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Abstract

Kempe equivalence is a classical and important notion on vertex coloring in graph
theory. In the present paper, we introduce several ideals associated with graphs and
provide a method for determining whether two k-colorings are Kempe equivalent
via commutative algebra. Moreover, we give a way to compute all k-colorings of
a graph up to Kempe equivalence by virtue of the algebraic technique on Grébner
bases. As a consequence, the number of k-Kempe classes can be computed by
using Hilbert functions. Finally, we introduce several algebraic algorithms related
to Kempe equivalence.

Mathematics Subject Classifications: 05C15, 13P10, 13F65

1 Introduction

A k-coloring f of a graph G on the vertex set [d] := {1,2,...,d} is a map from [d] to
[k] such that f(i) # f(j) for all {i,j} € E(G). The smallest integer x(G) such that G
has a x(G)-coloring is called the chromatic number of G. Given a k-coloring f of GG, and
integers 1 <17 < j < k, let H be a connected component of the induced subgraph of G' on
the vertex set f~!(i) U f7'(j). Then we can obtain a new k-coloring g of G by setting

f(z) z¢H,
glx) =<1 x € H and f(z) = j,
J r € H and f(z) =1i.
We say that g is obtained from f by a Kempe switching. Two k-colorings f and g of G

are called Kempe equivalent, denoted by f ~j ¢, if there exists a sequence fy, f1,..., fs
of k-colorings of G such that fo = f, f; = ¢, and f; is obtained from f;_; by a Kempe
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switching. Let denote Ci(G) the set of all k-colorings of G. Then ~y is an equivalence
relation on Ci(G). The equivalence classes of C(G) by ~y are called the k-Kempe classes.
We denote ke(G, k) the quotient set Cx(G)/ ~ and denote Kc(G, k) the number of k-
Kempe classes of G, namely Kc(G, k) = |ke(G, k)|. Kempe switchings were introduced by
Kempe in the false proof of the 4-Color Theorem. However, his idea is powerful in graph
coloring theory. Recently, many researchers have studied Kempe switchings and Kempe
equivalence. See [5] for an overview of Kempe equivalence.

Given a graph G, let S(G) be the set of all stable sets of G. The stable set ideal Ig
of G is a toric ideal arising from S(G) of a polynomial ring R[G] := K[zg | S € S(G)]
over a field K. In [7], the authors showed that I is generated by binomials x; — x,
associated with k-colorings f and g of a replication graph of an induced subgraph of G,
and found a relationship between Kempe equivalence on GG and an algebraic property of
I¢. In particular, by using the proof of [7, Theorem 1.3], we can examine if two k-colorings
of G are Kempe equivalent by using I;. However, I has too much information for this
purpose. In the present paper, we introduce a simpler ideal Jg, which is generated by
binomials x; — x, associated with 2-colorings f and g of an induced subgraph of G, to
determine Kempe equivalence on G. We call Jg the 2-coloring ideal of G. Then our first
main result is the following:

Theorem 1.1. Let G be a graph on [d] and let f,g be k-colorings of G. Then f ~y g if
and only if x; —x, € Jg.

Next, we compute all k-colorings of a graph G up to Kempe equivalence by virtue of
the algebraic technique on Grobner bases. Namely, a complete representative system for
ke(G, k) is given. For this, we introduce another ideal K¢ defined by

KG = JG + Mg,

where

Mg = <x5$T | S,T € S(G),SﬂT 7é (Z)>
The ideal K¢ is called the Kempe ideal of G. Then our second main result is the following:
Theorem 1.2. Let G be a graph on [d] and < a monomial order on R[G], and let

{xp,..., x5} be the set of all standard monomials of degree k with respect to the ini-
tial ideal in.(K¢). Then

{fi,.-, fs} NCe(G)

is a complete representative system for ke(G, k).

As a consequence, the number of k-Kempe classes K¢(G, k) can be computed by Hilbert
functions (Corollary 6.9).

Finally, by using Theorems 1.1 and 1.2 and techniques on Grobner bases, we introduce
several algorithms related to Kempe equivalence. Specifically, our algorithms perform:

1. Determination of Kempe equivalence (Algorithm 7.2);
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2. Computation of a complete representative system for ke(G, k) (Algorithm 7.3);
3. Enumeration of k-colorings that are Kempe equivalent (Algorithm 7.4);

4. Construction of a sequence of Kempe switchings between two Kempe equivalent
k-colorings (Algorithm 7.6).

The present paper is organized as follows: In Section 2, we will recall the definition of
stable set ideals and explain a relationship between stable set ideals and Kempe equiv-
alence. Section 3 will give a brief introduction to Grébner bases. In Section 4, we will
define 2-coloring ideals and see their algebraic properties. In Section 5, a proof of Theo-
rem 1.1 will be given. In Section 6, we will define Kempe ideals and prove Theorem 1.2.
Finally, in Section 7, we will introduce several algorithms related to Kempe equivalence.

2 Stable set ideals

In this section, we define stable set rings and explain a relationship between stable set
ideals and Kempe equivalence. Let G be a graph on the vertex set [d] with the edge set
E(G). Given a subset S C [d], let G[S] denote the induced subgraph of G on the vertex
set S. A subset S C [d] is called a stable set (or an independent set) of G if {i,j} ¢ E(G)
foralli,j € S withi # j. Namely, a subset S C [d] is stable if and only if G[S] is an empty
graph. In particular, the empty set () and any singleton {i} with ¢ € [d] are stable. Denote
S(G) = {S1,...,Sn} the set of all stable sets of G. Given a subset S C [d], we associate
the (0,1)-vector p(S) = 3. .ge;. Here e; is the jth unit coordinate vector in R?. For
example, p() = (0,...,0) € R% Let K[t,s] := K[ty,...,t4,s] be the polynomial ring in
d + 1 variables over a field K. Given a nonnegative integer vector a = (aq,...,aq) € Zim
we write t* := ¢17¢5? - - - t3* € K[t, s]. The stable set ring of G is

K[G] := K[t*5s, ... tPO)s] € K]t, s].

