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Abstract

Kempe equivalence is a classical and important notion on vertex coloring in graph
theory. In the present paper, we introduce several ideals associated with graphs and
provide a method for determining whether two k-colorings are Kempe equivalent
via commutative algebra. Moreover, we give a way to compute all k-colorings of
a graph up to Kempe equivalence by virtue of the algebraic technique on Gröbner
bases. As a consequence, the number of k-Kempe classes can be computed by
using Hilbert functions. Finally, we introduce several algebraic algorithms related
to Kempe equivalence.

Mathematics Subject Classifications: 05C15, 13P10, 13F65

1 Introduction

A k-coloring f of a graph G on the vertex set [d] := {1, 2, . . . , d} is a map from [d] to
[k] such that f(i) ̸= f(j) for all {i, j} ∈ E(G). The smallest integer χ(G) such that G
has a χ(G)-coloring is called the chromatic number of G. Given a k-coloring f of G, and
integers 1 ⩽ i < j ⩽ k, let H be a connected component of the induced subgraph of G on
the vertex set f−1(i) ∪ f−1(j). Then we can obtain a new k-coloring g of G by setting

g(x) =


f(x) x /∈ H,

i x ∈ H and f(x) = j,

j x ∈ H and f(x) = i.

We say that g is obtained from f by a Kempe switching. Two k-colorings f and g of G
are called Kempe equivalent, denoted by f ∼k g, if there exists a sequence f0, f1, . . . , fs
of k-colorings of G such that f0 = f , fs = g, and fi is obtained from fi−1 by a Kempe
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switching. Let denote Ck(G) the set of all k-colorings of G. Then ∼k is an equivalence
relation on Ck(G). The equivalence classes of Ck(G) by ∼k are called the k-Kempe classes.
We denote kc(G, k) the quotient set Ck(G)/ ∼k and denote Kc(G, k) the number of k-
Kempe classes of G, namely Kc(G, k) = |kc(G, k)|. Kempe switchings were introduced by
Kempe in the false proof of the 4-Color Theorem. However, his idea is powerful in graph
coloring theory. Recently, many researchers have studied Kempe switchings and Kempe
equivalence. See [5] for an overview of Kempe equivalence.

Given a graph G, let S(G) be the set of all stable sets of G. The stable set ideal IG
of G is a toric ideal arising from S(G) of a polynomial ring R[G] := K[xS | S ∈ S(G)]
over a field K. In [7], the authors showed that IG is generated by binomials xf − xg

associated with k-colorings f and g of a replication graph of an induced subgraph of G,
and found a relationship between Kempe equivalence on G and an algebraic property of
IG. In particular, by using the proof of [7, Theorem 1.3], we can examine if two k-colorings
of G are Kempe equivalent by using IG. However, IG has too much information for this
purpose. In the present paper, we introduce a simpler ideal JG, which is generated by
binomials xf − xg associated with 2-colorings f and g of an induced subgraph of G, to
determine Kempe equivalence on G. We call JG the 2-coloring ideal of G. Then our first
main result is the following:

Theorem 1.1. Let G be a graph on [d] and let f, g be k-colorings of G. Then f ∼k g if
and only if xf − xg ∈ JG.

Next, we compute all k-colorings of a graph G up to Kempe equivalence by virtue of
the algebraic technique on Gröbner bases. Namely, a complete representative system for
kc(G, k) is given. For this, we introduce another ideal KG defined by

KG := JG +MG,

where
MG := ⟨xSxT | S, T ∈ S(G), S ∩ T ̸= ∅⟩.

The ideal KG is called the Kempe ideal of G. Then our second main result is the following:

Theorem 1.2. Let G be a graph on [d] and < a monomial order on R[G], and let
{xf1 , . . . ,xfs} be the set of all standard monomials of degree k with respect to the ini-
tial ideal in<(KG). Then

{f1, . . . , fs} ∩ Ck(G)

is a complete representative system for kc(G, k).

As a consequence, the number of k-Kempe classes Kc(G, k) can be computed by Hilbert
functions (Corollary 6.9).

Finally, by using Theorems 1.1 and 1.2 and techniques on Gröbner bases, we introduce
several algorithms related to Kempe equivalence. Specifically, our algorithms perform:

1. Determination of Kempe equivalence (Algorithm 7.2);
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2. Computation of a complete representative system for kc(G, k) (Algorithm 7.3);

3. Enumeration of k-colorings that are Kempe equivalent (Algorithm 7.4);

4. Construction of a sequence of Kempe switchings between two Kempe equivalent
k-colorings (Algorithm 7.6).

The present paper is organized as follows: In Section 2, we will recall the definition of
stable set ideals and explain a relationship between stable set ideals and Kempe equiv-
alence. Section 3 will give a brief introduction to Gröbner bases. In Section 4, we will
define 2-coloring ideals and see their algebraic properties. In Section 5, a proof of Theo-
rem 1.1 will be given. In Section 6, we will define Kempe ideals and prove Theorem 1.2.
Finally, in Section 7, we will introduce several algorithms related to Kempe equivalence.

2 Stable set ideals

In this section, we define stable set rings and explain a relationship between stable set
ideals and Kempe equivalence. Let G be a graph on the vertex set [d] with the edge set
E(G). Given a subset S ⊂ [d], let G[S] denote the induced subgraph of G on the vertex
set S. A subset S ⊂ [d] is called a stable set (or an independent set) of G if {i, j} /∈ E(G)
for all i, j ∈ S with i ̸= j. Namely, a subset S ⊂ [d] is stable if and only if G[S] is an empty
graph. In particular, the empty set ∅ and any singleton {i} with i ∈ [d] are stable. Denote
S(G) = {S1, . . . , Sn} the set of all stable sets of G. Given a subset S ⊂ [d], we associate
the (0, 1)-vector ρ(S) =

∑
j∈S ej. Here ej is the jth unit coordinate vector in Rd. For

example, ρ(∅) = (0, . . . , 0) ∈ Rd. Let K[t, s] := K[t1, . . . , td, s] be the polynomial ring in
d+ 1 variables over a field K. Given a nonnegative integer vector a = (a1, . . . , ad) ∈ Zd

⩾0,
we write ta := ta11 ta22 · · · tadd ∈ K[t, s]. The stable set ring of G is

K[G] := K[tρ(S1)s, . . . , tρ(Sn)s] ⊂ K[t, s].

We regard K[G] as a homogeneous algebra by setting each deg(tρ(Si)s) = 1. Note that
K[G] is a toric ring. Let R[G] = K[xS1 , . . . , xSn ] denote the polynomial ring in n variables
over K with each deg(xSi

) = 1. The stable set ideal of G is the kernel of the surjective
homomorphism π : R[G] → K[G] defined by π(xSi

) = tρ(Si)s for 1 ⩽ i ⩽ n. Note that IG
is a toric ideal, and hence a prime ideal generated by homogeneous binomials. The toric
ring K[G] is called quadratic if IG is generated by quadratic binomials. We say that “IG
is generated by quadratic binomials” even if IG = {0} (or equivalently, G is complete). It
is easy to see that a homogeneous binomial xSi1

· · ·xSir
− xSj1

· · ·xSjr
∈ R[G] belongs to

IG if and only if
⋃r

ℓ=1 Siℓ =
⋃r

ℓ=1 Sjℓ as multisets. See, e.g., [3] for details on toric rings
and toric ideals.

