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Abstract

Let t, q and n be positive integers. Write [q] = {1, 2, . . . , q}. The generalized

Hamming graph H(t, q, n) is the graph whose vertex set is the cartesian product of

n copies of [q] (q ⩾ 2), where two vertices are adjacent if their Hamming distance is

at most t. In particular, H(1, q, n) is the well-known Hamming graph and H(1, 2, n)

is the hypercube. In 2006, Chandran and Kavitha described the asymptotic value

of tw(H(1, q, n)), where tw(G) denotes the treewidth of G. In this paper, we give

the exact pathwidth of H(t, 2, n) and show that tw(H(t, q, n)) = Θ(tqn/
√
n) when n

goes to infinity. Based on those results, we show that the treewidth of the bipartite

Kneser graph BK(n, k) is
(
n
k

)
− 1 when n is sufficient large relative to k and the

bounds of tw(BK(2k + 1, k)) are given. Moreover, we present the bounds of the

treewidth of generalized Petersen graph.

Mathematics Subject Classifications: 05C75, 05D05

1 Introduction

Treewidth is a well-studied parameter in graph theory. Many NP-complete problem can be

solved in polynomial time on graphs of bounded treewidth [36, 7, 11]. Besides, treewidth

is also useful in structural graph theory. For example, Robertson and Seymour used it

to prove the Graph Minor Theorem [30, 31, 32]. In the past few decades, there has been

much literature investigating the treewidth of certain graphs (see for example, [17, 18, 22,

25, 35]). However, it is difficult to estimate the treewidth even asymptotically.

Throughout this paper, graphs are finite, simple and undirected. Let V (G) and E(G)

denote the vertex set and edge set of G, respectively. The degree of a vertex v ∈ V (G)
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in G is denoted by dG(v), and we ignore the subscript G in case of no ambiguity. The

maximum and minimum degree of G are denoted as ∆(G) and δ(G), respectively. Write

[n] = {1, 2, . . . , n} and denote by
(
[n]
k

)
the family of all k-subsets of [n]. The treewidth,

pathwidth and bandwidth of graph G are denoted by tw(G), pw(G) and bw(G), respec-

tively. It is worth mentioning that the isoperimetric problem of the hypercube is an

important topic which provides a foundation for our subsequent proof. The readers may

refer to [15, 14, 29, 16, 3] for more details.

The Hamming graph H(q, n) is the graph on qn vertices, which correspond to all n-

vectors whose components are from [q] (q ⩾ 2). When q = 2, it is more common to treat

each vertex of H(2, n) as a binary n-vector, that is, an n-vector whose components are

from {0, 1}. Two of the vertices in H(q, n) are adjacent only when they differ in just

one coordinate. The hypercube graph is a special case of the Hamming graph when q = 2

which is well-studied in parallel computing, coding theory and many other areas[1, 19, 20].

The Hamming distance of two n-vectors is the number of coordinates where one differs

from the other. Two vertices in a Hamming graph are adjacent if and only if their

Hamming distance is no more than 1. If two vertices in H(q, n) is adjacent if and only if

their Hamming distance is no more than t, then we denote the generalized Hamming graph

as H(t, q, n). Then H(1, q, n) = H(q, n) and H(1, 2, n) is the hypercube graph. We call

H(t, 2, n) the generalized hypercube graph and we will give the exact value of its pathwidth

and bandwidth as Theorem 1. When t = 1, our result covers the previous results of

hypercube graph. It is interesting to see that in the generalized form of hypercube graph,

its treewidth still can be described by an exact expression. Having exact form of treewidth

is not a common phenomenon, especially with such a complicated form.

Theorem 1. We have

pw(H(t, 2, n)) = bw(H(t, 2, n))

=

⌊(n−t)/2⌋+t−1∑
k=⌊(n−t)/2⌋

(
n

k

)
+

⌊(n−t−1)/2⌋∑
a=0

((
t+ 2a

t+ a− 1

)
−
(
t+ 2a

a− 1

))
.

(1)

The treewidth of H(q, n) is asymptotically Θ(qn/
√
n) from [9]. To be more specific,

there exists constants c1 and c2 not depending on q, such that for sufficiently large n,

c1q
n/
√
n ⩽ tw(H(q, n)) ⩽ c2q

n/
√
n. In this paper, we generalize this result to generalized

Hamming graph H(t, q, n) as Theorem 2. The previous result about tw(H(q, n)) can be

derived from our result by letting t = 1. It is interesting to see that the distance variable

t in the generalized Hamming graph H(t, q, n) has linear impact on its treewidth.

Theorem 2. There exists constant c1 and c2 not depending on t or q, such that for any

positive integers t and q. When n is sufficiently large, we have that

c1tq
n/
√
n ⩽ tw(H(t, q, n)) ⩽ c2tq

n/
√
n.
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Kneser graph K(n, k) is the graph whose vertex set is
(
[n]
k

)
and where two vertices are

adjacent if and only if the two corresponding sets are disjoint. The treewidth of Kneser

graph is studied by Harvey in 2014 [17]. Generalized Kneser graph, q-Kneser graph and

generalized q-Kneser graph are three derived class from Kneser graph and their treewidth

can also be exactly described when n is large enough [8, 26, 27]. Bipartite Kneser graph is

also an important variant of Kneser graph whose vertex set is
(
[n]
k

)
and

(
[n]
n−k

)
denoted by

BK(n, k) where 2k ⩽ n. A k-subset A and a (n− k)-subset B in bipartite Kneser graph

is adjacent if A ⊆ B. We will give the exact value of tw(BK(n, k)) when n is sufficient

large relative to k as Theorem 3. When n = 2k + 1, we give the bounds of the treewidth

of the bipartite Kneser graph as Theorem 4.

Theorem 3. If 3
(
n−k
k

)
⩾ 2
(
n
k

)
and k ⩾ 2, then tw(BK(n, k)) =

(
n
k

)
− 1.

Theorem 4. There exists two constants c1 and c2 such that for any positive integer k,

c1
1

k

(
2k + 1

k

)
⩽ tw(BK(2k + 1, k)) ⩽ tw(J(2k + 1, k)) ⩽ c2

(
2k + 1

k

)
.

Petersen graph is a well-studied Kneser graph K(5, 2). Generalized Petersen graph is

an extension of Petersen graph denoted by Gn,k whose vertex set and edge set are

V (Gn,k) = {v1, . . . , vn, u1, . . . , un},
E(Gn,k) = {viui} ∪ {vivi+1} ∪ {uiui+k}, i = 1, 2, . . . , n,

where subscripts are to be read modulo n and k < n/2. We will show the treewidth of

Gn,k when n is sufficient large relative to k as Theorem 5.

Theorem 5. Let n and k be positive integers satisfying that n ⩾ 8(2k + 2)2. Then we

have

2k + 1 ⩽ tw(Gn,k) ⩽ pw(Gn,k) ⩽ 2k + 2.

Theorem 3, 4 and 5 can be viewed as different generalizations of Kneser graph. And in

Theorem 4, it is interesting to see that the treewidth of the bipartite Kneser graph has a

close relationship with that of the well-studied Johnson graph. The treewidth of Johnson

graph J(n, k) is also an interesting topic. When k = 2, tw(J(n, 2)) and pw(J(n, 2)) have

exact formulas while for other k it remains unknown [12]. Our result may help to have a

deeper understanding of the treewidth of Johnson graph.

The rest of this paper is organized as follows. In Section 3, we give a proof of the

treewidth of generalized Hamming graph (Theorem 1 and Theorem 2). In this part, we

mainly use properties of bandwidth and techniques of Hales numbering and the isoperi-

metric problems by Harper [15, 14].

In Section 4, we study the treewidth of the bipartite Kneser graph and Johnson

graph (Theorem 3 and Theorem 4). In this part, we mainly use the techniques of separa-

tors, properties of cross-intersecting families and chordal completions. Since the Johnson
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graph can be viewed as a slice of generalized Hamming graph, we need the results in

Section 3 to prove our results.

In Section 5, we study the treewidth of generalized Petersen graph (Theorem 5). In

this part, we mainly use brambles and path-decomposition constructions.

2 Preliminaries and definitions

In this section, we give definitions involving in treewidth, pathwidth and bandwidth of a

graph G(V,E).

Definition 6. A tree-decomposition of a graph G(V,E) is a pair (X,T ), where T (I, F )

is a tree with vertex set I and edge set F , and X = {Xi | i ∈ I} is a family of subsets of

V , one for each node of T , such that:

•
⋃
i∈I

Xi = V .

• For each edge uv ∈ E, there exists an i ∈ I such that u, v ∈ Xi.

• For all i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩Xk ⊂ Xj.

The width of a tree-decomposition (X,T ) is max
i∈I

|Xi| − 1. The treewidth of a graph

G is the minimum treewidth over all possible tree-decompositions of G and denoted by

tw(G). The problem of deciding whether a graph has tree decomposition of treewidth

at most k is NP-complete [2]. However, there is an exact algorithm finding treewidth of

given graph G when taking tw(G) as a constant [5, 23]. A path decomposition of G is

a tree decomposition (X,T ) in which T is required to be a path. The pathwidth of G is

defined to be the minimum width over all path decompositions of G and is denoted by

pw(G).

A bijection ϕ : V → {1, 2, . . . , n} is called an ordering of the vertices of G (in short,

an ordering of G). Then for any edge e = {u, v} ∈ E, let ∆(e, ϕ) = |ϕ(u)− ϕ(v)|.

Definition 7. A bandwidth of a graph G(V,E), denoted by bw(G), is the minimum over

all possible orderings ϕ of V of the maximum value of ∆(e, ϕ) over all edges e ∈ E. That

is,

bw(G) = min
ϕ

max
e∈E

∆(e, ϕ).

There are important inequalities between treewidth, pathwidth and bandwidth as

following.

Proposition 8 ([6]). For any graph G,

tw(G) ⩽ pw(G) ⩽ bw(G). (2)
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Let X ⊆ V (G) be a subset of vertices and G[X] be the subgraph induced in G by X.