We regard K[G] as a homogeneous algebra by setting each deg(t”)s) = 1. Note that
K[G] is a toric ring. Let R|G]| = K[zg,,...,zs,] denote the polynomial ring in n variables
over K with each deg(zs,) = 1. The stable set ideal of G is the kernel of the surjective
homomorphism 7 : R[G] — K[G] defined by 7(xg,) = t*)s for 1 < i < n. Note that I
is a toric ideal, and hence a prime ideal generated by homogeneous binomials. The toric
ring K[G] is called quadratic if I is generated by quadratic binomials. We say that “Ig
is generated by quadratic binomials” even if I = {0} (or equivalently, G is complete). It
is easy to see that a homogeneous binomial xs, ---xs, — s, ---vs, € R[G] belongs to
I if and only if | J,_, Si, = U,_, Sj, as multisets. See, e.g., [3] for details on toric rings
and toric ideals.

We can describe a system of generators of I in terms of k-colorings. Given a graph
G on the vertex set [d], and a = (a1,...,aq) € Z%, let G, be the graph obtained from
G by replacing each vertex i € [d] with a complete graph G of a; vertices (if a; = 0,
then just delete the vertex i), and joining all vertices € G® and y € GY such that
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{i,j} is an edge of G. In particular, if a = (1,...,1), then G, = G. If a = 0, then G,
is the null graph (a graph without vertices). In addition, if a is a (0, 1)-vector, namely,
a € {0,1}4, then G, is an induced subgraph of G. If a is a positive vector, then G,
is called a replication graph of G. In general, G, is a replication graph of an induced
subgraph of G. Given a k-coloring f of G, with a € Zio, we associate f with a monomial

Xp=uzs, x5, € RG],

7

where S;, = {j € [d] | GY N f~1(¢) # 0} for £ = 1,2,...,k. Conversely, let m =
T, ++ s, € R[G] be a monomial of degree k. Then, for a = (ai, ..., a,) with a, = [{£:
p € S;,}|, there exists a k-coloring f of G, such that x; = m (see [7, Lemma 3.2]). For
example, we consider the graphs G and G, with a = (2,1,0,2) as follows:

) 0
ofko OZ2ANO

© OSENRG

(a) G (b) Ga with a = (2,1,0,2)

We define a 4-coloring f of G, by

1 e {14},
L )2 ieq2i},
TO=93 e,
4 i€ {4}

Then since S;, = {1,4},S;, = {2}, Si; = {1}, S;, = {4}, one has
Xf = T{1,43T{2} T {1} T {4}

On the other hand, we can obtain the 4-coloring f (up to exchanging colors and exchanging
the coloring of vertices in each clique G of Ga) from the monomial x4 43293213714} S
follows: for each variable xg, we assign one color to a single copy ¢; of each vertex i € S.
Note that, for k-colorings f and g of an induced subgraph of G, x; = x, if and only
if g is obtained from f by permuting colors. It is easy to see that f ~y g if ¢ is obtained
from f by permuting colors. In this paper, we identify f and g if ¢ is obtained from f by
permuting colors. Then we can describe a system of generators of I as follows:

Proposition 2.1 ([7, Theorem 3.3]). Let G be a graph on [d]. Then one has
X — Xy € g <= [ and g are k-colorings of G, with a € Z2, and k > x(Ga)
and
I = (xy — x4 | f and g are k-colorings of G, with a € Z%, and k > x(Ga))
= (x; — X, | f and g are k-colorings of Ga with a € {0,1,...,k}* and k > x(Ga)).
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Now, we explain a relationship between I; and Kempe equivalence.

Proposition 2.2 ([7, Theorem 1.3]). Let G be a graph on [d]. Then I is generated by
quadratic binomials if and only if for any a € Zio and k > x(Ga), all k-colorings of G,
are Kempe equivalent, namely, one has

Kc(Ga, k) = 1.

We consider the ideal ([Ig]s) of R[G] generated by all quadratic binomials of I,
namely,

(Ic]a) = (x; — x4 | f and g are 2-colorings of G, with a € Z2)
= (x; — X, | f and g are 2-colorings of G, with a € {0,1,2}%) C R[G].
Proposition 2.3. Let G be a graph on [d] and f, g k-colorings of G. Then f ~y g if and
only if x5 — x4 € ([Ig]2)-

We will see a proof of this proposition in Section 5 (Theorem 5.1) by using a similar
discussion in the proof of Proposition 2.2 in [7].

3 Grobner bases

In this section, we give a brief introduction to Grébner bases. Let R = K[z, xq, . .., 2y
be a polynomial ring over a field K with deg(x;) = 1, and denote M,, the set of all
monomials in the variables x4, ..., x,. A monomial order on R is a total order < on M,,
such that

1. 1<uforall 1 #uée M,
2. if u,v € M,, and u < v, then uw < vw for all w € M,,.
We give an example of a monomial order.

Example 3.1. Let u = 2{* - - - 2% and v = z}* - - - 2P be monomials in M,,. We define the

total order <,e, on M,, by setting u <y, v if either (i) > a; < D" by, or (ii) D1 a; =

> i, b; and the rightmost nonzero component of the vector (by —ay, by —as, ..., b, —a,) is
negative. It then follows that <., is a monomial order on R, which is called the (graded)
reverse lexicographic order on R induced by the ordering z; > z9 > --- > x,. By

reordering the variables, we can obtain another reverse lexicographic order on R. Hence,
there are n! reverse lexicographic orders on R.

