
New bijective proofs pertaining to

alternating sign matrices

Takuya Inoue

Submitted: Jun 8, 2023; Accepted: Oct 17, 2025; Published: Jan 9, 2026

©The author. Released under the CC BY license (International 4.0).

Abstract

The alternating sign matrices-descending plane partitions (ASM-DPP) bijec-
tion problem is one of the most intriguing open problems in bijective combina-
torics, which is also relevant to integrable combinatorics. The notion of a signed
set and a signed bijection is used in [Fischer, I. & Konvalinka, M., Electron. J.
Comb., 27 (2020) 3-35.] to construct a bijection between ASMn×DPPn−1 and
DPPn×ASMn−1. Here, we shall construct a more natural alternative to a signed
bijection between alternating sign matrices and shifted Gelfand-Tsetlin patterns
which is presented in that paper, based on the notion of compatibility which we
introduce to measure the naturalness of a signed bijection. In addition, we give a
bijective proof for the refined enumeration of an extension of alternating sign matri-
ces with n+3 statistics, first proved in [Fischer, I. & Schreier-Aigner, F., Advances
in Mathematics 413 (2023) 108831.].
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1 Introduction

An alternating sign matrix with rank n is defined as an n × n matrix that satisfies the
conditions:

• each entry is −1, 0 or 1,

• for each row and column the sum is 1,

• for each row and column the nonzero entries alternate in sign.

Below is an example of a rank 4 alternating sign matrix:
0 0 1 0
1 0 −1 1
0 1 0 0
0 0 1 0

 . (1)
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Combinatorics concerning alternating sign matrices provides one of the most intriguing
open problems in bijective combinatorics, which is called the ASM-DPP bijection problem
[3, 13]. Here, DPP stands for descending plane partitions, which are plane partitions
subject to some conditions and equipped with the notion of rank. It has been known for
some time that for any n ∈ Z>0 the number of alternating sign matrices with rank n is
equal to that of descending plane partitions with rank n (conjectured in 1983 by W. H.
Mills, David P. Robbins and Howard Rumsey, Jr. [11], and proved in 1996 first by Doron
Zeilberger [14] and then by Greg Kuperberg [10] independently). However, no explicit
bijections between them have been found so far.

Ilse Fischer and Matjaž Konvalinka use the notions of a signed set and a signed bijec-
tion (which we shall call a sijection in the style of Fischer and Konvalinka) to tackle the
problem in [7, 8]. These are defined as follows:

• A signed set is a pair of disjoint finite sets,

• A sijection from a signed set S = (S+, S−) to a signed set T = (T+, T−) is a bijection
between S+ ⊔ T− and S− ⊔ T+.

For more details, see §2. Fischer and Konvalinka did not construct the desired bijection,
but they did construct a bijection between ASMn×DPPn−1 and DPPn×ASMn−1, where
ASMn and DPPn are the set of alternating sign matrices and descending plane partitions
with rank n, respectively. In §5, we will investigate the sijections constructed in [7], be-
tween alternating sign matrices and so-called shifted Gelfand-Tsetlin patterns, and obtain
some new combinatorial results. A shifted Gelfand-Tsetlin pattern is a combinatorial ob-
ject defined in [7] to clarify the combinatorial meaning of the operator formula for the
enumeration of alternating sign matrices. For more details, see §5.

Before explaining our method of investigation, let us introduce some other previ-
ous works on the ASM-DPP bijection problem, done by Roger E. Behrend, Philippe Di
Francesco and Paul Zinn-Justin [1, 2]. Their research concerns refined enumerations of
these two objects, and they prove that the two refined enumerations with respect to cer-
tain quadruplets of statistics coincide with each other. Note that the results on three of
these statistics were conjectured by W. H. Mills, David P Robbins and Howard Rumsey
Jr. [11] The statistics on alternating sign matrices they consider are:

• the column number of the 1 in the first row (note that only one 1 exists in that
row),

• the (generalized) inversion number (for a detailed definition see §5),

• the number of −1 in the matrix,

• the number of 0’s to the right of the 1 in the last row

For example, the statistics are 3, 2, 1 and 1 of the example (1).
The main idea of the present paper is the notion of compatibility, which is defined as

follows:
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A sijection φ from S = (S+, S−) to T = (T+, T−) is compatible with a statistic
function η : S+ ⊔ S− ⊔ T+ ⊔ T− → Zd if it holds that:

∀s ∈ S+ ⊔ T−, η(φ(s)) = η(s).