Define G−X = G[V (G)−X]. Given p ∈ (0, 1), define the p-separator of G to be a subset

X ⊆ V (G) such that no component of G−X contains more than p|V (G)−X| vertices.
Proposition 9 describes the relationship between treewidth and separator.

Proposition 9 ([32]). For any graph G, there exists a 1/2-separator of G with at most

tw(G) + 1 vertices.

Corollary 10 is directly from Proposition 9.

Corollary 10. For any graph G, there exists a separator X of G with at most tw(G) + 1

vertices. And there exists a partition of V (G)−X into sets A and B such that

|V (G)−X|/3 ⩽ |A|, |B| ⩽ 2|V (G)−X|/3.

Proposition 9 and Corollary 10 are useful tools for estimating the lower bound on

treewidth.

3 Treewidth of generalized Hamming graph

3.1 Bandwidth of Hamming graph H(t, 2, n)

The pathwidth and bandwidth of hypercubes can be exactly calculated as following.

Proposition 11 ([9]). We have

pw(H(1, 2, n)) = bw(H(1, 2, n)) =
n−1∑
m=0

(
m

⌊m/2⌋

)
. (3)

In this section, we intend to prove Theorem 1. When t = 1, Eq 1 is exactly the

same as Eq 3. Thus, we can view Theorem 1 as a generalization of Proposition 11.

Using the following techniques, we will derive some recursion formulas (Proposition 19

and Proposition 20) and use induction to prove Theorem 1. However, Eq 1 is much more

complicated and once we know its formula, it is always “easy” to verify it when we have

some recursion formulas using induction. The exact expression of Eq 10 and 12 actually

come from our elegant observation from some instances with computer assistance.

To prove Theorem 1, we need some preparation. In [15], Harper showed that if an

ordering φ of G(V,E) is in Hales order (i.e., a Hales numbering), then max
e∈E

∆(e, φ) takes

minimum over all numbering, that is, bw(G) = min
ϕ

max
e∈E

∆(e, ϕ) = max
e∈E

∆(e, φ).

Definition 12 (Hales numbering [15]). If there exists an ordering ϕ all of whose beginning

segments obey the following two conditions, then we call such orderings Hales numberings.

Note that Hales numbering does not always exists and it is not unique.
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1. For a set of l vertices, let Φl be the number of vertices in the set having neighbors not

in the set. Φl must be minimized for all beginning segments Sl = {v ∈ V | ϕ(v) ⩽ l}.

2. The Φ′
l = l − Φl “interior vertices” of Sl must be numbered 1, 2, . . . ,Φ′

l, i.e., have

the lowest possible numbers on them.

Harper [15] also give a sample of Hales numbering of H(t, 2, n)1. From [34], we can

build such Hales numbering φ in the following way.

Define an
(
n
k

)
× n matrix A

(n)
k as following. Let A

(n)
n be (1, 1, . . . , 1︸ ︷︷ ︸

n factors

) and let A
(n)
0 be

(0, 0, . . . , 0︸ ︷︷ ︸
n factors

) for any positive integer n. When 0 < k < n, A
(n)
k is defined recursively as

Eq 4.

A
(n)
k ≜

[
A

(n−1)
k−1 1

A
(n−1)
k 0

]
, (4)

where 1 (resp. 0) is an all one (resp. all zero)
(
n−1
k−1

)
(resp.

(
n−1
k

)
) column vector. Clearly,

the rows of A
(n)
k enumerates all binary vectors of length n whose number of ‘1’ is k. Define

S(n) as following:

S(n) ≜


A

(n)
0

A
(n)
1
...

A
(n)
n

 . (5)

Then S(n) is an 2n × n matrix. Each row of S(n) exactly corresponds to an n-vector (a

vertices of H(t, 2, n)) and vice versa. Let η(n) be the ordering of H(t, 2, n) defined by row

order of S(n), that is, if v ∈ V (H(t, 2, n)) corresponds to the i-th row of S(n), then let

η(n)(v) = i.

η(n) is a Hales numbering of H(t, 2, n) (see [34] and [15]) and, hence, we have the

following Proposition 13.

Proposition 13. bw(H(t, 2, n)) = max
e∈E

∆(e, η(n)).

In order to calculate bw(H(t, 2, n)), we need some more definitions.

1In [15], Harper did not prove this statement. Harper first gave a Hales numbering of hypercube and,

then claimed that the numbering is also in Hales order for the distance generalized graph (that is,

H(t, 2, n)) in comments (III (b)).
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Figure 1: Bandwidth of a

square matrix.

Figure 2: Manhattan radius and the imaginary an-

chor.

Definition 14. Given a graph G(V,E), for two vertex subsets V1 ⊆ V and V2 ⊆ V

numbered by ordering η1 and η2 respectively, the adjacency matrix of V1 and V2 is defined

to be a |V1| × |V2| matrix M such that for any u ∈ V1 and v ∈ V2,

M(η1(u), η2(v)) =

{
1 if {u, v} ∈ E,

0 otherwise.

The adjacent matrix of G(V,E) with ordering η is the adjacent matrix of V and V ordered

by η as defined above.

Definition 15. The bandwidth of an s× s non-zero square matrix M denoted by bw(M)

is the maximum absolute value of the difference between the row and column indices of a

nonzero element of that matrix, i.e.,

bw(M) = max
1⩽i⩽s,1⩽j⩽s

{|i− j| | M(i, j) ̸= 0}, (6)

which is exactly the maximum Manhattan distance from a nonzero element to the main

diagonal of the matrix (see Figure 1).

Remark 16. Given an ordering η of a graph G, max
e∈E

∆(e, η) is equal to the bandwidth of

the adjacency matrix of G ordered by η.

Remark 16 is directly from definitions. Let M (t,n) be the adjacency matrix of H(t, 2, n)

ordered by η(n). From Remark 16 and Proposition 13, we have Lemma 17.

Lemma 17. bw(H(t, 2, n)) = bw(M (t,n)).

Now our aim is to give exact value of bw(M (t,n)). To achieve this, we need to define

the Manhattan radius of matrix.
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Definition 18. For an s × t non-zero matrix M , its Manhattan radius r(M) is defined

by

r(M) = max
1⩽i⩽s,1⩽j⩽t

{s− i+ j | M(i, j) ̸= 0}, (7)

which is exactly the maximum Manhattan distance from a nonzero element of M to the

position immediately to the left of the bottom-left corner of M (an imaginary element

M(s, 0)). The imaginary element is called the anchor of M (see Figure 2). For the

convenience of the proof, let r(M) = −∞ if M is a zero matrix or an empty matrix.

Note that r(M) > 0 if and only if M is non-zero and non-empty. If M is an s × s

symmetric matrix, then by definition,

r(M) = bw(M) + s. (8)

Let V
(t,n)
k ⊆ V (H(t, 2, n)) be a vertex set containing vertices of H(t, 2, n) whose cor-

responding n-vector has exactly k ones, where 0 ⩽ k ⩽ n. Then {V (t,n)
0 , V

(t,n)
1 , . . . , V

(t,n)
n }

forms a partition of V (H(t, 2, n)). Recall that each row of A
(n)
k correspond to a vertex of

V
(t,n)
k and vice versa. Let η

(n)
k = η(n)|

V
(t,n)
k

. Let M
(t,n)
k,k′ be the adjacent matrix of V

(t,n)
k and

V
(t,n)
k′ ordered by η

(n)
k and η

(n)
k′ respectively.

For the convenience of proof, let M
(t,n)
k,k′ be empty matrix if either k or k′ is larger than

n or less than zero. It is easy to verify that r(M
(t,n)
k,k′ ) > 0 if and only if |k − k′| ⩽ t and

0 ⩽ k, k′ ⩽ n. Then from definition, we have

M (t,n) =



M
(t,n)
0,0 M

(t,n)
0,1 M

(t,n)
0,2 · · · M

(t,n)
0,n−1 M

(t,n)
0,n

M
(t,n)
1,0 M

(t,n)
1,1 M

(t,n)
1,2 · · · M

(t,n)
1,n−1 M

(t,n)
1,n

M
(t,n)
2,0 M

(t,n)
2,1 M

(t,n)
2,2 · · · M

(t,n)
2,n−1 M

(t,n)
2,n

...
...

...
. . .

...
...

M
(t,n)
n−1,0 M

(t,n)
n−1,1 M

(t,n)
n−1,2 · · · M

(t,n)
n−1,n−1 M

(t,n)
n−1,n

M
(t,n)
n,0 M

(t,n)
n,1 M

(t,n)
n,2 · · · M

(t,n)
n,n−1 M

(t,n)
n,n


. (9)

Note that M (t,n) is an 2n × 2n matrix. If t ⩾ n, then M (t,n) is an all one matrix except

for the elements in main diagonal. Hence bw(M (t,n)) = 2n − 1. In the following, we

only consider the situation when t < n. Since the bandwidth of M (t,n) is the maximum

Manhattan distance from a non-zero element to the main diagonal andM (t,n) is symmetric,

we only need to consider non-zero element from submatrices in Eq 9 on the diagonal or

on the top right of the diagonal, that is, non-zero elements from M
(t,n)
k,k′ with k′ ⩾ k. Since

M
(t,n)
k,k′ is all zero when |k− k′| > t, we only need to consider non-zero element from M

(t,n)
k,k′

with k ⩽ k′ ⩽ k + t. By the definition of bandwidth and Manhattan radius, we have

Proposition 19.
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Proposition 19. We have

bw(M (t,n)) = max
k = 0, . . . , n− 1,

1 ⩽ p ⩽ t,

p+ k ⩽ n

{
p−1∑
q=1

(
n

k + q

)
+ r(M

(t,n)
k,k+p), bw(M

(t,n)
k,k )

}
.

(10)

Note thatM
(t,n)
k,k is a symmetric matrix. By Eq 8, we have bw(M

(t,n)
k,k ) = r(M

(t,n)
k,k )+

(
n
k

)
.

If we can calculate all r(M
(t,n)
k,k′ ) with k ⩽ k′ ⩽ k+ t, then we can calculate bw(M (t,n)) via

Eq 10 and, hence, obtain bw(H(t, 2, n)) by Lemma 17. Now, our aim is to calculate all

r(M
(t,n)
k,k′ ) with k ⩽ k′ ⩽ k + t.

