} independently uniformly at random.
Let us next define ρ(v) for each v ∈ W . Because of (11), for each v ∈ W there is a colour
cv ∈ {red, blue} such that v has at least δn/2 neighbours in JY in colour cv, in which case
we let ρ(v) = cv.

Use Lemma 10 and a union bound to see that the following property holds with high
probability.

For each vertex w ∈ W there are at least δn/8 vertices v ∈ N(w, JY ) in colour ρ(w)
such that ρ(v) = ρ(w).

Set WB = ρ−1(blue) ∩W and WR = ρ−1(red) ∩W , and observe that every vertex in WB

(resp. WR) can be connected to b (resp. to r) by a path in colour blue (resp. red). As
|X ′| ⩽ pn and p is sufficiently small, we have |W | = n− |X ′| − 1 ⩾ n− 2pn ⩾ 0.9n, and
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thus, at least one of WR, WB has at least 0.4n vertices. We assume |WB| ⩾ 0.4n (the
other case is analogous).

Let U = V1 \ ({r} ∪ Y ), and observe that every vertex v ∈ U satisfies

d(v,WB) ⩾ 0.4n−
(

3

16
− δ

)
n ⩾

(
3

16
+ δ

)
n. (12)

If each vertex in U has at least one blue neighbour in WB, we can assign ρ(u) = blue for
each u ∈ U . Then both ρ−1(red), ρ−1(blue) span vertex-disjoint monochromatic connected
components, and we are done. So, we can assume that there is a vertex u0 ∈ U with no
blue neighbour in WB and thus dR(u0,WB) ⩾ (3/16 + δ)n by (12).

Pick a set JX ⊆ NR(u0,WB) of size (3/16 + δ)n, and note that each vertex u ∈ U
satisfies

d(u, JX) ⩾ (3/16 + δ)n− (3/16 − δ)n ⩾ 2δn.

In particular, for each vertex u ∈ U there is a colour cu such that u has at least δn
neighbours in colour cu in JX . We set ρ(u) = cu. Now, we randomly re-colour each vertex
in JX by choosing ρ(v) ∈ {red, blue} uniformly at random for each v ∈ JX . Since for each
u ∈ U , the expected number of vertices in N(u) ∩ JX with colour ρ(u) is at least δn, by
Lemma 10 we deduce that w.h.p. each vertex u ∈ U has at least δn/2 neighbours v ∈ JX
with ρ(v) = ρ(u). So, the vertices with preference ρ(v) = red span a red subgraph having
at most two connected components, and the remaining vertices (those with preference
ρ(v) = blue) span a blue connected subgraph, and we are done.

5 Concluding remarks

5.1 Variants of the Gyárfás-Lehel conjecture

Recall that in Conjecture 1, Gyárfás and Lehel conjectured that tcr(Kn,m) ⩽ 2r − 2 for
n,m ⩾ 1 and r ⩾ 2. In [4] and [9] one can find examples of r-colourings of Kn,m with
n = r−1 and m = r! which show that the bound of 2r−2 in Conjecture 1 is best possible.

We do not know of similar examples for balanced complete bipartite graphs. That is,
we do not know whether there is, for some n, an r-colouring of Kn,n which does not allow
for a covering with fewer than 2r − 2 trees. So, although we are inclined to believe the
opposite, it is possible that tcr(Kn,n) is lower than 2r − 2. Thus motivated, we propose
the following problem.

Problem 16. Determine tcr(Kn,n) for all n, r.

Also, it seems that nothing is known about tree partitioning in complete bipartite
graphs, which is why we suggest the following problem.

Problem 17. Determine tpr(Kn,m) for all n,m, r.

We believe that, in analogy to the complete graph case, it could be true that

tpr(Kn,m) = tcr(Kn,m).
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5.2 Unbalanced random bipartite host

While we believe the bipartite tree covering number tcr(Kn,m) should be the same if
restricted to the instances where n = m, this might not be the case. Then, our main
result, Theorem 4 corresponds to Problem 16, and the random version of Conjecture 1
should be more general. Nevertheless, our proof, up to minor modifications, yields the
same conclusions for the host G(n,m, p) when m = Θ(n).