We can describe a system of generators of IG in terms of k-colorings. Given a graph
G on the vertex set [d], and a = (a1, . . . , ad) ∈ Zd

⩾0, let Ga be the graph obtained from
G by replacing each vertex i ∈ [d] with a complete graph G(i) of ai vertices (if ai = 0,
then just delete the vertex i), and joining all vertices x ∈ G(i) and y ∈ G(j) such that
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{i, j} is an edge of G. In particular, if a = (1, . . . , 1), then Ga = G. If a = 0, then Ga

is the null graph (a graph without vertices). In addition, if a is a (0, 1)-vector, namely,
a ∈ {0, 1}d, then Ga is an induced subgraph of G. If a is a positive vector, then Ga

is called a replication graph of G. In general, Ga is a replication graph of an induced
subgraph of G. Given a k-coloring f of Ga with a ∈ Zd

⩾0, we associate f with a monomial

xf := xSi1
· · ·xSik

∈ R[G],

where Siℓ = {j ∈ [d] | G(j) ∩ f−1(ℓ) ̸= ∅} for ℓ = 1, 2, . . . , k. Conversely, let m =
xSi1

· · ·xSik
∈ R[G] be a monomial of degree k. Then, for a = (a1, . . . , an) with ap = |{ℓ :

p ∈ Siℓ}|, there exists a k-coloring f of Ga such that xf = m (see [7, Lemma 3.2]). For
example, we consider the graphs G and Ga with a = (2, 1, 0, 2) as follows:

1

2

4

3

(a) G

11

12

21

41

42

(b) Ga with a = (2, 1, 0, 2)

We define a 4-coloring f of Ga by

f(i) =


1 i ∈ {11, 41},
2 i ∈ {21},
3 i ∈ {12},
4 i ∈ {42}.

Then since Si1 = {1, 4}, Si2 = {2}, Si3 = {1}, Si4 = {4}, one has

xf = x{1,4}x{2}x{1}x{4}.

On the other hand, we can obtain the 4-coloring f (up to exchanging colors and exchanging
the coloring of vertices in each clique G(i) of Ga) from the monomial x{1,4}x{2}x{1}x{4} as
follows: for each variable xS, we assign one color to a single copy ij of each vertex i ∈ S.

Note that, for k-colorings f and g of an induced subgraph of G, xf = xg if and only
if g is obtained from f by permuting colors. It is easy to see that f ∼k g if g is obtained
from f by permuting colors. In this paper, we identify f and g if g is obtained from f by
permuting colors. Then we can describe a system of generators of IG as follows:

Proposition 2.1 ([7, Theorem 3.3]). Let G be a graph on [d]. Then one has

xf − xg ∈ IG ⇐⇒ f and g are k-colorings of Ga with a ∈ Zd
⩾0 and k ⩾ χ(Ga)

and

IG = ⟨xf − xg | f and g are k-colorings of Ga with a ∈ Zd
⩾0 and k ⩾ χ(Ga)⟩

= ⟨xf − xg | f and g are k-colorings of Ga with a ∈ {0, 1, . . . , k}d and k ⩾ χ(Ga)⟩.
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Now, we explain a relationship between IG and Kempe equivalence.

Proposition 2.2 ([7, Theorem 1.3]). Let G be a graph on [d]. Then IG is generated by
quadratic binomials if and only if for any a ∈ Zd

⩾0 and k ⩾ χ(Ga), all k-colorings of Ga

are Kempe equivalent, namely, one has

Kc(Ga, k) = 1.

We consider the ideal ⟨[IG]2⟩ of R[G] generated by all quadratic binomials of IG,
namely,

⟨[IG]2⟩ = ⟨xf − xg | f and g are 2-colorings of Ga with a ∈ Zd
⩾0⟩

= ⟨xf − xg | f and g are 2-colorings of Ga with a ∈ {0, 1, 2}d⟩ ⊂ R[G].

Proposition 2.3. Let G be a graph on [d] and f, g k-colorings of G. Then f ∼k g if and
only if xf − xg ∈ ⟨[IG]2⟩.

We will see a proof of this proposition in Section 5 (Theorem 5.1) by using a similar
discussion in the proof of Proposition 2.2 in [7].

3 Gröbner bases

In this section, we give a brief introduction to Gröbner bases. Let R = K[x1, x2, . . . , xn]
be a polynomial ring over a field K with deg(xi) = 1, and denote Mn the set of all
monomials in the variables x1, . . . , xn. A monomial order on R is a total order < on Mn

such that

1. 1 < u for all 1 ̸= u ∈ Mn;

2. if u, v ∈ Mn and u < v, then uw < vw for all w ∈ Mn.

We give an example of a monomial order.

Example 3.1. Let u = xa1
1 · · ·xan

n and v = xb1
1 · · ·xbn

n be monomials in Mn. We define the
total order <rev onMn by setting u <rev v if either (i)

∑n
i=1 ai <

∑n
i=1 bi, or (ii)

∑n
i=1 ai =∑n

i=1 bi and the rightmost nonzero component of the vector (b1−a1, b2−a2, . . . , bn−an) is
negative. It then follows that <rev is a monomial order on R, which is called the (graded)
reverse lexicographic order on R induced by the ordering x1 > x2 > · · · > xn. By
reordering the variables, we can obtain another reverse lexicographic order on R. Hence,
there are n! reverse lexicographic orders on R.

Fix a monomial order < on R. For a nonzero polynomial f of R, the support of f ,
denoted by supp(f), is the set of all monomials appearing in f and the initial monomial
in<(f) of f with respect to < is the largest monomial belonging to supp(f) with respect
to <. Let I be a nonzero ideal of R. Then the initial ideal in<(I) of I with respect to <
is defined as follows:

in<(I) = ⟨in<(f) | 0 ̸= f ∈ I⟩ ⊂ R.
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In general, even if I = ⟨f1, . . . , fs⟩, it is not necessarily true that

in<(I) = ⟨in<(f1), . . . , in<(fs)⟩.

A finite set {g1, . . . , gs} of nonzero polynomials belonging to I is called a Gröbner basis
of I with respect to < if in<(I) = ⟨in<(g1), . . . , in<(gs)⟩. Note that if {g1, . . . , gs} is a
Gröbner basis of I, then I = ⟨g1, . . . , gs⟩. It is known that I always has a Gröbner basis.
A Gröbner basis G for I with respect to < is called reduced if the following conditions
hold:

1. for all p ∈ G, the coefficient of in<(p) in p equals 1;

2. for all p ∈ G, no monomial of p lies in ⟨in<(g) | g ∈ G \ {p}⟩.