From Eq 4, we have that if t, n, k, p are non-negative intergers satisfying that k+p ⩽ n

and n ⩾ 1, then

M
(t,n)
k,k+p =

(
M

(t,n−1)
k−1,k+p−1 M

(t−1,n−1)
k−1,k+p

M
(t−1,n−1)
k,k+p−1 M

(t,n−1)
k,k+p

)
. (11)

Let r
(1)
t,n,k,p = r(M

(t,n−1)
k−1,k+p−1) +

(
n−1
k

)
, r

(2)
t,n,k,p = r(M

(t−1,n−1)
k−1,k+p ) +

(
n−1
k

)
+
(

n−1
k+p−1

)
, r

(3)
t,n,k,p =

r(M
(t−1,n−1)
k,k+p−1 ) and r

(4)
t,n,k,p = r(M

(t,n−1)
k,k+p ) +

(
n−1

k+p−1

)
. From the definition of r(M

(t,n)
k,k+p) and

Eq 11, we have Proposition 20.

Proposition 20. For non-negative integers t, n, k, p satisfying that k+p ⩽ n and n ⩾ 1,

we have

r(M
(t,n)
k,k+p) = max

{
r
(1)
t,n,k,p, r

(2)
t,n,k,p, r

(3)
t,n,k,p, r

(4)
t,n,k,p

}
. (12)

Considering M
(t,n)
k1,k2

with k1 ⩽ k2 ⩽ k1+t, it is easy to verify that if the parity of k2−k1

and t is different, then M
(t,n)
k1,k2

= M
(t−1,n)
k1,k2

. Hence, we only need to calculate all M
(t,n)
k1,k2

with

k1 ⩽ k2 ⩽ k1 + t and k2 − k1 ≡ t (mod 2). In this case, assume t− (k2 − k1) = 2s. Then

M
(t,n)
k,k+t−2s is non-zero. If t ⩾ n− 1, then M

(t,n)
k,k+t−2s is an all-one matrix (except the main

diagonal when t = 2s) and, thus, r(M
(t,n)
k,k+t−2s) =

(
n
k

)
+
(

n
k+t−2s

)
− 1. When 1 ⩽ t < n− 1,

we let

A
(1)
t,n,k,s =

k−s−1∑
a=0

((
t− s+ 2a

t− s+ a− 1

)
−
(
t− s+ 2a

a− 1

))
,

A
(2)
t,n,k,s =

n−s∑
m=t−3s+1+2k

((
m− 1

k + t− 2s− 1

)
−
(

m− 1

k − s− 1

))
,

Bt,n,k,s =

n−t−k+s−1∑
a=0

((
t− s+ 2a

t− s+ a− 1

)
−
(
t− s+ 2a

a− 1

))
,
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Ct,n,k,s =

n∑
m=n−s+1

(
m− 1

k + t− 2s− 1

)
=

(
n

k + t− 2s

)
−
(

n− s

k + t− 2s

)
,

Dt,n,k,s =

n∑
m=k+t−2s+1

(
m− 1

k + t− 2s− 1

)
.

Here we define
(
x
y

)
= 0 if y < 0 or y > x. Note that all A(1), A(2), B, C,D terms are

non-negative. It is easy to verify that if k + t − 2s = n, then Dt,n,k,s = 0, otherwise

k + t − 2s < n, then Dt,n,k,s =
(

n
k+t−2s

)
−
(
k+t−2s
k+t−2s

)
=
(

n
k+t−2s

)
− 1. Then we have the

following results.

Lemma 21. Let t, n, k, s be non-negative integers satisfy that t ⩾ 2s, n ⩾ 1, t ⩾ 1 and
k + t− 2s ⩽ n. Then

r(M
(t,n)
k,k+t−2s) =


(
n
k

)
+
(

n
k+t−2s

)
− 1 if t ⩾ n− 1,(

n
k

)
+A

(1)
t,n,k,s +A

(2)
t,n,k,s + Ct,n,k,s if t < n− 1, 0 ⩽ k − s ⩽ ⌊(n− t)/2⌋ ,(

n
k

)
+Bt,n,k,s + Ct,n,k,s if t < n−1, ⌊(n−t)/2⌋ ⩽ k−s ⩽ n−t,(

n
k

)
+Dt,n,k,s if t < n− 1, k − s ⩽ 0 or k − s ⩾ n− t.

(13)

Lemma 22. We have

bw(M (t,n)) =

⌊(n−t)/2⌋+t−1∑
k=⌊(n−t)/2⌋

(
n

k

)
+

⌊(n−t−1)/2⌋∑
a=0

((
t+ 2a

t+ a− 1

)
−
(
t+ 2a

a− 1

))
. (14)

From Eq 10 and 12, we can prove Lemmas 21 and 22 by induction. The complete

proofs of Lemmas 21 and 22 can be find in Appendix A and Appendix B, respectively.

Lemmas 22 and 17 show the exact bandwidth of H(t, 2, n).

For a set S ⊆ V , let N(S) = {v ∈ V − S | ∃u ∈ S, uv ∈ E}, Φ(S) = |N(S)| and
bv(l, G) = min

S⊆V,|S|=l
Φ(S). Harper [15] showed that bw(G) = max

1⩽s⩽|V |
bv(s,G) if G admits a

Hales numbering. Therefore, bw(H(t, 2, n)) = max
1⩽s⩽2n

bv(s,H(t, 2, n)).

Theorem 23 (Theorem 1 of [9]). Let G(V,E) be any graph on n vertices, and let 1 ⩽
s ⩽ n. Then pw(G) ⩾ bv(s,G).

Lemma 24. We have pw(H(t, 2, n)) = bw(H(t, 2, n)).

Proof. By Theorem 23, we have pw(H(t, 2, n)) ⩾ bv(s,H(t, 2, n)) for all 1 ⩽ s ⩽ 2n.

Then pw(H(t, 2, n)) ⩾ max
1⩽s⩽2n

bv(s,H(t, 2, n)) = bw(H(t, 2, n)). Combining Eq 2, we have

pw(H(t, 2, n)) = bw(H(t, 2, n)).

Theorem 1 can be derived from Lemmas 17, 22 and 24.
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3.2 Treewidth of H(t, q, n)

In this subsection we analyze the asymptotic behavior of tw(H(t, q, n)) when n goes to

infinity and give the proof of Theorem 2.

We first prove the lower bound of tw(H(t, q, n)) by Proposition 25.

Proposition 25 (Lemma 7 of [9]). Let G(V,E) be a graph with n vertices. If for each

subset X of V with n/4 ⩽ |X| ⩽ n/2, Φ(X) ⩾ k, then tw(G) ⩾ k − 1.

Lemma 26. tw(H(t, q, n)) ⩾ c1tq
n/
√
n for some constant c1 not depending on t or q

when n is sufficiently large.

Proof. By Proposition 25, we have tw(H(t, q, n)) ⩾ min bv(m,H(t, q, n)) − 1 over inte-

gers m in the range qn/4 ⩽ m ⩽ qn/2. So it is sufficient to give a lower bound for

bv(m,H(t, q, n)) over m ∈ [qn/4, qn/2].

In [14], Harper showed that2 if

m = qn
r∑

i=0

(
n

i

)
xn−i(1− x)i for some x, r, 0 < x < 1, (15)

then

bv(m,H(t, q, n)) ⩾ qn min
x,r

{
t∑

i=1

((
n

r + i

)
xn−r−i(1− x)r+i

)}
, (16)

where the minimum is taken over all x, r satisfying Eq 15.

In [9], it is proved that when m = qn
∑r

i=0

(
n
i

)
xn−i(1− x)i, we have

n(1− x)−
√

4nx(1− x) < r < n(1− x) +
√

4nx(1− x).

By Stirling’s approximation, it can be shown that for all r in the above range, we have

qn
(

n

r + i

)
xn−r−i(1− x)r+i ⩾ c1(q

n/
√
n), 1 ⩽ i ⩽ t

for some constant c1 > 0 not depending on t and q. Then, bv(m,H(t, q, n)) ⩾ c1tq
n/
√
n.

Then we intend to estimate the upper bound via bandwidth.

Lemma 27. tw(H(t, q, n)) ⩽ pw(H(t, q, n)) ⩽ c2tq
n/
√
n for some constant c2 not de-

pending on t or q when n is sufficiently large.

2This statement is not explicitly stated in [14], but can be easily inferred from Theorem 3 on pp. 302.
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Proof. For convenience, we first assume q is even. The case when q is odd can be handled

similarly. Let f be a function from [q] to {0, 1} as follows:

f(i) =

{
0 if 1 ⩽ i ⩽ q/2,

1 if q/2 < i ⩽ q.

Suppose that (a1, a2, . . . , an) ∈ [q]n is an n-vector corresponding to a vertex x of

H(t, q, n). Define a function g from V (H(t, q, n)) to V (H(t, 2, n)) that maps

x ∈ V (H(t, q, n)) to the vertex g(x) ∈ V (H(t, 2, n)) which corresponds to the vector

(f(a1), f(a1), . . . , f(an)). Note that g maps exactly (q/2)n vertices of H(t, q, n) to a given

vertex of H(t, 2, n).

Let H(t, 2, n) have a path decomposition whose bags are {Pi}. By replacing each Pi

with P ′
i =

⋃
y∈Pi

g−1(y), it is easy to show that {P ′
i} is a path decomposition of H(t, q, n).

Therefore, pw(H(t, q, n)) ⩽ pw(H(2, q, n)) ·
(
q
2

)n
.

From Theorem 1 and Stirling’s approximation, we have bw(H(t, 2, n)) ⩽ c2t2
n/
√
n for

some constant c2. Therefore, we have tw(H(t, q, n)) ⩽ pw(H(t, q, n)) ⩽ c2tq
n/
√
n.

Combining Lemmas 26 and 27, we can derive Theorem 2.