Fix a monomial order < on R. For a nonzero polynomial f of R, the support of f,
denoted by supp(f), is the set of all monomials appearing in f and the initial monomial
in_(f) of f with respect to < is the largest monomial belonging to supp(f) with respect
to <. Let I be a nonzero ideal of R. Then the initial ideal in.(I) of I with respect to <
is defined as follows:

ino(I) = (in<(f) [0£ f € 1) C R

(S8
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In general, even if I = (fy,..., fs), it is not necessarily true that

in<(]> = <in<(f1)7 te 7in<<fs)>‘

A finite set {g1,...,¢gs} of nonzero polynomials belonging to I is called a Grébner basis
of I with respect to < if in.(I) = (in(¢1),...,in<(gs)). Note that if {¢g1,..., g5} is a
Grobner basis of I, then I = (g1, ..., gs). It is known that I always has a Grobner basis.
A Grobner basis G for I with respect to < is called reduced if the following conditions
hold:

1. for all p € G, the coefficient of in_(p) in p equals 1;
2. for all p € G, no monomial of p lies in (in.(g) | g € G\ {p}).

A nonzero ideal I has a unique reduced Grobner basis with respect to a fixed monomial
order <. In particular, given a Grobner basis, we can easily get the reduced Grébner basis
from it.

Next we introduce a method for determining whether a finite system of generators of
I is a Grobner basis of I with respect to <. For two nonzero polynomials f and ¢ in R,

the polynomial
m m

- . —_— - . g
cp-inc(f) g -inc(g)
is called the S-polynomial of f and g, where c; is the coefficient of in.(f) in f and ¢, is

that of in.(g) in g, and m is the least common multiple of the initial monomials in_(f)
and in(g).

S(f,9) =

Lemma 3.2 (Buchberger’s Criterion [2, Chapter 2, §9, Theorem 3]). Let I be a nonzero
ideal of R, G ={g1,...,9s} a finite system of generators of I. Then G is a Grébner basis
of I with respect to a monomial order < on R if and only if the remainder of S-polynomial
S(gi, g;) on division by G is 0 for all i # j.

The algorithm called Buchberger’s Algorithm ([2, Chapter 2, §7, Theorem 2|) is based
on Buchberger’s Criterion, and computes a Grébner basis for I from a finite system of
generators of .

As applications of Grébner bases, we can determine if a polynomial f belongs to an
ideal. This problem is called the ideal membership problem. If G is a Grobner basis for
an ideal I of R with respect to a monomial order <, then every polynomial of f € R has
a unique remainder on division by G. The remainder is called the normal form of f with
respect to G.

Lemma 3.3 (]2, Chapter 2, §6, Corollary 2]). Let I be a nonzero ideal of R and G a
Grobner basis of I with respect to a monomial order < on R. Fiz a polynomial f in R.
Then f € I if and only if the normal form of f with respect to G equals 0.

Next, we review a method for computing Hilbert functions. Let I be a graded ideal
of R. The numerical function H(R/I,—) : Zso — Z>o with H(R/I, k) = dimg Ry/I} is
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called the Hilbert function of R/I, where Ry, (resp. I) is the homogeneous part of degree
k of R (resp. I) and dimg Ry /I is the dimension of Ry /I as K-vector spaces. For a
monomial order < on R, a monomial u € M,, is said to be standard with respect to
inc(I) if u ¢ in(I).

Lemma 3.4 ([3, Theorem 1.19]). Let I be a nonzero graded ideal of R and fix a monomial
order < on R. Let By denote the set of standard monomials of degree k with respect to
in.(I). Then By is a K-basis of Ry/Iy as a K-vector space. In particular, one has

H(R/I, k) = | Byl

Finally, we recall a property of the saturation of an ideal. For a nonzero ideal I of R
and a polynomial f € R, the saturation of I with respect to f is the ideal

I: f>* ={g € R| there exists i > 0 such that fig € I}.

Lemma 3.5 ([3, Proposition 1.40]). Let I be a nonzero graded ideal of R and let G be

the reduced Grobner basis of I with respect to the reverse lexicographic order induced by
Ty > X9 > >x,. Then
{g/2% | g€ G, k€Zsy, 2 divides g, ™ does not divide g}

n

is a Grobner basis of I : xy°.

4 2-coloring ideals

Given a graph G on [d], we define the following two ideals of R[G]:
Jo :=(x; — X, | f and g are 2-colorings of G, with a € {0, 1}9)
=(xy — X, | f and g are 2-colorings of an induced subgraph of G),
L =(xg\yry —xsrg | i€ S € S(G), |S]| = 2).
We call Jg the 2-coloring ideal of GG. Note that inclusions of ideals
Lo C Jo C([Ig2) C Ig (4.1)

hold. Moreover, from Proposition 2.1, for I € {([I¢]2), Ja, La}, if xp —x, € I, then f
and ¢ are k-colorings of GG, with a € Zi@
In this section, we discuss some properties of these ideals.

Lemma 4.1. Let G be a graph on [d]. Then one has Lg : x5° = Ja : x5° = ([Igl2) : x§5° =
Ig.

Proof. Since Lg C Ja C ([Igl2) C Ia, we have Lg : x3° C Ja : x3° C ([la]2) : x§° C Ig
x;°- In addition, since /¢ is prime and does not contain :c’(g for any k, we have I : x§° = Ig.
Thus it is sufficient to show that I C Lg : x3°. Let

s s
F= Hxsi — HZ’S{ € Ig,
i=1 i=1
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where S; = {E\", .. KV, 50 = {4, 69} € S(G) for each i. Then

i
pi—1 ]
T, —Hx{k(_w}
=1

pi—2 _ , ) Di—3 ) ) _ o .
= T ("’S'”@ xs-\{k“’}f"{k“)})*% Tely (”"fsz-\{kﬁ”}m@ xsi\{kﬁ”,k;”}x{ké”})

(H v k”}) ( ORI x{k&?f”{k&%})

belongs to L. Note that if binomials uy — vy, ..., us — vs belong to Lg, then

Up ... Us — V... 0 = U+ Us(Us —v1) +ug - usvr (U — V2) + g - - - U1 V2 (U3 — Vs3)
+o vy vsog (g — vg)

belongs to L. Hence
Gy = g (Pi=l H HHI
1 — g {k< )}
i=1 i=1 j=1
belongs to Lg. By the same argument,
G2 Dz (@i— HI‘S/ HHx{f(l)}
=1 j=1

belongs to Lg. Since F belongs to I, 7(I];_; zs,) = 7([[;_; xs/). This implies that
Ui_, Si = U, S as multisets. Hence one has » ., p; = Y ., ¢; and

s Di s 4
1111 Ty = 111 Tty

i=1 j=1 i=1 j=1
Thus .
x%:i:l(pi_l)F _ Gl _ GQ
belongs to Lg. This implies that F' € Lg : xg°. Hence one has Ig C Lg : xy°. O

Therefore, combining Lemmata 3.5 and 4.1, we obtain the following proposition.