A nonzero ideal I has a unique reduced Gröbner basis with respect to a fixed monomial
order <. In particular, given a Gröbner basis, we can easily get the reduced Gröbner basis
from it.

Next we introduce a method for determining whether a finite system of generators of
I is a Gröbner basis of I with respect to <. For two nonzero polynomials f and g in R,
the polynomial

S(f, g) =
m

cf · in<(f)
· f − m

cg · in<(g)
· g

is called the S-polynomial of f and g, where cf is the coefficient of in<(f) in f and cg is
that of in<(g) in g, and m is the least common multiple of the initial monomials in<(f)
and in<(g).

Lemma 3.2 (Buchberger’s Criterion [2, Chapter 2, §9, Theorem 3]). Let I be a nonzero
ideal of R, G = {g1, . . . , gs} a finite system of generators of I. Then G is a Gröbner basis
of I with respect to a monomial order < on R if and only if the remainder of S-polynomial
S(gi, gj) on division by G is 0 for all i ̸= j.

The algorithm called Buchberger’s Algorithm ([2, Chapter 2, §7, Theorem 2]) is based
on Buchberger’s Criterion, and computes a Gröbner basis for I from a finite system of
generators of I.

As applications of Gröbner bases, we can determine if a polynomial f belongs to an
ideal. This problem is called the ideal membership problem. If G is a Gröbner basis for
an ideal I of R with respect to a monomial order <, then every polynomial of f ∈ R has
a unique remainder on division by G. The remainder is called the normal form of f with
respect to G.

Lemma 3.3 ([2, Chapter 2, §6, Corollary 2]). Let I be a nonzero ideal of R and G a
Gröbner basis of I with respect to a monomial order < on R. Fix a polynomial f in R.
Then f ∈ I if and only if the normal form of f with respect to G equals 0.

Next, we review a method for computing Hilbert functions. Let I be a graded ideal
of R. The numerical function H(R/I,−) : Z⩾0 → Z⩾0 with H(R/I, k) = dimK Rk/Ik is
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called the Hilbert function of R/I, where Rk (resp. Ik) is the homogeneous part of degree
k of R (resp. I) and dimKRk/Ik is the dimension of Rk/Ik as K-vector spaces. For a
monomial order < on R, a monomial u ∈ Mn is said to be standard with respect to
in<(I) if u /∈ in<(I).

Lemma 3.4 ([3, Theorem 1.19]). Let I be a nonzero graded ideal of R and fix a monomial
order < on R. Let Bk denote the set of standard monomials of degree k with respect to
in<(I). Then Bk is a K-basis of Rk/Ik as a K-vector space. In particular, one has

H(R/I, k) = |Bk|.

Finally, we recall a property of the saturation of an ideal. For a nonzero ideal I of R
and a polynomial f ∈ R, the saturation of I with respect to f is the ideal

I : f∞ = {g ∈ R | there exists i > 0 such that f ig ∈ I}.

Lemma 3.5 ([3, Proposition 1.40]). Let I be a nonzero graded ideal of R and let G be
the reduced Gröbner basis of I with respect to the reverse lexicographic order induced by
x1 > x2 > · · · > xn. Then

{g/xk
n | g ∈ G, k ∈ Z⩾0, xk

n divides g, xk+1
n does not divide g}

is a Gröbner basis of I : x∞
n .

4 2-coloring ideals

Given a graph G on [d], we define the following two ideals of R[G]:

JG :=⟨xf − xg | f and g are 2-colorings of Ga with a ∈ {0, 1}d⟩
=⟨xf − xg | f and g are 2-colorings of an induced subgraph of G⟩,

LG :=⟨xS\{i}x{i} − xSx∅ | i ∈ S ∈ S(G), |S| ⩾ 2⟩.

We call JG the 2-coloring ideal of G. Note that inclusions of ideals

LG ⊂ JG ⊂ ⟨[IG]2⟩ ⊂ IG (4.1)

hold. Moreover, from Proposition 2.1, for I ∈ {⟨[IG]2⟩, JG, LG}, if xf − xg ∈ I, then f
and g are k-colorings of Ga with a ∈ Zd

⩾0.
In this section, we discuss some properties of these ideals.

Lemma 4.1. Let G be a graph on [d]. Then one has LG : x∞
∅ = JG : x∞

∅ = ⟨[IG]2⟩ : x∞
∅ =

IG.

Proof. Since LG ⊂ JG ⊂ ⟨[IG]2⟩ ⊂ IG, we have LG : x∞
∅ ⊂ JG : x∞

∅ ⊂ ⟨[IG]2⟩ : x∞
∅ ⊂ IG :

x∞
∅ . In addition, since IG is prime and does not contain xk

∅ for any k, we have IG : x∞
∅ = IG.

Thus it is sufficient to show that IG ⊂ LG : x∞
∅ . Let

F =
s∏

i=1

xSi
−

s∏
i=1

xS′
i
∈ IG,
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where Si = {k(i)
1 , . . . , k

(i)
pi }, S ′

i = {ℓ(i)1 , . . . , ℓ
(i)
qi } ∈ S(G) for each i. Then

xSi
xpi−1
∅ −

pi∏
j=1

x{k(i)j }

= xpi−2
∅

(
xSi

x∅ − x
Si\{k

(i)
1 }x{k(i)1 }

)
+ xpi−3

∅ x{k(i)1 }

(
x
Si\{k

(i)
1 }x∅ − x

Si\{k
(i)
1 ,k

(i)
2 }x{k(i)2 }

)
+ · · ·+

(
pi−2∏
j=1

x{k(i)j }

)(
x{k(i)pi−1,k

(i)
pi

}x∅ − x{k(i)pi
}x{k(i)pi−1}

)
belongs to LG. Note that if binomials u1 − v1, . . . , us − vs belong to LG, then

u1 . . . us − v1 . . . vs = u2 · · ·us(u1 − v1) + u3 · · ·usv1(u2 − v2) + u4 · · ·usv1v2(u3 − v3)

+ · · ·+ v1 · · · vs−1(us − vs)

belongs to LG. Hence

G1 = x
∑s

i=1(pi−1)

∅

s∏
i=1

xSi
−

s∏
i=1

pi∏
j=1

x{k(i)j }

belongs to LG. By the same argument,

G2 = x
∑s

i=1(qi−1)

∅

s∏
i=1

xS′
i
−

s∏
i=1

qi∏
j=1

x{ℓ(i)j }

belongs to LG. Since F belongs to IG, π(
∏s

i=1 xSi
) = π(

∏s
i=1 xS′

i
). This implies that⋃s

i=1 Si =
⋃s

i=1 S
′
i as multisets. Hence one has

∑s
i=1 pi =

∑s
i=1 qi and

s∏
i=1

pi∏
j=1

x{k(i)j } =
s∏

i=1

qi∏
j=1

x{ℓ(i)j }.

Thus
x
∑s

i=1(pi−1)

∅ F = G1 −G2

belongs to LG. This implies that F ∈ LG : x∞
∅ . Hence one has IG ⊂ LG : x∞

∅ .