4 Treewidth of bipartite Kneser graph and Johnson graph

For positive integers n and k satisfying n ⩾ 2k + 1, the bipartite Kneser graph BK(n, k)

has all subsets of [n] with k or n − k elements as vertices and an edge between any two

vertices when one is a subset of the other. It is also called middle cube graph. In the

following, we will use k-subsets and (n − k)-subsets of [n] to represent the vertices of

bipartite Kneser graph. We call vertices that are k-subsets of [n] the left part denoted

by VL, and the rest is called the right part denoted by VR. VL and VR are two parts of

bipartite Kneser graph BK(n, k).

For positive integers n and k satisfying n > k, the Johnson graph J(n, k) has all subsets

of [n] with k elements and an edge between any two vertices when their intersection has

exactly (k − 1) elements. Since we have a bijection between all k-subsets of [n] and all

binary n-vectors with exactly k ones, we can also treat a vertex of J(n, k) as an n-vector

with exactly k ones. From this point of view, two vertices are adjacent iff their the

Hamming distance of their corresponding n-vectors is no more than 2. Therefore, J(n, k)

is the k-th slice of H(2, 2, n), that is, J(n, k) is a subgraph of H(2, 2, n) induced by vertices

from H(2, 2, n) corresponding to n-vector with exactly k ones.

Let G(V,E) be a graph and S ⊆ V a vertex subset of G. Denote the subgraph of

G induced by S as G[S]. Recalling the definition of V
(t,n)
k in subsection 3.1, we have

Proposition 28.

Proposition 28. We have J(n, k) ∼= H(2, 2, n)[V
(2,n)
k ].
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Figure 3: Sketch graph of BK(n, k). The condition that there is no edge between A and

B equals to there is no edge between AL and BR, and between AR and BR.

4.1 Treewidth of BK(n, k) when n is large enough

In this section, we focus on the treewidth of BK(n, k) when n is large enough and give

the proof of Theorem 3. Before proof, we need the following proposition.

Proposition 29 ([17]). For any graph G, tw(G) ⩽ max{∆(G), |V (G)|−α(G)−1}, where
α(G) is the independent number of G.

Lemma 30. We have tw(BK(n, k)) ⩽
(
n
k

)
− 1.

Proof. From [21], we have that bipartite Kneser graph has a perfect matching. Conse-

quently, α(BK(n, k)) =
(
n
k

)
. Note that BK(n, k) is a regular graph with order 2

(
n
k

)
and

∆(BK(n, k)) =
(
n−k
k

)
. By Proposition 29, we have tw(BK(n, k)) ⩽

(
n
k

)
− 1.

Lemma 31. When k ⩾ 2 and 3
(
n−k
k

)
⩾ 2
(
n
k

)
, tw(BK(n, k)) ⩾

(
n
k

)
− 1.

Proof. Denote BK(n, k) by G and V (G) = VL ∪ VR, where VL =
(
[n]
k

)
and VR =

(
[n]
n−k

)
.

Suppose tw(G) <
(
n
k

)
− 1. From Corollary 10, there exists a separator X of G with

|X| <
(
n
k

)
such that there exists non-empty vertex set A and B with A∪B = V (G)−X,

A ∩ B = ∅, |V (G) − X|/3 ⩽ |A|, |B| ⩽ 2|V (G) − X|/3 and there is no edge between A

and B. Let AL = A ∩ VL, AR = A ∩ VR, BL = B ∩ VL and BR = B ∩ VR (see Figure 3).

Since A,B are nonempty and |X| <
(
n
k

)
, we assume without loss of generality that AL

and BR are nonempty. Let

A =

{
S ∈

(
[n]

k

)
| S ∈ AL

}
,

B =

{
S ∈

(
[n]

n− k

)
| S ∈ BR

}
.

Let C = {[n] − S | S ∈ B} ⊆
(
[n]
k

)
. Since there is no edge between AL and BR, for any

S1 ∈ A and S2 ∈ B, S1 ⊈ S2 which implies S1 ∩ ([n]− S2) ̸= ∅.
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Definition 32 (Cross-intersecting families). Let A and B be two families of subsets of a

finite set X. We say that A and B are cross-intersecting if for any A ∈ A and B ∈ B,
A ∩B ̸= ∅.

Hence, A and C is cross-intersecting. By the properties of cross-intersecting families

from [13], we have |A|+|C| ⩽
(
n
k

)
−
(
n−k
k

)
+1. Notice that |A| = |AL| and |C| = |B| = |BR|.

Then we have |AL|+ |BR| ⩽
(
n
k

)
−
(
n−k
k

)
+ 1.

If AR, BL are both nonempty, then, similarly, we have |AR|+|BL| ⩽
(
n
k

)
−
(
n−k
k

)
+1.

Hence, |A|+ |B| ⩽ 2
((

n
k

)
−
(
n−k
k

)
+ 1
)
and |X| = |V (G)| − |A| − |B| ⩾ 2

(
n−k
k

)
− 2. Since

k ⩾ 2 and 3
(
n−k
k

)
⩾ 2

(
n
k

)
, we have 2

(
n−k
k

)
− 2 ⩾

(
n
k

)
which derives a contradiction with

|X| <
(
n
k

)
.

If AR, BL are both empty, then we have |A|+ |B| = |AL|+ |BR| ⩽
(
n
k

)
−
(
n−k
k

)
+1.

Hence, |X| = |V (G)| − |A| − |B| ⩾
(
n
k

)
+
(
n−k
k

)
− 1 ⩾

(
n
k

)
, a contradiction.

If there is only one empty set in {AR, BL}, say AR ̸= ∅ and BL = ∅, then we

have |B| = |BR| ⩽
(
n
k

)
−
(
n−k
k

)
by |AL|+|BR| ⩽

(
n
k

)
−
(
n−k
k

)
+1 and AL ̸= ∅. Since |V (G)−

X|/3 ⩽ |A|, |B| ⩽ 2|V (G) − X|/3, we have |A| + |B| ⩽ 3|B| ⩽ 3
((

n
k

)
−
(
n−k
k

))
. Since

3
(
n−k
k

)
⩾ 2
(
n
k

)
, we have |X| = |V (G)|−|A|−|B| ⩾ 3

(
n−k
k

)
−
(
n
k

)
⩾
(
n
k

)
, a contradiction.

Theorem 3 can be easily derived from Lemmas 30 and 31.

4.2 Treewidth of BK(2k + 1, k) and J(2k + 1, k)

When n is large enough, the treewidth of the bipartite Kneser graph can be exactly

calculated by Theorem 3. Now we focus on the treewidth of the bipartite Kneser graph

when n is small and give the proof of Theorem 4.

In order to prove our reslt, we need more definitions. A graph G is chordal if and

only if, in any cycle of length larger than 3 in G, there exists a chord connecting two

nonadjacent vertices of the cycle. Given a graph G, define ω(G), the clique number of G

to be the number of vertices of the largest clique in G. The treewidth of a graph G has a

close relationship with its chordal supergraph as Proposition 33 shows.

Proposition 33 ([32]). Given a graph G, tw(G) = min{ω(H)−1 | G ⊆ H,H is chordal}.

Using Proposition 33, we can prove the relationship between the treewidth of the

bipartite Kneser graph and Johnson graph as Lemma 34. We first explain the proof

ideas. Note that BK(n, k) is a bipartite graph with two parts
(
[n]
k

)
and

(
[n]
n−k

)
. And the

vertex set of J(n, k) is
(
[n]
k

)
which is the same as one part of BK(n, k). Thus, we can

embed J(n, k) into BK(n, k) by letting the
(
[n]
k

)
part of BK(n, k) is isomorphic to J(n, k).

We then will show the result graph is chordal. After calculating its clique number and

then using Proposition 33, we can derive our result.

Lemma 34. For any positive integer k, tw(BK(2k + 1, k)) ⩽ tw(J(2k + 1, k)).
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Proof. Let n = 2k+1. By Proposition 33, there exists a chordal graphH such that J(n, k)

is a subgraph of H and ω(H)− 1 = tw(J(n, k)). Add edges to the left part of BK(n, k)

such that the left part is isomorphic to H and denote the result graph as BK ′(n, k). That

is, BK ′(n, k)[VL] ∼= H.

We first claim that BK ′(n, k) is chordal. Suppose C is a cycle in BK ′(n, k) with

length larger than 3. We first consider the case that there is a vertex v ∈ V (C) ∩ VR.

Let u1 and u2 be the two neighbors of v on C. Then u1, u2 ∈ VL. Let Av ∈
(

[n]
k+1

)
be the corresponding set of v and Au1 , Au2 ∈

(
[n]
k

)
the corresponding sets of u1 and u2

respectively. Since u1v, u2v ∈ E(BK ′(n, k)), we have Au1 ⊆ Av and Au2 ⊆ Av. Then

|Au1 ∩Au2| = k− 1. Hence, u1u2 ∈ E(BK ′(n, k)). Now assume all vertices of C are from

the left side. Since H is chordal, there must exist a chord in C. From above all, we have

that BK ′(n, k) is chordal.

Let W be a clique of BK ′(n, k). If there exists a vertex v ∈ W from the right side,

then |W | ⩽ k + 1 + 1 by d(v) = k + 1. If all vertices of W are from the left part, then

|W | ⩽ ω(H) = tw(J(n, k)) + 1. Hence

tw(BK(n, k)) ⩽ ω(BK ′(n, k))− 1 ⩽ max{tw(J(n, k)), k + 1}.

Notice that J(2k+1, k) is k(k+1)-regular. Since tw(G) ⩾ δ(G) [24] for any graphG, we

have tw(J(2k+1, k)) ⩾ k(k+1) ⩾ k+1. Then tw(BK(2k+1, k)) ⩽ tw(J(2k+1, k)).

Lemma 35. For positive integers n and k satisfying n > k, tw(J(n, k)) ⩽ bw(M
(2,n)
k,k ) =

r(M
(2,n)
k,k )−

(
n
k

)
.

Proof. Let G = H(2, 2, n)[V
(2,n)
k ] for short. By Proposition 28, we have G ∼= J(n, k).