Proposition 4.2. Let G be a graph on [d] and let I € {{[Ig]2), Ja. La}. If G is the
reduced Grobner basis of I with respect to a reverse lexicographic order such that xs = xg

for any S € S(G), then
{9/75 | 9 € G,k € Lo, xf divides g, ;™" does not divide g}
1s a Grobner basis of Ig.
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Next, we discuss when equality holds in the inclusions Lo C Jg C ([Igl2) C Ig. In
particular, we characterize when these ideals are prime. Let G denote the complement
graph of a graph G.

Proposition 4.3. Let G be a graph on [d]. Then one has the following.
(a) Let I € {({[Ig]2), Ja, La}. Then I is prime <— I = .
(b) Ig = ([Ig]2) <= I is generated by quadratic binomials.
(¢) {[Igl2) = Ja <= G has no 3-cycles.
)

(d) Jo = Lg <= G is a complete multipartite graph on the vertexr set Vi U--- UV,
with |V;| < 3 for each j.

Proof. (a) Let I € {{[Ig]2), Ja, Lc}. Recall that the toric ideal I is prime. Hence I is
prime if I = I. Conversely, suppose that I is prime. Since a:g ¢ I holds for any k, it
follows that I = I : z3°. From Lemma 4.1, we have I = I : z3° = I¢.

(b) Trivial.

(c) If G has a 3-cycle (i1,49,13), then @, i) — T T € (Hel2) \ Ja-
Suppose that G has no 3-cycles. Then |S| < 2 forall S € S(G). Let h = xg,x5, — 5,25, €
([{]2). Since h belongs to I, S1USs coincides with S3US, as multisets, and in particular,
we have S; N Sy = S3 N S;. Suppose that S; N .Sy is not empty. Let ¢« € S; N Sy. Then
(S1\{i})U(S2\{i}) coincides with (S3\{i})U(Ss\{i}) as multisets. Since |S;\{i}| < 1 for
each j = 1,2,3,4, it follows that (S, S2) is equal to either (S3, Sy) or (Sy, S3). Then h = 0,
a contradiction. Thus S; N Sy = 0, and hence h € Jg. Therefore we have ([Ig]2) C Jg,
and hence ([Ig]2) = Jg.

(d) Suppose that Jg = Lg. If G has a path of length two P3 = (i, j, k) as an induced
subgraph, then it follows that zg o) — 2gyvm € Jo \ Lg, a contradiction. Hence G
has no P as an induced subgraph. It is known that G has no P; as an induced subgraph
if and only if G is a complete multipartite graph. Suppose that G has a part V, with
|Va| = 4. It then follows that xp yopy — 2 megn € Jo \ Le where 4, 5, k, [ are distinct
vertices in V,,, a contradiction. Hence G is a complete multipartite graph on the vertex
set ViU - UV, with |V;| < 3 for each j.

Suppose that G is a complete multipartite graph on the vertex set V; U --- U V; with
|V;| < 3 for each j. Then each S € S(G) is a subset of V; for some j. It is enough
to show that J; C Lg. Let h = xg,vs, — 5,75, be a nonzero binomial in Jg. Then
S1NSy=S53NSy=0and S;USy = S53US,. Suppose that S; C Vj, for each i = 1,2, 3,4.

Case 1. (S; =0.) Then h = zgr5, — 15,75, where |Ss|,|Ss| = 1 and | S5|+]S,| = | 52| < 3.
Since either |Ss| or |S4| equals one, h € L.

Case 2. (S; # 0 for cach i.) Since Sy U Sy = S3U Sy, we may assume that j; = js and
jo = ja. If 1 # jo, then S; = S3 and Sy = Sy, and hence h = 0. This is a contradiction.
Thus we have j; = jo = j3 = ja. Since 2 < |S1| + |S2| = |Ss] + |Ss] < 3, we may assume
that |S;| = |S5] = 1. Then h = (xs,x5, — Tpxs,us,) + (ToTssus, — Ts5Ts,) belongs to
Lg. O
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Now, we return to the inclusions (4.1). If G is a complete multipartite graph, then I
is generated by quadratic binomials ([6, Theorem 3.1]). Hence from Proposition 4.3 we
know that Lg = Jg implies ([Ig]a) = Ig. Therefore, there are the following 6 cases:

We give an example for each case.

Example 4.4. First, we recall that for any bipartite graph G, I is generated by quadratic
binomials.

A complete graph K of d vertices satisfies the condition (i). In fact, one has Ir;, = {0}.
For a (3, 3)-complete bipartite graph K33, since K33 has a 3-cycle, the condition (ii) holds.
For a path of length three Py, since Pj is also a path of length three, the condition (iii)
holds. For G = Cg, I is not generated by quadratic binomials from [4, Proposition 11].
Since G’ = Cg has no 3-cycles and G is not a complete multipartite graph, the condition (iv)
is satisfied. For a 6-cycle Cy, since Cg has a 3-cycle and Cy is not a complete multipartite
graph, the condition (v) holds. Finally, we consider the following graph G:

M M)
/ /
M M)
/ /
M M)
/ /

It then follows from [6, Theorem 1.7] that /g is not generated by quadratic binomials.
Since G has a 3-cycle and G is not a complete multipartite graph, the condition (vi) holds.

5 Examining Kempe equivalence

In this section, we prove Theorem 1.1 and Proposition 2.3. In fact, we show the following.

Theorem 5.1. Let G be a graph on [d] and let f and g be k-colorings of an induced
subgraph of G. Then the following conditions are equivalent:

(i) [~k g
(i) x; — x4 € ([lc2);
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(iii) x5 —x, € Ja.