Therefore, combining Lemmata 3.5 and 4.1, we obtain the following proposition.

Proposition 4.2. Let G be a graph on [d] and let I ∈ {⟨[IG]2⟩, JG, LG}. If G is the
reduced Gröbner basis of I with respect to a reverse lexicographic order such that xS ⩾ x∅
for any S ∈ S(G), then

{g/xk
∅ | g ∈ G, k ∈ Z⩾0, x

k
∅ divides g, xk+1

∅ does not divide g}

is a Gröbner basis of IG.
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Next, we discuss when equality holds in the inclusions LG ⊂ JG ⊂ ⟨[IG]2⟩ ⊂ IG. In
particular, we characterize when these ideals are prime. Let G denote the complement
graph of a graph G.

Proposition 4.3. Let G be a graph on [d]. Then one has the following.

(a) Let I ∈ {⟨[IG]2⟩, JG, LG}. Then I is prime ⇐⇒ I = IG.

(b) IG = ⟨[IG]2⟩ ⇐⇒ IG is generated by quadratic binomials.

(c) ⟨[IG]2⟩ = JG ⇐⇒ G has no 3-cycles.

(d) JG = LG ⇐⇒ G is a complete multipartite graph on the vertex set V1 ⊔ · · · ⊔ Vt

with |Vj| ⩽ 3 for each j.

Proof. (a) Let I ∈ {⟨[IG]2⟩, JG, LG}. Recall that the toric ideal IG is prime. Hence I is
prime if IG = I. Conversely, suppose that I is prime. Since xk

∅ /∈ I holds for any k, it
follows that I = I : x∞

∅ . From Lemma 4.1, we have I = I : x∞
∅ = IG.

(b) Trivial.
(c) If G has a 3-cycle (i1, i2, i3), then x{i1,i2,i3}x{i1} − x{i1,i2}x{i1,i3} ∈ ⟨[IG]2⟩ \ JG.

Suppose that G has no 3-cycles. Then |S| ⩽ 2 for all S ∈ S(G). Let h = xS1xS2−xS3xS4 ∈
⟨[IG]2⟩. Since h belongs to IG, S1∪S2 coincides with S3∪S4 as multisets, and in particular,
we have S1 ∩ S2 = S3 ∩ S4. Suppose that S1 ∩ S2 is not empty. Let i ∈ S1 ∩ S2. Then
(S1\{i})∪(S2\{i}) coincides with (S3\{i})∪(S4\{i}) as multisets. Since |Sj\{i}| ⩽ 1 for
each j = 1, 2, 3, 4, it follows that (S1, S2) is equal to either (S3, S4) or (S4, S3). Then h = 0,
a contradiction. Thus S1 ∩ S2 = ∅, and hence h ∈ JG. Therefore we have ⟨[IG]2⟩ ⊂ JG,
and hence ⟨[IG]2⟩ = JG.

(d) Suppose that JG = LG. If G has a path of length two P3 = (i, j, k) as an induced
subgraph, then it follows that x{i,j}x{k} − x{i}x{j,k} ∈ JG \ LG, a contradiction. Hence G
has no P3 as an induced subgraph. It is known that G has no P3 as an induced subgraph
if and only if G is a complete multipartite graph. Suppose that G has a part Vα with
|Vα| ⩾ 4. It then follows that x{i,j}x{k,l} − x{i,k}x{j,l} ∈ JG \LG where i, j, k, l are distinct
vertices in Vα, a contradiction. Hence G is a complete multipartite graph on the vertex
set V1 ⊔ · · · ⊔ Vt with |Vj| ⩽ 3 for each j.

Suppose that G is a complete multipartite graph on the vertex set V1 ⊔ · · · ⊔ Vt with
|Vj| ⩽ 3 for each j. Then each S ∈ S(G) is a subset of Vj for some j. It is enough
to show that JG ⊂ LG. Let h = xS1xS2 − xS3xS4 be a nonzero binomial in JG. Then
S1 ∩ S2 = S3 ∩ S4 = ∅ and S1 ∪ S2 = S3 ∪ S4. Suppose that Si ⊂ Vji for each i = 1, 2, 3, 4.

Case 1. (S1 = ∅.) Then h = x∅xS2−xS3xS4 , where |S3|, |S4| ⩾ 1 and |S3|+|S4| = |S2| ⩽ 3.
Since either |S3| or |S4| equals one, h ∈ LG.

Case 2. (Sj ̸= ∅ for each i.) Since S1 ∪ S2 = S3 ∪ S4, we may assume that j1 = j3 and
j2 = j4. If j1 ̸= j2, then S1 = S3 and S2 = S4, and hence h = 0. This is a contradiction.
Thus we have j1 = j2 = j3 = j4. Since 2 ⩽ |S1| + |S2| = |S3| + |S4| ⩽ 3, we may assume
that |S1| = |S3| = 1. Then h = (xS1xS2 − x∅xS1∪S2) + (x∅xS3∪S4 − xS3xS4) belongs to
LG.
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Now, we return to the inclusions (4.1). If G is a complete multipartite graph, then IG
is generated by quadratic binomials ([6, Theorem 3.1]). Hence from Proposition 4.3 we
know that LG = JG implies ⟨[IG]2⟩ = IG. Therefore, there are the following 6 cases:

(i) LG = JG = ⟨[IG]2⟩ = IG.

(ii) LG = JG ⊊ ⟨[IG]2⟩ = IG.

(iii) LG ⊊ JG = ⟨[IG]2⟩ = IG.

(iv) LG ⊊ JG = ⟨[IG]2⟩ ⊊ IG.

(v) LG ⊊ JG ⊊ ⟨[IG]2⟩ = IG.

(vi) LG ⊊ JG ⊊ ⟨[IG]2⟩ ⊊ IG.

We give an example for each case.

Example 4.4. First, we recall that for any bipartite graphG, IG is generated by quadratic
binomials.

A complete graphKd of d vertices satisfies the condition (i). In fact, one has IKd
= {0}.

For a (3, 3)-complete bipartite graphK3,3, sinceK3,3 has a 3-cycle, the condition (ii) holds.
For a path of length three P4, since P4 is also a path of length three, the condition (iii)
holds. For G = C6, IG is not generated by quadratic binomials from [4, Proposition 11].
SinceG = C6 has no 3-cycles andG is not a complete multipartite graph, the condition (iv)
is satisfied. For a 6-cycle C6, since C6 has a 3-cycle and C6 is not a complete multipartite
graph, the condition (v) holds. Finally, we consider the following graph G:

It then follows from [6, Theorem 1.7] that IG is not generated by quadratic binomials.
Since G has a 3-cycle and G is not a complete multipartite graph, the condition (vi) holds.

5 Examining Kempe equivalence

In this section, we prove Theorem 1.1 and Proposition 2.3. In fact, we show the following.