Let t = 2 in subsection 3.1. Recalling that η′ ≜ η
(n)
k is an ordering of V

(2,n)
k , then η′ is

also an ordering of G. Note that the adjacency matrix of G with the ordering η′ is exactly

M
(2,n)
k,k . By Remark 16 and the definition of bandwidth, we have

bw(M
(2,n)
k,k ) = max

e∈E(G)
∆(e, η′) ⩾ min

η
max
e∈E(G)

∆(e, η) = bw(G) = bw(J(n, k)). (17)

Combining Eq 2 and Eq 8 with s = |V (2,n)
k | =

(
n
k

)
, we can derive the lemma.

Specifically, take n = 2k+ 1, and then from Lemma 21, we can derive the asymptotic

behavior of bw(M
(2,2k+1)
k,k ) by calculating:

lim
k→+∞

bw(M
(2,2k+1)
k,k )/

(
2k + 1

k

)
= 1/2. (18)

Therefore, tw(J(2k + 1, k)) = O(
(
2k+1
k

)
).
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Proposition 36 ([10]). Suppose G is a k-regular graph with n vertices and A(G) is the

adjacency matrix of G. Let µ(G) = k− λ(G) where λ(G) is the second-largest eigenvalue

of A(G). Then

tw(G) ⩾

⌊
3n

4

µ(G)

∆(G) + 2µ(G)

⌋
− 1.

Proposition 37 ([28]). The characteristic polynomial of BK(2k + 1, k) is

k+1∏
i=1

(λ+ i)(
n

k+1−i)−(
n

k−i)(λ− i)(
n

k+1−i)−(
n

k−i).

Lemma 38. We have

tw(BK(2k + 1, k)) ⩾

⌊
3

2

(
2k + 1

k

)
1

k + 3

⌋
− 1.

Lemma 38 can be derived from Propositions 36 and 37. Theorem 4 can be derived by

Lemmas 34, 35 and 38.

5 Treewidth of generalized Petersen graph

In this section, we determine the treewidth of generalized Petersen graph. The vertex set

and edge set of generalized Petersen graph Gn,k are

V (Gn,k) = {v1, . . . , vn, u1, . . . , un},
E(Gn,k) = {viui} ∪ {vivi+1} ∪ {uiui+k}, i = 1, 2, . . . , n,

where subscripts are to be read modulo n and k < n/2. Let G be a graph and X and Y

are two connected subgraphs of G. We say X touches Y when V (X)∩V (Y ) ̸= ∅ or there

exists an edge between X and Y . A bramble of G is a family of connected subgraphs of

G that all touch each other. Let S be a subset of V (G). S is said to be a hitting set of

bramble B if S has nonempty intersection with each of the subgraphs in B. The order of

a bramble is the smallest size of a hitting set. Brambles may be used to characterize the

treewidth of a given graph.

Proposition 39 ([33]). Let G be a graph. Then tw(G) ⩾ k if and only if G contains a

bramble of order at least k + 1.

With the help of Proposition 39, we now can give the proof of Theorem 5.
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Proof of Theorem 5: First, we intend to prove the lower bound. Construct a bramble

B = {Bi} of Gn,k as

Vi = {vi, vi+1, . . . , vi+t, ui+t, ui+t+k, ui+t+2k, . . . , ui+t+tk},
Bi = Gn,k[Vi],

where t = ⌈ n
2k+2

⌉, i = 1, 2, . . . , n. Then we have |Vi| = 2t + 2 and Bi is connected. For

each pair i and j, we intend to prove that Bi touches Bj. Without loss of generality,

assume 1 ⩽ i < j ⩽ n.

• If j ⩽ i+ t, then vj ∈ Vi ∩ Vj.

• If i + t < j ⩽ i + t + tk, let r be the minimum integer in {0, 1, . . . , k − 1} such

that j + r ≡ i + t (mod k). Noticing that t ⩾ k when n ⩾ 8(2k + 2)2. Hence,

vj+r ∈ Vj, uj+r ∈ Vi, and uj+rvj+r ∈ E(Gn,k).

• If i+ t+ tk < j < n+ i− t, then j+ t < i+n < j+n− t− tk ⩽ j+ t+ tk. The last

inequality comes from 2kt+2t ⩾ n by t = ⌈ n
2k+2

⌉ and then we have t+tk ⩾ n−t−tk

which implies j + t < i+ n ⩽ j + t+ tk. The next proof is the same as that in the

second situation.

• If n+ i− t ⩽ j ⩽ n, the proof is the same as that in the first situation.

Then B is a bramble. Let S be a hitting set of B. We construct a hypergraph H with

vertex set V (H) = V (Gn,k) and hyperedge set {Vi}1⩽i⩽n.

Definition 40 (Transversal). Let H be a hypergraph on a set X with edges E1, . . . , Em.

A set T ⊆ X is called a transversal of H if T intersects every edge of H, that is,

T ∩ Ei ̸= ∅,∀i = 1, 2, . . . ,m.

Then S is a transversal of H and thus, min |S| = τ(H) where τ(H) is the transversal

number of H. Since τ(H) ⩾ max
H′⊆H

m(H′)
∆(H′)

[4], where m(H ′) is the number of edges in H ′

and ∆(H ′) is the maximum degree of H ′, we have that the order of B is

min |S| ⩾ m(H)

∆(H)
=

n

t+ 1
.

Since t = ⌈ n
2k+2

⌉, we have t− 1 ⩽ n
2k+2

and

2k + 2− n

t+ 1
⩽

n

t− 1
− n

t+ 1
=

2n

t2 − 1
< 1.

Therefore, the order of B is no less than 2k + 2. From Proposition 39, we can derive

that tw(Gn,k) ⩾ 2k + 1.

The upper bound can be proved via construction. Construct a path-decomposition of

Gn,k as following (see Figure 4 and Figure 5).
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Figure 4: The vertex sets Xi, Yi, Zi and Wi.

Figure 5: The defined sets on generalized Petersen graph.

Step 1. Let A = {v1, u1, . . . , uk}, B1 = {v1, . . . , vk} and B2 = {vk, . . . , v2k}.

Step 2. Let X1 = {uk+1, . . . , u2k, v2k}.

Step 3. Recursively define Yi = Xi ∪ {u2k+i}, Zi = Yi − {uk+i}, Wi = Zi ∪ {v2k+i} and

Xi+1 = Wi − {v2k+i−1} for 1 ⩽ i ⩽ n − 2k. It is easy to verify that Xi =

{uk+i, . . . , u2k+i−1, v2k+i−1}.

Step 4. Define Xn−2k+1 = Wn−2k − {vn−1}.

Step 5. Define a path decomposition P1 of Gn,k − A by successively connect

(B1, B2, X1, Y1, Z1,W1, X2, . . . ,Wn−2k, Xn−2k+1).

the electronic journal of combinatorics 33(1) (2026), #P1.7 18



Step 6. Add each vertex in A to all bags of P1, then we obtain a path decomposition P2

of Gn,k.

Here we explain why we construct the path-decomposition in this way. For a cycle

v1v2 . . . vk, the way to build its path-decomposition is to first delete any vertex, say v1,

then the left part is a path v2 . . . vk. Then build a path-decomposition like {v2v3} −
{v3v4}− . . .−{vk−1vk} and then add v1 to all bags. Here the generalized Petersen graph

behaves like a “double-cycle”. We first delete A, and the rest part behaves like a “path”.

Then the sequence of Xi, Yi, Zi,Wi, Xi+1 is like what we do in the path-decomposition of

a cycle. Once we move one vertex so that the width do not increase too much. B1 and

B2 are designed to cover the left vertices. Finally we add A to all bags just like for the

cycle we add v1 back.

It is easy to verify P1 is a path-decomposition of Gn,k − A by checking the three

properties which implying that P2 is a path-decomposition of Gn,k.

Since |Xi| = |Zi| = k + 1, |Yi| = |Wi| = k + 2, |B1| = k, |B2| = k + 1 and |A| = k + 1,

the width of P2 is 2k + 3 and, hence, tw(Gn,k) ⩽ pw(Gn,k) ⩽ 2k + 2. □
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Appendix A: Proof of Lemma 21

Before the proof, we need several definitions. We say the parameter tuple (t, n, k, s) is

valid if t ⩾ 2s, n ⩾ 1, 1 ⩽ t < n − 1 and k + t − 2s ⩽ n, that corresponds to the
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r(i)-term matrix t′ n′ k′ s′

r
(1)
t,n,k,t−2s r(M

(t,n−1)
k−1,k+t−2s−1) t n− 1 k − 1 s

r
(2)
t,n,k,t−2s r(M

(t−1,n−1)
k−1,k+t−2s) t− 1 n− 1 k − 1 s− 1

r
(3)
t,n,k,t−2s r(M

(t−1,n−1)
k,k+t−2s ) t− 1 n− 1 k s

r
(4)
t,n,k,t−2s r(M

(t,n−1)
k,k+t−2s) t n− 1 k s

Table 1: Parameter tuple of the matrix in the Eq 13 of r
(i)
t,n,k,t−2s.

non-trivial situation of Lemma 21. The parameter tuple of matrix in the formula of

r
(i)
t,n,k,t−2s (i = 1, 2, 3, 4) is shown as Table 1.

First, it is easy to verify that Dt,n,k,s = A
(1)
t,n,k,s+A

(2)
t,n,k,s+Ct,n,k,s holds when k− s = 0

and, Dt,n,k,s = Bt,n,k,s + Ct,n,k,s when k − s = n − t and A
(1)
t,n,k,s + A

(2)
t,n,k,s = Bt,n,k,s hold

when k − s = ⌊(n − t)/2⌋. Hence, in those situations, we can calculate r(M
(t,n)
k,k+t−2s) in

both ways.

In the following, we prove the Lemma by induction on t + n + k + s. From Table 1,

when we calculate {r(i)t,n,k,t−2s}1⩽i⩽4, the term always obtains a smaller t′ + n′ + k′ + s′,

which means we can use Eq 13 to calculate those terms by induction.

Step 1: verify Lemma 21 when either t ⩾ n − 1, or t = 1.

When t ⩾ n − 1, it is trivial to verify M
(t,n)
k,k+t−2s is an all-one matrix and, thus,

r(M
(t,n)
k,k+t−2s) =

(
n
k

)
+
(

n
k+t−2s

)
− 1 from definition.