Proof. Suppose that f and g are k-colorings of an induced subgraph G, of G. Since
Jo C ([{g)2) holds, we have (iii) = (ii).

(i) = (iii). Suppose that f ~j g and x; —x, ¢ Jg. Let fo, f1,..., fs be a sequence
of k-colorings of G such that fy = f, fs = g, and f; is obtained from f;_; by a Kempe
switching. We may assume that s > 1 is minimal among all k-colorings f and g such that
[~k g and x; — x, ¢ Jg. Suppose that the Kempe switching from f to f; is obtained
by a connected component H of the induced subgraph Go[f (1) U f~1(n)] by setting

f(x) ¢ H,
filz) = q p r € H and f(x)
n r € H and f(z)

m,
L.

Let f' = flgr and f] = fi|e be the restrictions of f and f; to G := Go[f~*(n) U f~(n)],
respectively. Since f" and f] are 2-colorings of G', Xy — xy belongs to Jg. Then

Xf Xf Xf
Xf — Xg = X—f/(Xf/ — Xf{) =+ (Xf/xf{ — Xg) = Xf/ (Xf/ — Xf{) + Xfl — Xg.

If s =1, then f; = g and hence
X

f
Xpr—Xg= X_f/<xf/ — Xf{) € Jg.

We may assume that s > 2. By the hypothesis on s, x5 — x, belongs to J;. Hence
X; — X4 belongs to Jg, a contradiction.

(ii) = (i). Suppose that f % g and x; —x, € ([Ig]2). Since ([Ig]s) is a binomial
ideal, it then follows from [3, Lemma 3.8] that there exists an expression

Xf — X4 :ZXwT(XfT — Xy, ), (5.1)
r=1

where f, and g, are 2-colorings of G,, with a, € Z% for each r. We may assume that
s > 1 is minimal among such f and g with f 7 ¢ and x; — x, € ([I¢g]2). Since x; must
appear in the right-hand side of (5.1), we may assume that x; = x,,Xy,. Then x; is
divided by xy,, and f is the restriction of f to G’ = Go[f(p) U f~1(v)] for some p and
v. Since G’ has a 2-coloring, it is a bipartite graph. Then f; and ¢; are Kempe equivalent.
Let f’ be a coloring of Gy defined by

) — {glm f(@) € {p. v},

f(z) otherwise.
Then one obtains f ~;, f’. Moreover, we have
Xp — Xy, (Xp, — Xg,) = Xy (5.2)
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If s =1, then
Xg =X — le(Xfl - X91) =Xy,

and hence f ~j f' = g, a contradiction. We may assume that s > 2. Since
S
Xf/ - Xg = Xf - X'w1<Xf1 - Xg1) - Xg = ZXU}T(Xfr - Xgr) € <[[G]2>7
r=2

f" ~i g by the hypothesis on s. Thus f ~ f' ~; g, a contradiction. ]
We see examples of Theorem 5.1.

Example 5.2. Let G be the graph as follows:

We consider two 3-colorings f and g of G defined by

1 ie{l,5}, 1 i€e{1,3,5},
f(i)=<2 ie€{2,6}, and g(i) =42 i€ {26},
3 i€ {34} 3 i=A4.

Then one has

Xp = Xg = L1526 (34) — T35 (26T (1) = T(26) (T(15)T(3.4) — L(1,85)T(4})-
Since x{1 51734} — T{1,35)T{4} € Jg, it then follows from Theorem 5.1 that f ~3 g.

Example 5.3. Let GG be the graph as follows:

£
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We consider two 3-colorings f and g of G defined by

1 ie{l1,5}, 1 ied{l,6},
fi)=492 ie€{2,6}, and g(i) =<2 i€ {24},
3 i€ {34} 3 ie {35}

Then one has
Xf = Xg = T{1530{2,6} (3,4} — L{1,6}X{2,4}X{3,5}-
Since x5 — X, ¢ Jg, it then follows from Theorem 5.1 that f 3 g.

See Section 7 for an algorithm to determine if f ~j; ¢ by using the techniques on
Grobner bases.

6 Computing Kempe classes via Kempe ideals

In this section, we give a way to find all k-colorings of a graph G up to Kempe equivalence
via commutative algebra. In particular, we prove Theorem 1.2. For a graph G on [d], we

define the ideal K of R by
Kg:=Jag+ Mg C R[G],
where
Mg = (zgxr | S,T € S(G), SNT #0) C R[G].

The ideal K¢ is called the Kempe ideal of G.
The set of all monomials in Mg consists of all monomials associated with k-colorings

of G, with a € Zio such that GG, is not an induced subgraph of G.

Lemma 6.1. Let G be a graph on [d]. Then x5 = xg,xs, --- s, ¢ Mg if and only if f is
a k-coloring of an induced subgraph of G.

Proof. Suppose that f is not a k-coloring of any induced subgraph of G. Then f is a
k-coloring of G, with a € Z‘;O such that a; > 2 for some j. Hence there exist integers
1<a<b<kwithi €S, and ¢ € S,. This implies that x; can be divided by a monomial
zs,rs, € Mg, and hence xy € M.

Suppose that x; € Mg. There exist S,T € S(G) such that SNT # 0 and zgxr
divides xy. Let « € SNT. Then 7 appears at least twice in S; U---USj. Thus f is not a
k-coloring of any induced subgraph of G. O

As an easy consequence of this lemma, we have the following.
Corollary 6.2. Let G be a graph on [d]. Then one has
Kq = <[[G}2> + Mg.