Theorem 5.1. Let G be a graph on [d] and let f and g be k-colorings of an induced
subgraph of G. Then the following conditions are equivalent:

(i) f ∼k g;

(ii) xf − xg ∈ ⟨[IG]2⟩;
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(iii) xf − xg ∈ JG.

Proof. Suppose that f and g are k-colorings of an induced subgraph G0 of G. Since
JG ⊂ ⟨[IG]2⟩ holds, we have (iii) ⇒ (ii).

(i) ⇒ (iii). Suppose that f ∼k g and xf − xg /∈ JG. Let f0, f1, . . . , fs be a sequence
of k-colorings of G0 such that f0 = f , fs = g, and fi is obtained from fi−1 by a Kempe
switching. We may assume that s ⩾ 1 is minimal among all k-colorings f and g such that
f ∼k g and xf − xg /∈ JG. Suppose that the Kempe switching from f to f1 is obtained
by a connected component H of the induced subgraph G0[f

−1(µ) ∪ f−1(η)] by setting

f1(x) =


f(x) x /∈ H,

µ x ∈ H and f(x) = η,

η x ∈ H and f(x) = µ.

Let f ′ = f |G′ and f ′
1 = f1|G′ be the restrictions of f and f1 to G′ := G0[f

−1(µ)∪ f−1(η)],
respectively. Since f ′ and f ′

1 are 2-colorings of G′, xf ′ − xf ′
1
belongs to JG. Then

xf − xg =
xf

xf ′
(xf ′ − xf ′

1
) +

(
xf

xf ′
xf ′

1
− xg

)
=

xf

xf ′
(xf ′ − xf ′

1
) + xf1 − xg.

If s = 1, then f1 = g and hence

xf − xg =
xf

xf ′
(xf ′ − xf ′

1
) ∈ JG.

We may assume that s ⩾ 2. By the hypothesis on s, xf1 − xg belongs to JG. Hence
xf − xg belongs to JG, a contradiction.

(ii) ⇒ (i). Suppose that f ̸∼k g and xf − xg ∈ ⟨[IG]2⟩. Since ⟨[IG]2⟩ is a binomial
ideal, it then follows from [3, Lemma 3.8] that there exists an expression

xf − xg =
s∑

r=1

xwr(xfr − xgr), (5.1)

where fr and gr are 2-colorings of Gar with ar ∈ Zd
⩾0 for each r. We may assume that

s ⩾ 1 is minimal among such f and g with f ̸∼k g and xf − xg ∈ ⟨[IG]2⟩. Since xf must
appear in the right-hand side of (5.1), we may assume that xf = xw1xf1 . Then xf is
divided by xf1 , and f1 is the restriction of f to G′ = G0[f

−1(µ) ∪ f−1(ν)] for some µ and
ν. Since G′ has a 2-coloring, it is a bipartite graph. Then f1 and g1 are Kempe equivalent.
Let f ′ be a coloring of G0 defined by

f ′(x) =

{
g1(x) f(x) ∈ {µ, ν},
f(x) otherwise.

Then one obtains f ∼k f
′. Moreover, we have

xf − xw1(xf1 − xg1) = xf ′ . (5.2)
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If s = 1, then
xg = xf − xw1(xf1 − xg1) = xf ′ ,

and hence f ∼k f
′ = g, a contradiction. We may assume that s ⩾ 2. Since

xf ′ − xg = xf − xw1(xf1 − xg1)− xg =
s∑

r=2

xwr(xfr − xgr) ∈ ⟨[IG]2⟩,

f ′ ∼k g by the hypothesis on s. Thus f ∼k f
′ ∼k g, a contradiction.

We see examples of Theorem 5.1.

Example 5.2. Let G be the graph as follows:

1

2 3

4

5 6

We consider two 3-colorings f and g of G defined by

f(i) =


1 i ∈ {1, 5},
2 i ∈ {2, 6},
3 i ∈ {3, 4}

and g(i) =


1 i ∈ {1, 3, 5},
2 i ∈ {2, 6},
3 i = 4.

Then one has

xf − xg = x{1,5}x{2,6}x{3,4} − x{1,3,5}x{2,6}x{4} = x{2,6}(x{1,5}x{3,4} − x{1,3,5}x{4}).

Since x{1,5}x{3,4} − x{1,3,5}x{4} ∈ JG, it then follows from Theorem 5.1 that f ∼3 g.

Example 5.3. Let G be the graph as follows:

1

2 3

4

5 6
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We consider two 3-colorings f and g of G defined by

f(i) =


1 i ∈ {1, 5},
2 i ∈ {2, 6},
3 i ∈ {3, 4}

and g(i) =


1 i ∈ {1, 6},
2 i ∈ {2, 4},
3 i ∈ {3, 5}.

Then one has
xf − xg = x{1,5}x{2,6}x{3,4} − x{1,6}x{2,4}x{3,5}.

Since xf − xg /∈ JG, it then follows from Theorem 5.1 that f ̸∼3 g.

See Section 7 for an algorithm to determine if f ∼k g by using the techniques on
Gröbner bases.

6 Computing Kempe classes via Kempe ideals

In this section, we give a way to find all k-colorings of a graph G up to Kempe equivalence
via commutative algebra. In particular, we prove Theorem 1.2. For a graph G on [d], we
define the ideal KG of R by

KG := JG +MG ⊂ R[G],

where
MG := ⟨xSxT | S, T ∈ S(G), S ∩ T ̸= ∅⟩ ⊂ R[G].

The ideal KG is called the Kempe ideal of G.
The set of all monomials in MG consists of all monomials associated with k-colorings

of Ga with a ∈ Zd
⩾0 such that Ga is not an induced subgraph of G.

Lemma 6.1. Let G be a graph on [d]. Then xf = xS1xS2 · · ·xSk
/∈ MG if and only if f is

a k-coloring of an induced subgraph of G.

Proof. Suppose that f is not a k-coloring of any induced subgraph of G. Then f is a
k-coloring of Ga with a ∈ Zd

⩾0 such that aj ⩾ 2 for some j. Hence there exist integers
1 ⩽ a < b ⩽ k with i ∈ Sa and i ∈ Sb. This implies that xf can be divided by a monomial
xSaxSb

∈ MG, and hence xf ∈ MG.
Suppose that xf ∈ MG. There exist S, T ∈ S(G) such that S ∩ T ̸= ∅ and xSxT

divides xf . Let i ∈ S ∩ T . Then i appears at least twice in S1 ∪ · · · ∪ Sk. Thus f is not a
k-coloring of any induced subgraph of G.

As an easy consequence of this lemma, we have the following.

Corollary 6.2. Let G be a graph on [d]. Then one has

KG = ⟨[IG]2⟩+MG.

The following lemma is useful to check if a homogeneous binomial in IG belongs to
MG.
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Lemma 6.3. Let G be a graph on [d] and let xf −xg ∈ IG. Then the following conditions
are equivalent:

(i) xf − xg ∈ MG;

(ii) both xf and xg belong to MG;

(iii) at least one of xf and xg belongs to MG.