5.3 More colours in the random setting

Given Theorem 4, a natural next step would be to find a random analogue of the Gyárfás–
Lehel conjecture for more colours. In this direction, we propose the following question.

Question 18. For r ⩾ 2, determine the threshold for tcr(G(n, n, p)) ⩽ 2r − 1.

As in the two colour case, we believe that the answer to Question 18 should be the same
as in the non-bipartite setting. In particular, given the result of Bradač and Bucić [2], we
believe that the threshold for 3 colours should be p = (log n/n)1/4.

Conjecture 19. There exists a constant C such that if p ⩾ C(log n/n)1/4 and G ∼
G(n, n, p), then w.h.p. tc3(G) ⩽ 5.
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A Proof of Lemma 12

We let C ≫ ε−2.

(i): As d(u) ∼ Bin(n, p) for every u ∈ V1, Chernoff’s bound (Lemma 10) gives that
the probability that there is a vertex u with |d(u) − pn| ⩾ εpn is bounded by
2ne−ε2pn/3 = o(1), as pn ≫ log n. Moreover, for distinct u, v ∈ V1, we have that
|N(u)∩N(v)| ∼ Bin(n, p2) and thus, by Chernoff’s bound, the probability that are

such u, v with
∣∣∣|N(u) ∩ N(v)| − p2n

∣∣∣ ⩾ εpn2 is bounded by 2n2e−ε2p2n/3 = o(1), as

p2n ⩾ C log n and C ≫ ε−2.

(ii): Fix U ⊆ V1 and W ⊆ V2, with |U | ⩾ 100/p and |W | ⩾ pn/100. Note that
e(U,W ) ∼ Bin(|U ||W |, p) and so, by Chernoff’s bound (Lemma 10), we have

P(e(U,W ) < p|U ||W |/2) ⩽ e−p|U ||W |/8.

the electronic journal of combinatorics 33(1) (2026), #P1.6 15



Therefore, the probability that there exist a vertex v ∈ V2, and subsets U ⊆ N(v)
and W ⊆ V2, with |U | ⩾ pn/100 and |W | ⩾ 100/p, such that e(U,W ) < p|U ||W |/2,
is bounded by∑

u⩾ pn
100

,w⩾ 100
p

n

(
n

u

)(
n

w

)
pue−puw/8 ⩽

∑
u⩾ pn

100
,w⩾ 100

p

n
(enp

u

)u (en
w

)w

e−puw/8

⩽
∑

u⩾ pn
100

,w⩾ 100
p

ne6u+w logn−puw/8

⩽
∑

u⩾ pn
100

,w⩾ 100
p

ne−puw/200

⩽ n3e−n/200 = o(1),

where we used that u ⩾ pn/100 implies (epn/u)u ⩽ (100e)u ⩽ e6u, and that
puw/15 ⩾ 6u and puw/20 ⩾ pn2w/2000 ⩾ w log n.

(iii): Let W be the set of those vertices w ∈ V2 with d(w,U) < p2n/200. As

e(U,W ) =
∑
w∈W

d(w,U) < pn|W |/200 ⩽ p|U ||W |/2,

from the conclusion of (ii) we deduce that |W | < 100/p.

(iv): Fix a constant 0 < δ ≪ ε. We first show that w.h.p. e(A,B) ⩽ p|A||B| + δpn|A|
for all sets A and B from opposite bipartition classes such that |A|, |B| ⩾ pn/2.
Indeed, given such sets A and B, by Lemma 10 and since p2n ⩾ C2 log n, we have

P(e(A,B) ⩾ p|A||B| + δpn|A|) ⩽ e−(δn/|B|)2p|A||B|/3 ⩽ e−2δ2(pn)2/3 = o(22n),

thus by a union bound over all such sets A,B we conclude.

Now let U be a component of H and set X = V1∩U and Y = V2∩U . By (i), w.h.p.
we have |X|, |Y | ⩾ δ(H) ⩾ pn/2, and therefore

p|X||Y | + δpn|X| ⩾ eH(X, Y ) =
∑
x∈X

dH(x) ⩾ (1/2 + ε)pn|X|.

Hence |Y | ⩾ (1/2 + ε/2)n as δ ≪ ε. Similarly, we have |X| ⩾ (1/2 + ε/2)n. As this
is true for any component U of H, we conclude that H is connected.
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