When t = 1, then s = 0. In this case r
(2)
1,n,k,1 = −∞ and r

(3)
1,n,k,1 = −∞ and, hence,

r(M
(1,n)
k,k+1) = max{r(1)1,n,k,1, r

(4)
1,n,k,1}. We can prove Eq 13 holds for t = 1 by induction on n.

The proof is omitted.

Then, we give a proof of Lemma 21 via Eq 12 by induction. Suppose Eq 13 holds for

t+ n+ k + s ⩽ N − 1. Now consider when t+ n+ k + s = N . In the following steps, we

only need to consider the case t ⩾ 2 and t < n− 1.

Step 2: verify Eq 13 when k = 0 and 1 < t < n − 1.

If k = 0, then k + t− 2s < n and r
(1)
t,n,k,t−2s = −∞ and r

(2)
t,n,k,t−2s = −∞.

Case 2.1: If t = 2s, then r(M
(t,n)
k,k+t−2s) = r(M

(t,n)
0,0 ) = 1 from definition. It is easy to

verify Eq 13 holds in this case.

Case 2.2: If t > 2s, then (t − 1, n − 1, k, s) are valid and, hence, r
(3)
t,n,k,t−2s =

r(M
(t−1,n−1)
k,k+(t−1)−2s) can be calculated via Eq 13 by induction.
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Since k − s ⩽ 0, we have

r
(3)
t,n,k,t−2s = r(M

(t−1,n−1)
k,k+(t−1)−2s)

=

(
n− 1

k

)
+Dt−1,n−1,k,s

⩽

(
n

k

)
+

n∑
m=k+t−2s+1

(
m− 1

k + t− 2s− 1

)
=

(
n

k

)
+Dt,k,n,s,

where the second equality comes from k − s ⩽ 0 and Eq 13 by induction.

Subcase 2.2.1: If t = n − 2, then

r
(4)
t,n,k,t−2s = r(M

(t,n−1)
k,k+t−2s) +

(
n− 1

k + t− 2s− 1

)
=

(
n− 1

k

)
+

(
n− 1

k + t− 2s

)
− 1 +

(
n− 1

k + t− 2s− 1

)
=

(
n

n− 2s− 2

)
=

(
n

k

)
+Dt,n,k,s,

where the second equality comes from the trivial situation of Lemma 21 which we have

proved before Therefore, we have verified Eq 13 in this subcase.

Subcase 2.2.2: If t < n − 2, then (t, n − 1, k, s) are valid and, hence, r
(4)
t,n,k,t−2s =

r(M
(t,n−1)
k,k+t−2s) can be calculated via Eq 13 by induction.

r
(4)
t,n,k,t−2s = r(M

(t,n−1)
k,k+t−2s) +

(
n− 1

k + t− 2s− 1

)
=

(
n− 1

k

)
+Dt,n−1,k,s +

(
n− 1

k + t− 2s− 1

)
=

(
n

k

)
+Dt,n,k,s,

where the second equality comes from Step 1 and the third equality comes from k = 0.

From above, combining Eq 12, we can verify that Eq 13 holds when k = 0.

Step 3: verify Eq 13 when k + t − 2s = n and 1 < t < n − 1.

In this case, r
(2)
t,n,k,t−2s = −∞ and r

(4)
t,n,k,t−2s = −∞.

Case 3.1: If t = 2s, then k = n and r(M
(t,n)
k,k+t−2s) = r(M

(t,n)
n,n ) = 1 from definition.

It is easy to verify Eq 13 holds in this case.

Case 3.2: If t < 2s, then (t−1, n−1, k, s) is valid and, hence, r
(3)
t,n,k,p = r(M

(t−1,n−1)
k,k+p−1 )

the electronic journal of combinatorics 33(1) (2026), #P1.7 23



can be calculated via Eq 13 by induction. Since k − s ⩾ n− t, we have

r
(3)
t,n,k,t−2s = r(M

(t−1,n−1)
k,k+(t−1)−2s)

=

(
n− 1

k

)
+Dt−1,n−1,k,s

=

(
n− 1

k

)
⩽

(
n

k

)
=

(
n

k

)
+Dt,k,n,s,

where the second equality comes from Eq 13 by induction.

Subcase 3.2.1: If t = n − 2, then

r
(1)
t,n,k,t−2s = r(M

(t,n−1)
k−1,k−1+t−2s) +

(
n− 1

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
+

(
n− 1

k − 1 + t− 2s

)
− 1

=

(
n

k

)
=

(
n

k

)
+Dt,n,k,s,

where the second equality comes from Step 1 and the following equalities come from

k + t− 2s = n.

Subcase 3.2.2: If t < n− 2, then (t, n− 1, k− 1, s) is valid and, hence, r
(1)
t,n,k,t−2s =

r(M
(t,n−1)
k−1,k−1+t−2s) +

(
n−1
k

)
can be calculated via Eq 13 by induction. That is

r
(1)
t,n,k,t−2s = r(M

(t,n−1)
k−1,k−1+t−2s) +

(
n− 1

k

)
=

(
n− 1

k − 1

)
+Dt,n−1,k−1,s +

(
n− 1

k

)
=

(
n

k

)
+Dt,n,k,s,

where the second equality comes from Eq 13 by induction, and the third equality comes

from k + t− 2s = n.

From above, combining Eq 12, we can verify that Eq 13 holds when k + t− 2s = n.

Step 4: verify Eq 13 when k > 0, k + t − 2s < n, 1 < t < n − 1 and s > 0.

In this case, {r(i)t,n,k,t−2s}1⩽i⩽4
are all positive. By the definition, we have that

r
(3)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s always holds. Hence, we only need to consider r

(1)
t,n,k,t−2s, r

(2)
t,n,k,t−2s

and r
(4)
t,n,k,t−2s and their value can be calculated from Eq 13 by induction.
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Step 4.1: verify that r
(2)
t,n,k,t−2s is always equal to RHS of Eq 13.

Note that (t− 1, n− 1, k − 1, s− 1) is valid and, hence, we can calculate r
(2)
t,n,k,t−2s via

Eq 13 by induction.

Case 4.1.1: If k − s < 0 or k − s > n − t, then (k − 1) − (s − 1) < 0 or

(k − 1)− (s− 1) > (n− 1)− (t− 1).

Therefore,

r
(2)
t,n,k,t−2s = r(M

(t−1,n−1)
k−1,(k−1)+(t−1)−2(s−1)) +

(
n− 1

k

)
+

(
n− 1

k + t− 2s− 1

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
+

(
n− 1

k + t− 2s− 1

)
+Dt−1,n−1,k−1,s−1

=

(
n

k

)
+

n∑
m=k+t−2s+1

(
m− 1

k + t− 2s− 1

)
=

(
n

k

)
+Dt,n,k,s,

where the second equality comes from Eq 13 by induction.

Case 4.1.2: If 0 ⩽ k − s ⩽ ⌊(n − t)/2⌋, then 0 ⩽ (k − 1) − (s − 1) ⩽
⌊((n− 1)− (t− 1))/2⌋.

Therefore,

r
(2)
t,n,k,t−2s

= r(M
(t−1,n−1)
k−1,(k−1)+(t−1)−2(s−1)) +

(
n− 1

k

)
+

(
n− 1

k + t− 2s− 1

)
=

(
n

k

)
+

k−s−1∑
a=0

((
t− s+ 2a

t− s+ a− 1

)
−
(
t− s+ 2a

a− 1

))

+
n−s∑

m=t−3s+1+2k

((
m− 1

k + t− 2s− 1

)
−
(

m− 1

k − s− 1

))
+

n∑
m=n−s+1

(
m− 1

k + t− 2s− 1

)
=

(
n

k

)
+A

(1)
t,n,k,s +A

(2)
t,n,k,s + Ct,n,k,s,

where he second equality comes from Eq 13 by induction.

Case 4.1.3: If ⌊(n − t)/2⌋ ⩽ k − s ⩽ n − t, then ⌊((n− 1)− (t− 1))/2⌋ ⩽
(k − 1)− (s− 1) ⩽ (n− 1)− (t− 1).
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Therefore,

r
(2)
t,n,k,t−2s

= r(M
(t−1,n−1)
k−1,(k−1)+(t−1)−2(s−1)) +

(
n− 1

k

)
+

(
n− 1

k + t− 2s− 1

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
+

(
n− 1

k + t− 2s− 1

)
+Bt−1,n−1,k−1,s−1 + Ct−1,n−1,k−1,s−1

=

(
n

k

)
+

n−t−k+s−1∑
a=0

((
t− s+ 2a

t− s+ a− 1

)
−
(
t− s+ 2a

a− 1

))
+

n∑
m=n−s+1

(
m− 1

k + t− 2s− 1

)
=

(
n

k

)
+Bt,n,k,s + Ct,n,k,s,

where he second equality comes from Eq 13 by induction.

Consequently, r
(2)
t,n,k,t−2s is always equal to RHS of Eq 13. Hence, we only need to

prove r
(1)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s and r

(4)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s. Then by Eq 12, we can finally prove

Lemma 21.

Step 4.2: verify that r
(1)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s.

First, it is easy to verify the inequality when t = n− 2, then we assume t < n− 2 in

the following.

Case 4.2.1: If (k − 1) − s < 0, then (k − 1)− (s− 1) = k − s ⩽ 0 and

Dt,n−1,k−1,s −Dt−1,n−1,k−1,s−1

=
n−1∑

m=k+t−2s

(
m− 1

k + t− 2s− 2

)
−

n−1∑
m=k+t−2s+1

(
m− 1

k + t− 2s− 1

)

=

(
n− 2

k + t− 2s− 2

)
−

n−1∑
m=k+t−2s+1

(
m− 2

k + t− 2s− 1

)
.

Therefore,

r
(1)
t,n,k,t−2s − r

(2)
t,n,k,t−2s

=r(M
(t,n−1)
k−1,k−1+t−2s)− r(M

(t−1,n−1)
k−1,k−1+t−1−2(s−1))−

(
n− 1

k + t− 2s− 1

)
=−

(
n− 2

k + t− 2s− 1

)
−

n−1∑
m=k+t−2s+1

(
m− 2

k + t− 2s− 1

)
⩽ 0.