Proof. First, (ii) =⇒ (iii) is trivial. Since MG is a monomial ideal, the equivalence (i)
⇐⇒ (ii) holds. We show that (iii) =⇒ (ii). Suppose that xf ∈ MG, i.e., xf is divided
by xSxT where S, T ∈ S(G) and S ∩ T ̸= ∅. Let i ∈ S ∩ T . Then π(xf ) is divided by
t2i since xf is divided by xSxT . From xf − xg ∈ IG, we have π(xf ) = π(xg). Hence if
xg = xS1xS2 · · · xSk

, then there exist 1 ⩽ a < b ⩽ k such that i ∈ Sa ∩ Sb. Namely, xg is
divided by a monomial xSaxSb

such that i ∈ Sa ∩ Sb. Thus xg ∈ MG.

Next, we discuss a Gröbner basis of KG.

Proposition 6.4. Let G be a graph on [d], and let G1 be the reduced Gröbner basis of JG
with respect to a monomial order < and set G2 = {xSxT | S, T ∈ S(G), S∩T ̸= ∅}. Then

G = (G1 \MG) ∪ G2

is the reduced Gröbner basis of KG with respect to <.

Proof. Since G1 is a Gröbner basis of JG, we have JG = ⟨G1⟩. It follows from MG = ⟨G2⟩
that G is a set of generators of KG = JG +MG. We apply Buchberger’s Criterion to G. If
p, q ∈ G1 \MG, then the remainder of S(p, q) on division by G is 0 since G1 is a Gröbner
basis of JG. If p, q ∈ G2, then both p and q are monomials, and hence S(p, q) = 0. Suppose
that p ∈ G2 and q ∈ G1 \ MG. Let p = xSxT with S, T ∈ S(G) and S ∩ T ̸= ∅, and let
q = xf − xg where f and g are k-colorings of Ga with a ∈ Zd

⩾0 and in<(q) = xf .

Case 1. (p and xf are relatively prime.) Then S(p, q) = pxg is divided by p ∈ G2.

Case 2. (xf is divided by xS.) From Lemma 6.3, xf is not divided by xT since q /∈ MG.
Then S(p, q) = xTxg. Let i ∈ S ∩ T . Since xf is divided by xS, π(xf ) = π(xg) is divided
by ti. Thus π(xTxg) is divided by t2i . Hence xTxg is divided by a monomial xS′xT such
that i ∈ S ′ ∩ T . Then the remainder of S(p, q) = xTxg on division by G2 is 0.

Therefore the remainder of any S-polynomial on division by G is 0. By Buchberger’s
Criterion, G is a Gröbner basis of KG. Since G1 is reduced, it is easy to see that G is
reduced.

Similarly to ⟨[IG]2⟩ and JG, we can determine if two k-colorings of G are Kempe
equivalent by KG.

Proposition 6.5. Let G be a graph on [d] and let f and g be k-colorings of an induced
subgraph of G. Then f ∼k g if and only if xf − xg ∈ KG.
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Proof. Let f and g be k-colorings of an induced subgraph G0 of G. From Theorem 5.1
it is enough to show that xf − xg ∈ JG if and only if xf − xg ∈ KG. Since JG ⊂ KG,
xf − xg ∈ KG if xf − xg ∈ JG.

Suppose that xf−xg ∈ KG. We show that xf−xg ∈ JG. Let G be the reduced Gröbner
basis of KG with respect to a monomial order <. From Proposition 6.4, G = (G1\MG)∪G2

where G1 is the reduced Gröbner basis of JG with respect to < and G2 = {xSxT | S, T ∈
S(G), S ∩ T ̸= ∅}. Let xf ′ (resp. xg′) denote the remainder of xf (resp. xg) on division
by G1 \ MG. Suppose that xf ′ ̸= xg′ . Since f and g are k-colorings of G0, we have
xf ,xg /∈ MG from Lemma 6.1. From Lemma 6.3, xf ′ ,xg′ /∈ MG since both xf − xf ′ and
xg − xg′ belong to JG. Thus xf ′ − xg′ (̸= 0) is the normal form of xf − xg ∈ KG with
respect to G. This contradicts that G is a Gröbner basis of KG. Thus xf ′ = xg′ . Then
the normal form of xf − xg with respect to G1 \MG is zero, and hence xf − xg ∈ JG.

Now, we give a proof of Theorem 1.2. In fact, Theorem 1.2 follows from the following.

Theorem 6.6. Let G be a graph on [d] and < a monomial order on R[G], and let
{xf1 , . . . ,xfs} be the set of all standard monomials of degree k with respect to in<(KG).
Then each fi is a k-coloring of an induced subgraph of G. In addition, given an induced
subgraph G′ of G,

{f1, . . . , fs} ∩ Ck(G′)

is a complete representative system for kc(G′, k).

Remark 6.7. If xf = xS1xS2 · · ·xSk
is a standard monomial of degree k with respect to

in<(KG), then f is a k-coloring of the induced subgraph of G on
⋃k

i=1 Si.

Proof of Theorem 6.6. Let G be the reduced Gröbner basis of KG with respect to a mono-
mial order <. From Proposition 6.4, G = (G1 \MG)∪G2 where G1 is the reduced Gröbner
basis of JG with respect to < and G2 = {xSxT | S, T ∈ S(G), S ∩ T ̸= ∅}. Since each
xfi is not divided by any monomial in G2, from Lemma 6.1, each fi is a k-coloring of an
induced subgraph of G.

Suppose that fi ∼k fj for some 1 ⩽ i < j ⩽ s. From Theorem 5.1, xfi − xfj belongs
to JG(⊂ KG). Then in<(xfi − xfj) is not standard, a contradiction. Hence fi ̸∼k fj for
any 1 ⩽ i < j ⩽ s.

Let f be a k-coloring of G′, and let xf ′ be the remainder of xf on division by G1 \MG.
Then xf − xf ′ belongs to JG. Since xf /∈ MG, we have xf ′ /∈ MG from Lemma 6.3. Thus
xf ′ is the normal form of xf with respect to G, and hence xf ′ = xfj for some j. Since
xf − xfj belongs to JG, we have f ∼k fj from Theorem 5.1.

We see an example of Theorem 6.6.

Example 6.8. Let G be the graph as in Example 5.3. We consider the reverse lexico-
graphic order < on R[G] such that

x∅ < x{1} < · · · < x{6} < x{1,5} < x{1,6} < x{2,4} < x{2,6} < x{3,4} < x{3,5}.
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Then there are 65 standard monomials of degree 3 with respect to in<(KG). In particular,
the standard monomials x{1,5}x{2,6}x{3,4} and x{1,6}x{2,4}x{3,5} correspond to 3-colorings of
G. It then follows from Theorem 6.6 that the associated 3-colorings, which are the 3-
colorings as in Example 5.3, form a complete representative system for kc(G, k).

As a consequence of Theorem 6.6, the number of k-Kempe classes Kc(G, k) can be
computed by using Hilbert functions. We denote Ind(G) the set of all induced subgraphs
of G and denote Indm(G) the set of all induced subgraphs of G with m vertices.