The following lemma is useful to check if a homogeneous binomial in /5 belongs to
Mg.
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Lemma 6.3. Let G be a graph on [d] and let x; —x, € 1. Then the following conditions
are equivalent:

(i) xy — x4 € Mg;

(ii) both x; and x, belong to Mg;

iii) at least one of x¢ and x, belongs to M.
! g

Proof. First, (ii) = (iii) is trivial. Since M is a monomial ideal, the equivalence (i)
<= (ii) holds. We show that (iii) = (ii). Suppose that x; € Mg, i.e., x; is divided
by xgzr where S, T € S(G) and SNT # 0. Let i € SNT. Then 7(xy) is divided by
t? since x; is divided by zgzy. From x; — x, € Ig, we have 7(x;) = m(x,). Hence if
Xy = Tg,Ts, " Tg,, then there exist 1 < a < b < k such that i € S, NS,. Namely, x, is
divided by a monomial zg,xg, such that ¢ € S, NSy. Thus x, € M¢. O

Next, we discuss a Grobner basis of K.

Proposition 6.4. Let G be a graph on [d], and let G, be the reduced Grébner basis of Jg
with respect to a monomial order < and set Go = {xgxr | S,T € S(G), SNT # 0}. Then

G=(G1\ Mg)UGs,
1s the reduced Grdobner basis of Kg with respect to <.

Proof. Since G, is a Grobner basis of Jg, we have Jg = (Gy). It follows from Mg = (Gs)
that G is a set of generators of K¢ = Jg + Mg. We apply Buchberger’s Criterion to G. If
p,q € G \ Mg, then the remainder of S(p,q) on division by G is 0 since G; is a Grobner
basis of Jg. If p,q € Gy, then both p and ¢ are monomials, and hence S(p, ¢) = 0. Suppose
that p € Gy and ¢ € G \ Mg. Let p = xgxy with S, T € S(G) and SNT # (), and let
q = X5 — X, where f and g are k-colorings of G, with a € Zio and in.(q) = x;.

Case 1. (p and x; are relatively prime.) Then S(p, q) = px, is divided by p € G,.

Case 2. (x;y is divided by zg.) From Lemma 6.3, xy is not divided by zr since ¢ ¢ M.
Then S(p,q) = vrx,. Let i € SNT. Since x; is divided by zg, 7(xs) = 7(x,) is divided
by t;. Thus 7(zrx,) is divided by ¢?. Hence xrx, is divided by a monomial zg .z such
that ¢ € S’NT. Then the remainder of S(p,q) = xrx, on division by G is 0.

Therefore the remainder of any S-polynomial on division by G is 0. By Buchberger’s
Criterion, G is a Grobner basis of K. Since G; is reduced, it is easy to see that G is
reduced. O

Similarly to ([Ig]2) and Jg, we can determine if two k-colorings of G are Kempe
equivalent by K.

Proposition 6.5. Let G be a graph on [d] and let f and g be k-colorings of an induced
subgraph of G. Then f ~y g if and only if x; — x, € K¢.
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Proof. Let f and g be k-colorings of an induced subgraph G of G. From Theorem 5.1
it is enough to show that x; — x, € Jg if and only if x; — x, € K. Since Jo C Kg,
Xf— Xg € Kg ifo—Xg € Jg.

Suppose that x;—x, € K. We show that x;—x, € Ji. Let G be the reduced Grébner
basis of K¢ with respect to a monomial order <. From Proposition 6.4, G = (G;\ Mg) UG
where G is the reduced Grobner basis of Jg with respect to < and Gy = {xgxr | S,T €
S(G), SNT # (0}. Let x4 (resp. x,/) denote the remainder of x; (resp. x,) on division
by Gi \ Mg. Suppose that xp # x,. Since f and g are k-colorings of Gy, we have
X7, Xy ¢ Mg from Lemma 6.1. From Lemma 6.3, Xy, X, ¢ Mg since both xy — xp and
X, — Xy belong to Jg. Thus xp — x, (# 0) is the normal form of x; — x, € K with
respect to G. This contradicts that G is a Grobner basis of K. Thus xp = x,. Then
the normal form of x; — x, with respect to G; \ Mg is zero, and hence x; —x, € Jg. O

Now, we give a proof of Theorem 1.2. In fact, Theorem 1.2 follows from the following.

Theorem 6.6. Let G be a graph on [d] and < a monomial order on R[G], and let
{xp,..., x5} be the set of all standard monomials of degree k with respect to in.(Kg).
Then each f; is a k-coloring of an induced subgraph of G. In addition, given an induced
subgraph G' of G,

{fla s 7fs} mck(G/)

is a complete representative system for ke(G', k).

Remark 6.7. If x; = xg,xg,---xg, is a standard monomial of degree k with respect to
in.(K¢), then f is a k-coloring of the induced subgraph of G on Ule S;.

Proof of Theorem 6.6. Let G be the reduced Grobner basis of K with respect to a mono-
mial order <. From Proposition 6.4, G = (G; \ Mg) UGy where G is the reduced Grobner
basis of Jg with respect to < and Go = {xgzr | S,T € S(G), SNT # (}. Since each
Xy, is not divided by any monomial in Gy, from Lemma 6.1, each f; is a k-coloring of an
induced subgraph of G.

Suppose that f; ~p f; for some 1 <@ < j < s. From Theorem 5.1, xy, — Xy, belongs
to Jo(C Kg). Then in (xy, — Xy,) is not standard, a contradiction. Hence f; 7 f; for
any 1 <1< j < s.

Let f be a k-coloring of G', and let x; be the remainder of x; on division by G \ M.
Then x; — x4 belongs to Jg. Since x; ¢ M, we have xp ¢ Mg from Lemma 6.3. Thus
X is the normal form of x; with respect to G, and hence x; = x;, for some j. Since
x; — Xy, belongs to Jg, we have f ~y f; from Theorem 5.1. [

We see an example of Theorem 6.6.

Example 6.8. Let G be the graph as in Example 5.3. We consider the reverse lexico-
graphic order < on R[G] such that

Ty < T{1} < e K T{6} < T{1,5} < T{1,6} < T{2,4} < T{2,6} < T{3,4} < (3,5}
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Then there are 65 standard monomials of degree 3 with respect to in. (K¢). In particular,
the standard monomials x(; 5172 6}7(3,4) and T 6} 7241235} correspond to 3-colorings of
G. It then follows from Theorem 6.6 that the associated 3-colorings, which are the 3-
colorings as in Example 5.3, form a complete representative system for ke(G, k).