(19)

Case 4.2.2: If 0 ⩽ (k − 1) − s < ⌊((n − 1) − t)/2⌋, then 0 ⩽ 1 ⩽ k − s ⩽
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⌊(n−t−1)/2⌋ ⩽ ⌊(n−t)/2⌋ and noting that t−3s+2k−1 ⩽ t−s−1+(n−t−1) ⩽ n−s−2

A
(1)
t,n−1,k−1,s − A

(1)
t−1,n−1,k−1,s−1 = −

((
t+ 2k − 3s− 2

t+ k − 2s− 2

)
−
(
t+ 2k − 3s− 2

k − s− 2

))
,

A
(2)
t,n−1,k−1,s − A

(2)
t−1,n−1,k−1,s−1

=

(n−1)−s∑
m=t−3s+2k−1

((
m− 1

k + t− 2s− 2

)
−
(

m− 1

k − s− 2

))

−
n−s∑

m=t−3s+2k+1

((
m− 1

k + t− 2s− 1

)
−
(

m− 1

k − s− 1

))
=

((
t− 2s+ 2k − 2

k + t− 2s− 2

)
−
(
t− 3d+ 2k − 2

k − s− 2

))
−

n−s−1∑
m=t−3s+2k

((
m− 1

k + t− 2s− 1

)
−
(

m− 1

k − s− 1

))
,

Ct,n−1,k−1,s − Ct−1,n−1,k−1,s−1

=
n−1∑

m=n−s

(
m− 1

k + t− 2s− 2

)
−

n−1∑
m=n−s+1

(
m− 1

k + t− 2s− 1

)

⩽

(
n− 2

k + t− 2s− 2

)
−

n−2∑
m=n−s

(
m− 1

k + t− 2s− 1

)
.

From above three terms, it is easy to get

r
(1)
t,n,k,t−2s − r

(2)
t,n,k,t−2s

=r(M
(t,n−1)
k−1,k−1+t−2s)− r(M

(t−1,n−1)
k−1,k−1+t−1−2(s−1))−

(
n− 1

k − 1 + t− 2s

)
=

2∑
i=1

(A
(i)
t,n−1,k−1,s −A

(i)
t−1,n−1,k−1,s−1)+(Ct,n−1,k−1,s − Ct−1,n−1,k−1,s−1)−

(
n− 1

k − 1 + t− 2s

)
⩽0.

Case 4.2.3: If ⌊((n − 1) − t)/2⌋ ⩽ (k−1)−s ⩽ (n−1)− t, then ⌊(n− t)/2⌋ ⩽
⌊(n− t+ 1)/2⌋ ⩽ k − s ⩽ n− t.
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Since Bt,n−1,k−1,s −Bt−1,n−1,k−1,s−1 = 0, we have,

r
(1)
t,n,k,t−2s − r

(2)
t,n,k,t−2s

=r(M
(t,n−1)
k−1,k−1+t−2s)− r(M

(t−1,n−1)
k−1,k−1+t−1−2(s−1))−

(
n− 1

k − 1 + t− 2s

)
=(Bt,n−1,k−1,s −Bt−1,n−1,k−1,s−1) + (Ct,n−1,k−1,s − Ct−1,n−1,k−1,s−1)−

(
n− 1

k − 1 + t− 2s

)
=Ct,n−1,k−1,s − Ct−1,n−1,k−1,s−1 −

(
n− 1

k − 1 + t− 2s

)
⩽

(
n− 2

k + t− 2s− 2

)
−
(

n− 1

k − 1 + t− 2s

)
−

n−2∑
m=n−s

(
m− 1

k + t− 2s− 1

)
⩽0.

Case 4.2.4: If (k − 1) − s > (n − 1) − t, then k − s > n− t.

Same as Eq 19, we can verify r
(1)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s in this case.

From above all, we have verified r
(1)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s in all cases.

Step 4.3: verify that r
(4)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s.

First, if t = n− 2, then

r
(4)
t,n,k,t−2s =

(
n− 1

k + t− 2s− 1

)
+ r(M

(t,n−1)
k,k+t−2s)

=

(
n− 1

k + t− 2s− 1

)
+

(
n− 1

k

)
+

(
n− 1

k + t− 2s

)
− 1.

Moreover, we have

r
(2)
t,n,k,t−2s =

(
n− 1

k

)
+

(
n− 1

k + t− 2s− 1

)
+ r(M

(t−1,n−1)
k−1,k+t−2s)

If k − s <= 0 or k − s >= n − t = 2, then r(M
(t−1,n−1)
k−1,k+t−2s) ⩾ Dt−1,n−1,k−1,s−1 =(

n−1
k+t−2s

)
− 1. Otherwise, k− s = 1 and then r(M

(t−1,n−1)
k−1,k+t−2s) ⩾

(
n−1
k−1

)
=
(

n−1
k+t−2s−1

)
. In both

cases, we can derive r
(4)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s. Thus, in the following, we assume t < n− 2.

Case 4.3.1: If k − s < 0, then (k − 1)− (s− 1) < 0.

the electronic journal of combinatorics 33(1) (2026), #P1.7 28



Therefore,

r
(4)
t,n,k,t−2s − r

(2)
t,n,k,t−2s

=r(M
(t,n−1)
k,k+t−2s)− r(M

(t−1,n−1)
k−1,k−1+t−1−2(s−1))−

(
n− 1

k

)
=

(
n− 1

k

)
−
(
n− 1

k − 1

)
−
(
n− 1

k

)
+ (Dt,n−1,k,s −Dt−1,n−1,k−1,s−1)

⩽
n−1∑

m=k+t−2s+1

(
m− 1

k + t− 2s− 1

)
−

n−1∑
m=k+t−2s+1

(
m− 1

k + t− 2s− 1

)
= 0.

(20)

Case 4.3.2: If 0 ⩽ k−s ⩽ ⌊((n − 1) − t)/2⌋, then 0 ⩽ k−s ⩽ ⌊(n− t− 1)/2⌋ ⩽
⌊(n− t)/2⌋ and 2(k − s) ⩽ n− t− 1. We can derive that

A
(1)
t,n−1,k,s − A

(1)
t−1,n−1,k−1,s−1 = 0,

A
(2)
t,n−1,k,s − A

(2)
t−1,n−1,k−1,s−1 = −

((
n− s− 1

k + t− 2s− 1

)
−
(
n− s− 1

k − s− 1

))
,

Ct,n−1,k,s − Ct−1,n−1,k−1,s−1

=
n−1∑

m=n−s

(
m− 1

k + t− 2s− 1

)
−

n−1∑
m=n−s+1

(
m− 1

k + t− 2s− 1

)
=

(
n− s− 1

k + t− 2s− 1

)
.

Therefore,

r
(4)
t,n,k,t−2s − r

(2)
t,n,k,t−2s

=r(M
(t,n−1)
k,k+t−2s)− r(M

(t−1,n−1)
k−1,k−1+t−1−2(s−1))−

(
n− 1

k

)
=−

(
n− 1

k − 1

)
+

2∑
i=1

(A
(i)
t,n−1,k,s − A

(i)
t−1,n−1,k−1,s−1) + (Ct,n−1,k,s − Ct−1,n−1,k−1,s−1)

=

(
n− s− 1

k − s− 1

)
−
(
n− 1

k − 1

)
⩽ 0.

Case 4.3.3: If ⌊((n − 1) − t)/2⌋ < k − s ⩽ (n − 1) − t, then ⌊(n− t)/2⌋ ⩽
⌊(n− t+ 1)/2⌋ ⩽ k − s ⩽ n− t.
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We have
Bt,n−1,k,s −Bt−1,n−1,k−1,s−1

=
n−t−k+s−2∑

a=0

((
t− s+ 2a

t− s+ a− 1

)
−
(
t− s+ 2a

a− 1

))

−
n−t−k+s−1∑

a=0

((
t− s+ 2a

t− s+ a− 1

)
−
(
t− s+ 2a

a− 1

))
= −

(
2n− 2k − t+ s− 2

n− k − 2

)
+

(
2n− 2k − t+ s− 2

n− t− k + s− 2

)
.

Write λ ≜ k − s− n−t
2
, then λ ⩾ 0 by the condition. Therefore,

r
(4)
t,n,k,t−2s − r

(2)
t,n,k,t−2s

=r(M
(t,n−1)
k,k+t−2s)− r(M

(t−1,n−1)
k−1,k−1+t−1−2(s−1))−

(
n− 1

k

)
=−

(
n− 1

k − 1

)
+ (Bt,n−1,k,s −Bt−1,n−1,k−1,s−1) + (Ct,n−1,k,s − Ct−1,n−1,k−1,s−1)

⩽

(
n− s− 1

k + t− 2s− 1

)
−
(
n− 1

k − 1

)
−
(
2n− 2k − t+ s− 2

n− k − 2

)
+

(
2n− 2k − t+ s− 2

n− t− k + s− 2

)
⩽

(
n− s− 1

k − s− 2λ

)
−
(
n− 1

k − 1

)
−
(
n− s− 2− 2λ

k − s− 2λ

)
+

(
n− s− 2− 2λ

k − s− 2λ− 2

)
.

If λ = 0, it is easy to verify r
(4)
t,n,k,t−2s−r

(2)
t,n,k,t−2s ⩽ 0 with the above equation. If λ ⩾ 1,

then we first claim that
(
n−s−1
k−s−2λ

)
⩽
(
n−s−1
k−s−1

)
. If k − s − 1 ⩽ n−s−1

2
, it holds naturally.

Otherwise, when k− s− 1 > n−s−1
2

, note that k− s− 2λ ⩽ n−s−1
2

holds, since t ⩾ 2s ⩾ 2.

It suffices to prove that k − s− 1− n−s−1
2

⩽ n−s−1
2

− (k − s− 2λ) which is easy to verify.

As a consequence, we have

r
(4)
t,n,k,t−2s − r

(2)
t,n,k,t−2s

⩽

(
n− s− 1

k + t− 2s− 1

)
−
(
n− 1

k − 1

)
=

(
n− s− 1

k − s− 2λ

)
−
(
n− 1

k − 1

)
⩽

(
n− s− 1

k − s− 1

)
−
(
n− 1

k − 1

)
⩽ 0.