Corollary 6.9. Let G be a graph on [d]. Then one has

H(R[G]/KG, k) =
∑

G′∈Ind(G)

Kc(G′, k).

In particular,

Kc(G, k) =
d∑

m=0

(−1)d−m
∑

G′∈Indm(G)

H(R[G′]/KG′ , k).

Example 6.10. Let G be the graph as in Example 5.3. Then one has

H(R[G]/KG, k) =


1 k = 0,
13 k = 1,
49 k = 2,
65 k = 3,
64 k ⩾ 4,

and
H(R[G′]/KG′ , 3) = 32

for any G′ ∈ Ind5(G). Note that Kc(G′, k) ⩾ 1 for any k ⩾ χ(G) and G′ ∈ Ind(G).
Moreover, one has |Ind(G)| = 26 = 64. Hence we have the following from H(R[G]/KG, k).

• Since H(R[G]/KG, 2) < 26, one has χ(G) ⩾ 3. In fact, χ(G) = 3 in this case.

• Let k ⩾ 4. Since H(R[G]/KG, k) = 26, Kc(G′, k) = 1 for any G′ ∈ Ind(G).

• Since H(R[G′]/KG′ , 3) = 25, Kc(G′′, 3) = 1 for any G′′ ∈ Ind(G) with G ̸= G′′.
Hence one has Kc(G, 3) = 2 from H(R[G]/KG, 3) = 65.

Let I be a graded ideal of R. In general, the Hilbert function H(R/I, k) is not
always a polynomial. However, there exists a unique polynomial PR/I ∈ Q[k] such that
H(R/I, k) = PR/I(k) for k large enough. We call PR/I the Hilbert polynomial of R/I. We
show that PR[G]/KG

is a constant which depends only on the number of vertices.

Proposition 6.11. Let G be a graph on [d]. Then one has

PR[G]/KG
(k) = 2d.
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Proof. Let ∆ be the maximum degree of G. Then it follows from [5, Corollary 2.5] that
for any integer k ⩾ ∆+ 1 and for any induced subgraph G′ of G, one has Kc(G′, k) = 1.
Hence for any integer k ⩾ ∆+ 1, we obtain

H(R[G]/KG, k) =
∑

G′∈Ind(G)

Kc(G′, k) =
∑

G′∈Ind(G)

1 = |Ind(G)| = 2d.

This implies that
PR[G]/KG

(k) = 2d,

as desired.

7 Algorithms

In this section, by using Theorems 1.1 and 1.2 and techniques on Gröbner bases, we
introduce several algorithms related to Kempe equivalence.

First we give Algorithm 7.1 to compute the reduced Gröbner basis of KG. From
Proposition 4.2, G2 in Algorithm 7.1 is a Gröbner basis of IG. It then follows that G3 in
Algorithm 7.1 is a system of generators of JG. Using the reduced Gröbner basis of KG,

Algorithm 7.1 Computation of the reduced Gröbner basis of KG

Input: The set of all stable sets of G, and a monomial order < on R[G].
Output: The reduced Gröbner basis of KG with respect to <.
1: F := {xS\{i}x{i} − xSx∅ | i ∈ S ∈ S(G), |S| ⩾ 2}.
2: From F , compute the reduced Gröbner basis G1 of LG with respect to a reverse

lexicographic order such that xS ⩾ x∅ for any S ∈ S(G).
3: G2 := {g/xk

∅ | g ∈ G1, k ∈ Z⩾0, x
k
∅ divides g, xk+1

∅ does not divide g}.
4: G3 := {xS1xS2 − xS3xS4 ∈ G2 | S1, S2, S3, S4 ∈ S(G), S1 ∩ S2 = S3 ∩ S4 = ∅}.
5: Compute the reduced Gröbner basis G of KG with respect to < from a system of

generators G3 ∪ {xSxT | S, T ∈ S(G), S ∩ T ̸= ∅}.
6: return G.

Algorithm 7.2 determines whether f ∼k g or not. The correctness of Algorithm 7.2 is an
immediate consequence of Lemma 3.3 and Proposition 6.5. From Theorem 5.1, it is pos-
sible to replace KG with either ⟨[IG]2⟩ or JG in Algorithm 7.2. On the other hand, by the
reduced Gröbner basis of KG, we can compute the set of all standard monomials of degree
k with respect to the initial ideal in<(KG). From Theorem 1.2, we have Algorithm 7.3
to compute a complete representative system for kc(G, k). Algorithm 7.4 enumerates all
elements in a Kempe equivalent class. The correctness of Algorithm 7.4 is guaranteed by
Theorem 6.6 together with the fact that, with respect to a Gröbner basis, the normal form
of the monomials in the same residue class is unique. In addition, Algorithm 7.4 is based
on [8, Algorithm 5.7] for enumeration of fibers using a Gröbner basis of a toric ideal. As
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Algorithm 7.2 Determination of the Kempe equivalence

Input: k-colorings f and g of G, and the reduced Gröbner basis G of KG.
Output: “f ∼k g” or “f ̸∼k g”.
1: Compute the normal form m of xf − xg with respect to G.
2: if m = 0 then
3: return “f ∼k g”
4: else
5: return “f ̸∼k g”
6: end if

Algorithm 7.3 Computation of a complete representative system for kc(G, k)

Input: The reduced Gröbner basis G of KG.
Output: A complete representative system for kc(G, k).
1: From G, compute the set {xf1 , . . . ,xfs} of all standard monomials of degree k with

respect to the initial ideal in<(KG).
2: C := {}.
3: for i = 1, 2, . . . , s do
4: if xfi = xS1 · · ·xSk

satisfies [d] = S1 ∪ · · · ∪ Sk then
5: C := C ∪ {fi}.
6: end if
7: end for
8: return C

stated in [8], “reverse search” technique is useful to improve the efficiency. Finally, we
give an algorithm to find a sequence of Kempe switchings. We define a Kempe basis which
is the set of sequences of colorings corresponding to the reduced Gröbner basis of KG.

Definition 7.1. Work with the same notation as in Theorem 6.4, that is, G = (G1 \
MG) ∪ G2 is the reduced Gröbner basis of KG with respect to <. Let G1 \MG = {xp1 −
xq1 , . . . ,xpt − xqt}. From Theorem 1.1, pj and qj are Kempe equivalent for each j. Then{

(f
(1)
1 , . . . , f (1)

s1
), . . . , (f

(t)
1 , . . . , f (t)

st )
}

is called a Kempe basis of G with respect to < if f
(j)
1 = pj, f

(j)
sj = qj, and f

(j)
i is obtained

from f
(j)
i−1 by a Kempe switching.