As a consequence of Theorem 6.6, the number of k-Kempe classes Kc(G, k) can be
computed by using Hilbert functions. We denote Ind(G) the set of all induced subgraphs
of G and denote Ind,,(G) the set of all induced subgraphs of G with m vertices.

Corollary 6.9. Let G be a graph on [d]. Then one has

H(R[G]/Ka k)= Y Ke(G k).

G'eInd(G)

In particular,

Ke(G.k)=> (-)*™ > H(R[G]/Ke. k).

m=0 G'€lndpm (G)

Example 6.10. Let G be the graph as in Example 5.3. Then one has

1 k=0,
13 k=1,
H(R[G]/Ka, k) =4 49 k=2,
65 k=3,
64 k>4,

and

H(R|G')/ K¢, 3) = 32

for any G’ € Inds;(G). Note that Kc(G', k) > 1 for any £ > x(G) and G’ € Ind(G).
Moreover, one has |Ind(G)| = 2° = 64. Hence we have the following from H(R[G|/Kg, k).

e Since H(R[G]/Kg,2) < 25, one has x(G) > 3. In fact, x(G) = 3 in this case.
e Let k > 4. Since H(R[G]/Kg, k) =25 Kc(G', k) =1 for any G € Ind(G).

e Since H(R|G']/K¢/,3) = 2°, Ke(G”,3) = 1 for any G” € Ind(G) with G # G".
Hence one has Kc¢(G, 3) = 2 from H(R[G]/Kg,3) = 65.

Let I be a graded ideal of R. In general, the Hilbert function H(R/I, k) is not
always a polynomial. However, there exists a unique polynomial Pg,; € Q[k] such that
H(R/I,k) = Pg/i(k) for k large enough. We call Pg/; the Hilbert polynomial of R/I. We
show that Priq) k. is a constant which depends only on the number of vertices.

Proposition 6.11. Let G be a graph on [d]. Then one has

Pricycq (k) = 2°.
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Proof. Let A be the maximum degree of G. Then it follows from [5, Corollary 2.5] that
for any integer £k > A + 1 and for any induced subgraph G’ of G, one has Kc¢(G', k) = 1.
Hence for any integer kK > A 4 1, we obtain

H(R[G/Ke k)= Y Ke(@ k)= > 1=|md(G) =2"

G'eInd(G) G'eInd(G)

This implies that
Pricyyiq (k) = 27,
as desired. O

7 Algorithms

In this section, by using Theorems 1.1 and 1.2 and techniques on Grobner bases, we
introduce several algorithms related to Kempe equivalence.

First we give Algorithm 7.1 to compute the reduced Grobner basis of K. From
Proposition 4.2, G5 in Algorithm 7.1 is a Grobner basis of I5. It then follows that Gs in
Algorithm 7.1 is a system of generators of Jg. Using the reduced Grébner basis of K,

Algorithm 7.1 Computation of the reduced Grobner basis of Kg

Input: The set of all stable sets of G, and a monomial order < on R[G].

Output: The reduced Grobner basis of K with respect to <.

 F o= {$S\{i}${i} — TSy | 1€5 € S(G), |S| > 2}.

2: From F, compute the reduced Grobner basis G; of Lg with respect to a reverse
lexicographic order such that zg > zy for any S € S(G).

3: Go:={g/ak | g € Gi,k € Lz, xk divides g, z3™" does not divide g}.

4: Gg := {(ESIZESQ — T5,Tg, € Go | 51,82, Sg,S4 € S(G), S1NSy=5N5,= @}

5: Compute the reduced Grobner basis G of Kg with respect to < from a system of
generators Gz U {zgxr | S,T € S(G),SNT # 0}.

6: return G.

[t

Algorithm 7.2 determines whether f ~j g or not. The correctness of Algorithm 7.2 is an
immediate consequence of Lemma 3.3 and Proposition 6.5. From Theorem 5.1, it is pos-
sible to replace K¢ with either ([Ig]2) or Jg in Algorithm 7.2. On the other hand, by the
reduced Grobner basis of K¢, we can compute the set of all standard monomials of degree
k with respect to the initial ideal in.(K¢g). From Theorem 1.2, we have Algorithm 7.3
to compute a complete representative system for ke(G, k). Algorithm 7.4 enumerates all
elements in a Kempe equivalent class. The correctness of Algorithm 7.4 is guaranteed by
Theorem 6.6 together with the fact that, with respect to a Grébner basis, the normal form
of the monomials in the same residue class is unique. In addition, Algorithm 7.4 is based
on [8, Algorithm 5.7] for enumeration of fibers using a Grobner basis of a toric ideal. As

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.8 17



Algorithm 7.2 Determination of the Kempe equivalence

Input: k-colorings f and g of GG, and the reduced Grobner basis G of K.
Output: “f ~, g” or “f % g”.

1: Compute the normal form m of xy — x, with respect to G.
2: if m =0 then

33 return “f ~pg”

4: else

5. return “f «p g”

6: end if

Algorithm 7.3 Computation of a complete representative system for kc(G, k)

Input: The reduced Grobner basis G of Kg.
Output: A complete representative system for ke(G, k).

1: From G, compute the set {xy,,...,xy,} of all standard monomials of degree k with

respect to the initial ideal in. (K¢).

2: C:= {}
3: fort=1,2,...,sdo
4:  if xy, = xg, -+ xg, satisfies [d] = S; U---U Sy then
5: C:=CU{fi}.
6
7
8

end if
. end for
: return C

stated in [8], “reverse search” technique is useful to improve the efficiency. Finally, we
give an algorithm to find a sequence of Kempe switchings. We define a Kempe basis which
is the set of sequences of colorings corresponding to the reduced Grobner basis of K.