Case 4.3.4: If k − s > (n − 1) − t, then k − s ⩾ n− t.

Same as Eq 20, we can verify r
(4)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s in this case.

From above all, we have verified r
(4)
t,n,k,t−2s ⩽ r

(2)
t,n,k,t−2s in all cases.

Step 5: verify Eq 13 when k > 0, k + t − 2s < n and s = 0. In this case,

r
(2)
t,n,k,t−2s = −∞ and {r(i)t,n,k,t−2s}1=1,3,4

are positive.
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Case 5.1: If 1 ⩽ k < ⌊(n − t)/2⌋, then we have k ⩽ ⌊((n − 1) − t)/2⌋ and

2k ⩽ n− t− 1. We first verify that r
(4)
t,n,k,t−2s is always equal to RHS of Eq 13.

r
(4)
t,n,k,t−2s =

(
n− 1

k + t− 2s− 1

)
+ r(M

(t,n−1)
k,k+t−2s)

=

(
n− 1

k + t− 2s− 1

)
+

(
n− 1

k

)
+ A

(1)
t,n−1,k,s + A

(2)
t,n−1,k,s + Ct,n−1,k,s.

Note that A
(1)
t,n−1,k,s = A

(1)
t,n,k,s, C

(1)
t,n−1,k,s = 0 = Ct,n,k,s when s = 0, and

A
(2)
t,n−1,k,s = A

(2)
t,n,k,s −

((
n− 1

k + t− 2s− 1

)
−
(

n− 1

k − s− 1

))
.

Then we can derive that

r
(4)
t,n,k,t−2s =

(
n

k

)
+ A

(1)
t,n,k,s + A

(2)
t,n,k,s + Ct,n,k,s.

Consequently, r
(4)
t,n,k,t−2s is always equal to RHS of Eq 13 and we then only need to

prove r
(1)
t,n,k,t−2s ⩽ r

(4)
t,n,k,t−2s and r

(3)
t,n,k,t−2s ⩽ r

(4)
t,n,k,t−2s. We omit the details here.

Case 5.2: If ⌊(n− t)/2⌋ < k ⩽ n− t, then ⌊(n− 1− t)/2⌋ ⩽ k− 1 ⩽ (n− 1)− t.

We first verify that r
(1)
t,n,k,t−2s is always equal to RHS of Eq 13.

r
(1)
t,n,k,t−2s =

(
n− 1

k

)
+ r(M

(t,n−1)
k−1,k+t−2s−1)

=

(
n− 1

k

)
+

(
n− 1

k − 1

)
+Bt,n−1,k−1,s + Ct,n−1,k−1,s

=

(
n

k

)
+Bt,n,k,s + Ct,n,k,s.

Consequently, r
(1)
t,n,k,t−2s is always equal to RHS of Eq 13 and we then only need to

prove r
(3)
t,n,k,t−2s ⩽ r

(1)
t,n,k,t−2s and r

(4)
t,n,k,t−2s ⩽ r

(1)
t,n,k,t−2s. We omit the details here.

Step 6: verify the base case of induction.

Consider when t + n + k + s = 2 and show that (t, n, k, s) is valid. The only case is

t = 1, n = 1, k = 0, s = 0 and, then, by Step 1, we can verify Eq 13 in this case.

By induction, we have finally proved Lemma 21. □

Appendix B: Proof of Lemma 22

We give the proof of Lemma 22 via Eq 10. Note that when t = 1, bw(M (1,n)) =∑n−1
m=0

(
m

⌊m/2⌋

)
[15].
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If n = 2l + 1 for some integer l, then

n−1∑
m=0

(
m

⌊m/2⌋

)

=
l∑

a=0

(
2a

a

)
+

l−1∑
a=0

(
2a+ 1

a

)

=

(
2l + 1

l

)
+

l−1∑
a=0

((
2a+ 1

a

)
−
(
2a+ 1

a− 1

))

=

⌊(n−t)/2⌋+t−1∑
k=⌊(n−t)/2⌋

(
n

k

)
+

⌊(n−t−1)/2⌋∑
a=0

((
t+ 2a

t+ a− 1

)
−
(
t+ 2a

a− 1

))
,

where the second equality can be proved by induction on l.

If n = 2l for some integer l, then

n−1∑
m=0

(
m

⌊m/2⌋

)

=
l−1∑
a=0

(
2a

a

)
+

l−1∑
a=0

(
2a+ 1

a

)

=

(
2l

l

)
+

l−1∑
a=0

((
2a+ 1

a

)
−
(
2a+ 1

a− 1

))

=

⌊(n−t)/2⌋+t−1∑
k=⌊(n−t)/2⌋

(
n

k

)
+

⌊(n−t−1)/2⌋∑
a=0

((
t+ 2a

t+ a− 1

)
−
(
t+ 2a

a− 1

))
,

where the second equality can be proved by induction on l as well.

Therefore, when t = 1, Eq 14 holds. Then we intend to prove Lemma 22 by induction

on t. Suppose Eq 14 holds for t < T , now consider when t = T .

First consider the situation when k = ⌊(n− t)/2⌋ and p = t. Then we have

t−1∑
q=1

(
n

k + q

)
+ r(M

(t,n)
k,k+t) =

t−1∑
q=0

(
n

k + q

)
+

⌊(n−t−1)/2⌋∑
a=0

((
t+ 2a

t+ a− 1

)
−
(
t+ 2a

a− 1

)
.

)
(21)

The result matches the RHS of Eq 14. In the following, we only need to prove other term

is no more than this value.

For convenience, define r̃(M
(t,n)
k,k+p) =

∑p−1
q=1

(
n

k+q

)
+ r(M

(t,n)
k,k+p) when 1 ⩽ p ⩽ t and

r̃(M
(t,n)
k,k ) = bw(M

(t,n)
k,k ). Actually, r̃(M

(t,n)
k,k+p) where 0 ⩽ k ⩽ k + p ⩽ n is exactly the max-

imum Manhattan distance from a nonzero element of M
(t,n)
k,k+p in M to the main diagonal
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of the matrix M . There exists a consist expression for r̃(M
(t,n)
k,k+p) as following.

r̃(M
(t,n)
k,k+p) =

p−1∑
q=0

(
n

k + q

)
−
(
n

k

)
+ r(M

(t,n)
k,k+p).

Then, our purpose is to prove r̃(M
(t,n)
k,k+p) is no larger than Eq 21 for any integer k, p

satisfying 0 ⩽ k ⩽ k + p ⩽ n and 0 ⩽ p ⩽ t.

From definition, when k = 0, we have that r̃(M
(t,n)
k,k+p) reach its maximal when p = t.

Similarly, when k + p = n, r̃(M
(t,n)
k,k+p) reach its maximal when k = n − t, that is, p = t.

When k > 0 and k + p < n, we have r̃(M
(t,n)
k,k+p) ⩽ r̃(M

(t,n)
k−1,k+p+1) when p + 2 ⩽ t. Hence,

we only need to prove r̃(M
(t,n)
k,k+p) is no larger than Eq 21 for the following two cases:

(1) p = t− 1,

(2) p = t.

Case 1: p = t− 1. In this case, we have r̃(M
(t,n)
k,k+p) = r̃(M

(t−1,n)
k,k+p ) ⩽ bw(M (t−1,n)) by

definition. Since the value of bw(M (t−1,n)) can be calculated from Lemma 22 by induction,

and it is not hard to verify the RHS of Eq. 14 is increasing with respect to t. Then we

can reach our conclusion in this case.

Case 2: p = t.
If k ⩽ ⌊(n− t)/2⌋, then

r̃(M
(t,n)
k,k+t)− r̃(M

(t,n)
k−1,k+t−1)

=

(
n

k + t− 1

)
−
(
n

k

)
+

(
n

k

)
−
(

n

k − 1

)
+

((
2k + t− 2

k + t− 2

)
−
(
2k + t− 2

k − 2

))
+

n−s∑
m=t+1+2k

((
m− 1

k + t− 1

)
−
(
m− 1

k − 1

))
−

n−s∑
m=t−1+2k

((
m− 1

k + t− 2

)
−
(
m− 1

k − 2

))

=

(
n

k + t− 1

)
−
(

n

k − 1

)
+

n−1∑
m=t+2k

((
m− 1

k + t− 2

)
−
(
m− 1

k − 2

))
−
((

n− 1

k + t− 2

)
−
(
n− 1

k − 2

))

=

(
n− 1

k − t− 1

)
−
(
n− 1

k − 1

)
+

n−1∑
m=t+2k

((
m− 1

k + t− 2

)
−
(
m− 1

k − 2

))
⩾0.

It shows that when k ⩽ ⌊(n− t)/2⌋, r̃(M
(t,n)
k,k+t) reaches its maximum at

k = ⌊(n− t)/2⌋. If k ⩾ ⌊(n− t)/2⌋, then

r̃(M
(t,n)
k,k+t)− r̃(M

(t,n)
k+1,k+t+1)

=

(
n

k + 1

)
−
(

n

k + t

)
+

(
n

k

)
−
(

n

k + 1

)
+

((
2n− t− 2k − 4

n− k − 3

)
−
(
2n− t− 2k − 4

n− t− k − 3

))
⩾0.
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Combining the above situations, we have proved that r̃(M
(t,n)
k,k+t) reaches its maximum at

k = ⌊(n− t)/2⌋. That is, the maximum value of is r̃(M
(t,n)
k,k+t) as Eq 21.

From above all, we have proven Lemma 22. □

the electronic journal of combinatorics 33(1) (2026), #P1.7 34


	Introduction
	Preliminaries and definitions
	Treewidth of generalized Hamming graph
	Bandwidth of Hamming graph H(t,2,n)
	Treewidth of H(t,q,n)

	Treewidth of bipartite Kneser graph and Johnson graph
	Treewidth of BK(n, k) when n is large enough
	Treewidth of BK(2k+1, k) and J(2k+1, k)

	Treewidth of generalized Petersen graph