In order to give an algorithm to find a Kempe basis, the following three Procedures
are important.
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Algorithm 7.4 Enumeration of elements in a Kempe equivalent class

Input: k-coloring f of G, and the reduced Gröbner basis G of KG.
Output: All k-colorings of G which are Kempe equivalent to f (up to permutations of

colors).
1: Compute the normal form xf ′ of xf with respect to G.
2: A := {f ′}, B := {}.
3: while A ̸= {} do
4: Choose g ∈ A.
5: for xg1 − xg2 ∈ G with xg1 > xg2 do
6: if xg2 divides xg and g′ /∈ B where xg′ = xgxg1/xg2 then
7: A := A ∪ {g′}.
8: end if
9: end for
10: A := A \ {g}, B := B ∪ {g}.
11: end while
12: return B.

Procedure 1. (xf − xg = xS1xS2 − xS3xS4 ∈ JG 7→ a sequence of Kempe switching from
f to g.)

Suppose that f and g are 2-colorings of an induced subgraph G0 of G. Let xf − xg =
xS1xS2 − xS3xS4 ∈ JG. Then S1 ∩ S2 = S3 ∩ S4 = ∅ and S1 ∪ S2 = S3 ∪ S4. Hence g is
obtained from f by setting

g(x) =


f(x) x /∈ H,

1 x ∈ H and f(x) = 2,

2 x ∈ H and f(x) = 1,

where H is the induced subgraph of G0 on the vertex set (S1 \ S3) ⊔ (S2 \ S4). Suppose
that H has p connected components H1, . . . , Hp. For l = 1, 2, . . . , p, let f0 = f and let

fl(x) =


f(x) x /∈ H,

1 x ∈ H1 ∪ · · · ∪Hl and f(x) = 2,

2 x ∈ H1 ∪ · · · ∪Hl and f(x) = 1.

Then f0, f1, . . . , fp is a sequence of 2-colorings of G0 such that f0 = f , fp = g, and fi is
obtained from fi−1 by a Kempe switching.

Procedure 2. Let f ′ and g′ be k-colorings of an induced subgraph G1 of G. Suppose that
xf ′ − xg′ = xh(xf − xg). Then f and g are the restrictions of f ′ and g′ to some induced
subgraph G2 of G1, respectively. Hence if f0, f1, . . . , fp is a sequence of k′-colorings of
G2 such that f0 = f , fp = g, and fi is obtained from fi−1 by a Kempe switching, then
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f ′
0, f

′
1, . . . , f

′
p satisfy f ′

0 = f ′, f ′
p = g′, and f ′

i is obtained from f ′
i−1 by a Kempe switching,

where f ′
i is a k-coloring of G1 obtained by combining fi with h.

Procedure 3. Let xp − xq be a binomial in the reduced Gröbner basis G of KG with
respect to a monomial order <. From Proposition 6.4, any binomial xp − xq ∈ G is
obtained from the reduced Gröbner basis of JG with respect to < which is computed from

{xf − xg | f and g are 2-colorings of an induced subgraph of G}

by Buchberger’s Algorithm. By keeping track of the computation of Buchberger’s Algo-
rithm, we can compute an expression

xp − xq =
s∑

r=1

xwr(xfr − xgr),

where fr and gr are 2-colorings of an induced subgraph of G for each r,

xwrxgr = xwr+1xfr+1

for each r = 1, . . . , s− 1, and xp = xw1xf1 , xq = xwsxgs . See [1, Chapter 2, §1] for details.
Then we can compute a sequence of Kempe switchings from ur to vr where xur = xwrxfr

and xvr = xwrxgr by Procedures 1 and 2. Combining them, we have a sequence of Kempe
switchings from p to q.

Using Procedures 1, 2, and 3, we have Algorithm 7.5 that computes a Kempe basis.
Note that, if the reduced Gröbner basis of KG consists of quadratic polynomials, then we
can skip large part of the procedure in Algorithm 7.5.

We now use a Kempe basis to find a sequence of Kempe switchings between two
colorings. Suppose that the normal form xf ′ of xf with respect to the reduced Gröbner
basis G of KG is given by

xf = xf0 →
h1

xf1 →
h2

· · · →
ht

xft = xf ′ , (hj ∈ G).

By Procedure 2, we can construct a sequence of Kempe switchings from fi−1 to fi by
extending a sequence of Kempe switchings corresponding to hi−1 in a Kempe basis. Using
this fact, we have Algorithm 7.6 to find a sequence of Kempe switchings.

Although Algorithm 7.1 requires the enumeration of all stable sets and the computa-
tion of a Gröbner basis, and thus is not computationally feasible for large graphs, its merit
lies in providing a uniform algebraic framework. In particular, the method is mechanically
applicable and conceptually clarifies the structure of the graph from an abstract algebraic
viewpoint.
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Algorithm 7.5 Construction of a Kempe basis

Input: A monomial order < on R[G].
Output: A Kempe basis of G with respect to <.
1: Compute a system of (quadratic) generators

F = {xf1 − xg1 , . . . ,xft − xgt} ∪ {xSxT | S, T ∈ S(G), S ∩ T ̸= ∅}

of KG.
2: for r = 1, 2, . . . , t do
3: By Procedure 1, compute a sequence Fr of 2-colorings corresponding to a sequence

of Kempe switchings from fr to gr.
4: end for
5: Compute the reduced Gröbner basis G of KG with respect to < from F .
6: A := {}.
7: for xp − xq ∈ G do
8: By keeping track of the computation of G from F , compute the expression

xp − xq =
s∑

r=1

xwr(xfir
− xgir

),

where xwrxgir
= xwr+1xfir+1

for each r = 1, . . . , s − 1, and xp = xw1xfi1
, xq =

xwsxgis
.

9: for r = 1, 2, . . . , s do
10: f := f ′

ir where xf ′
ir
= xwrxfir

, and g := g′ir where xg′ir
= xwrxgir

.

11: By extending Fir , find a sequence of colorings h
(r)
1 , . . . , h

(r)
tr where h

(r)
1 = f , h

(r)
tr =

g and h
(r)
j is obtained from h

(r)
j−1 by a Kempe switching.

12: end for
13: A := A ∪ {(h(1)

1 , . . . , h
(1)
t1 (= h

(2)
1 ), h

(2)
2 , . . . , h

(2)
t2 (= h

(3)
1 ), . . . , h

(s)
ts )}

14: end for
15: return A
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in Mathematics 3, American Mathematical Society, 1994.

[2] D. A. Cox, J. Little and D. O’Shea, “Ideals, Varieties, and Algorithms”, fourth edition,
Undergraduate Texts in Mathematics, Springer, 2015.

[3] J. Herzog, T. Hibi and H. Ohsugi, Binomial ideals, Graduate Text in Mathematics,
Springer, 2018.

[4] K. Matsuda, H. Ohsugi and K. Shibata, Toric rings and ideals of stable set polytopes,

the electronic journal of combinatorics 33(1) (2026), #P1.8 21



Algorithm 7.6 Construction of a sequence of Kempe switchings

Input: k-colorings f and g of G, the reduced Gröbner basis G of KG, and a Kempe basis
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ematics, pp. 287–297, Birkhäuser Basel, 2006.
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