Definition 7.1. Work with the same notation as in Theorem 6.4, that is, G = (G; \
M¢) U Gy is the reduced Grobner basis of K¢ with respect to <. Let Gy \ Mg = {x,, —
Xq1s- - -3 Xp, — Xg, }. From Theorem 1.1, p; and ¢; are Kempe equivalent for each j. Then

L0 1), 0, 1))
is called a Kempe basis of G with respect to < if fl(j ) = Dj s(f ) = q;, and fi(j ) is obtained
from fl(i )1 by a Kempe switching.

In order to give an algorithm to find a Kempe basis, the following three Procedures
are important.
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Algorithm 7.4 Enumeration of elements in a Kempe equivalent class

Input: k-coloring f of GG, and the reduced Grobner basis G of K.
Output: All k-colorings of G which are Kempe equivalent to f (up to permutations of
colors).
Compute the normal form x of x; with respect to G.
A= {1}, B = {}.
while A # {} do
Choose g € A.
for x,, — x4, € G with x,, > x,, do
if x,, divides x, and ¢’ ¢ B where x, = x,X,, /X,, then
A:=AU{d}.
end if
end for
A:=A\{g}, B:=BU{g}.
: end while
: return B.

—_ = =

Procedure 1. (x; — x, = g,xs, — Ts,Ts, € Jo — a sequence of Kempe switching from
ftog.)

Suppose that f and g are 2-colorings of an induced subgraph G of G. Let x5 — x, =
s, Ts, — TS3Ts, € Jg. Then Sl N SQ = 53 N 54 = Q) and Sl U SQ = 83 U 84. Hence g is
obtained from f by setting

flx) = ¢ M,
glx) =<1 r € H and f(z) =2,
2 r € H and f(x) =1,

where H is the induced subgraph of G on the vertex set (57 \ S3) U (S2 \ Sy). Suppose
that H has p connected components Hy,...,H,. Forl=1,2,...,p, let fo = f and let

f(z) x¢H,
filr) =<1 re€ HU---UH; and f(z) =2,
2 r€ HU---UH; and f(z) = 1.

Then fo, fi1,..., fp is a sequence of 2-colorings of Gy such that fy = f, f, = g, and f; is
obtained from f; ; by a Kempe switching.

Procedure 2. Let f' and ¢’ be k-colorings of an induced subgraph G of G. Suppose that
Xp — Xy = Xp(Xy — Xg). Then f and g are the restrictions of f" and ¢’ to some induced
subgraph Gy of G, respectively. Hence if fy, f1,..., f, is a sequence of k’-colorings of
Go such that fy = f, f, = g, and f; is obtained from f;_; by a Kempe switching, then
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for 1,5 [y satisfy fo = f', f, =g, and f] is obtained from f; ; by a Kempe switching,
where f! is a k-coloring of G; obtained by combining f; with h.

Procedure 3. Let x, — x, be a binomial in the reduced Grébner basis G of K¢ with
respect to a monomial order <. From Proposition 6.4, any binomial x, — x, € G is
obtained from the reduced Grobner basis of Ji with respect to < which is computed from

{xy —x, | f and g are 2-colorings of an induced subgraph of G}

by Buchberger’s Algorithm. By keeping track of the computation of Buchberger’'s Algo-
rithm, we can compute an expression

S
Xp - Xq = war(xfr - XQT)’
r=1

where f, and g, are 2-colorings of an induced subgraph of G for each r,

X'wr Xgr = pr+1 Xf'r+1

foreachr =1,...,5—1, and x, = Xy, Xp,, X; = Xy, Xg,. See [1, Chapter 2, §1] for details.
Then we can compute a sequence of Kempe switchings from u, to v, where x,, = x,, X,
and x,, = Xy, X, by Procedures 1 and 2. Combining them, we have a sequence of Kempe
switchings from p to q.

Using Procedures 1, 2, and 3, we have Algorithm 7.5 that computes a Kempe basis.
Note that, if the reduced Grobner basis of K consists of quadratic polynomials, then we
can skip large part of the procedure in Algorithm 7.5.

We now use a Kempe basis to find a sequence of Kempe switchings between two
colorings. Suppose that the normal form x; of x; with respect to the reduced Grobner
basis G of K¢ is given by

Xp=Xpo 2 Xp o Xy, = Xy, (h;j €G).

By Procedure 2, we can construct a sequence of Kempe switchings from f;_; to f; by
extending a sequence of Kempe switchings corresponding to h;_; in a Kempe basis. Using
this fact, we have Algorithm 7.6 to find a sequence of Kempe switchings.

Although Algorithm 7.1 requires the enumeration of all stable sets and the computa-
tion of a Grobner basis, and thus is not computationally feasible for large graphs, its merit
lies in providing a uniform algebraic framework. In particular, the method is mechanically
applicable and conceptually clarifies the structure of the graph from an abstract algebraic
viewpoint.
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Algorithm 7.5 Construction of a Kempe basis

Input: A monomial order < on R[G].
Output: A Kempe basis of G with respect to <.
1: Compute a system of (quadratic) generators

F={xy, —Xgy»--, X5, — Xg, } U{zszr | S,T € S(G),SNT # 0}

of K, G-
2: forr=1,2,...,tdo
By Procedure 1, compute a sequence F, of 2-colorings corresponding to a sequence
of Kempe switchings from f, to g,.
end for
Compute the reduced Grobner basis G of Ko with respect to < from F.
A:={}.
for x, —x, € G do
By keeping track of the computation of G from F, compute the expression

@

s
Xp = Xqg = § :pr(xfir - ng)’
r=1

where X, Xg, = Xu,, Xf, for each r = 1,...,s — 1, and x, = Xy, Xy, , Xg =
X, Xg,. -

9: forr=1,2,...,sdo

10: [ =[] where x; =x,,Xy, ,and g :=g; where x, = x,,X,, .

11: By extending F;, , find a sequence of colorings hgr), o hi:) where h(lr) = f, hg:) =

g and hy) is obtained from hgr_)l by a Kempe switching.
122 end for
132 A= AU{MY (= RP), 0P (= By, R
14: end for
15: return A
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Algorithm 7.6 Construction of a sequence of Kempe switchings
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1
2
3:
4

o

© X2

: Compute the normal form x; of x; with respect to G.
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