This means that the statistic η is preserved under the action of φ. In §4, we interpret
the sijections relevant to Gelfand-Tsetlin patterns that are constructed in [7] in the light
of the notion of compatibility. This interpretation gives us some new knowledge about
these objects. With the notion of integrable systems of combinatorial objects, which will
also be defined in that section, we will describe the combinatorial structure of Gelfand-
Tsetlin patterns. This result leads us to a new computational proof of the enumeration of
Gelfand-Tsetlin patterns with a bottom row that is not strictly increasing. Furthermore,
inspired by this new proof, we obtain a new generalization of Gelfand-Tsetlin patterns
and a signed enumeration of the objects.

The notion of compatibility also helps us to import Di Francesco et al.’s results to
Fischer and Konvalinka’s work. We know the meaningful statistics according to the
refined enumerations, so with these statistics and the notion of compatibility, we are
able to measure the naturalness of constructed sijections. In §5, we will extend the
definition of two of the four statistics to shifted Gelfand-Tsetlin patterns and discuss the
compatibility with these two statistics. In fact, Fischer and Konvalinka’s construction is
not compatible with one of these statistics. We will construct a new sijection between
the two objects which is compatible with both of the statistics. Therefore, according to
the notion of compatibility, our construction can be considered more natural than Fischer
and Konvalinka’s.

In fact, in [9] Fischer and Schreier-Aigner obtain a more elaborate result to do with a re-
fined enumeration of alternating sign matrices and descending plane partitions. Amongst
others, they provide a refined enumeration of some extensions of alternating sign matrices
with n+3 statistics. With a slight modification, this result can be recognized as a refined
enumeration of generalized monotone triangles, which is defined in §5. It is expressed as
follows (for detailed definitions, see §5):

n∏
i=1

(
uXi + vX−1

i + w
)

∏
1⩽p<q⩽n

(
uEkp + vE−1

kq
+ wEkpE

−1
kq

)
s̃(kn,kn−1,...,k1)(X1, X2, . . . , Xn). (2)

We recognize this expression as a refined enumeration of the Cartesian product of arrow
rows and shifted Gelfand-Tsetlin patterns, where arrow rows will be defined in §5. Then,
we give a bijective proof for the refined enumeration of generalized monotone triangles
by appropriately defining the n+ 3 statistics on the Cartesian product and constructing
a sijection between generalized monotone triangles and the Cartesian product that is
compatible with these statistics. For more details, see §5.6.

As a last remark in this section we explain the choice of title captions in this paper,
in which we construct many sijections. On the one hand, such constructions constitute
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proof of the existence of the sijections, but on the other hand the constructions themselves
also become objects that will be used in later propositions and/or theorems. Therefore,
not only the existence but also the explicit construction of each sijection is important.
Thus, when we describe a construction of a sijection in detail we will use “Construction”
as a title caption instead of “Proposition”, “Theorem” or “Proof”. This convention is
partially derived from Fischer and Konvalinka’s papers [7, 8].

2 Preliminaries

2.1 Signed Sets

A signed set is a pair of disjoint finite sets. For a signed set S, we call its first (resp.
second) element the plus part (resp. minus part) of S and denote it by S+ (resp. S−).
Namely, S = (S+, S−). For a signed set S, we call the set S+ ⊔ S− the support of S and
denote it by supp (S). The size of a signed set S is defined by #S = #S+ −#S−, where
we denote the size of a set X by #X.

Next, we define some basic notions relevant to signed sets. (See also [7].)

• The opposite of a signed set S is −S := (S−, S+).

• The disjoint union of two signed sets S and T is S ⊔ T := (S+ ⊔ T+, S− ⊔ T−).

• The Cartesian product of two signed sets S and T is

S × T := (S+ × T+ ⊔ S− × T−, S+ × T− ⊔ S− × T+).

We define the disjoint union and the Cartesian product of a finite number of signed sets
in the same manner. In addition, we can define a disjoint union with signed index of a
family of signed sets indexed by a signed set (to be rigorous, indexed by the support of
the signed set) in the following way.

Definition 1. Let T be a signed set and {St}t∈supp(T ) a family of signed sets. The disjoint
union with signed index in T of {St}t∈supp(T ) is

⊔
t∈T

St :=

( ⊔
t∈T+

(S+
t ) ⊔

⊔
t∈T−

(S−
t ),

⊔
t∈T+

(S−
t ) ⊔

⊔
t∈T−

(S+
t )

)
.

We denote an element of
⊔
t∈T St as (st, t) for st ∈ supp (St). For simplicity, we will

sometimes denote an element of
⊔
u∈U

⊔
t∈T St,u as (st,u, t, u) instead of ((st,u, t), u).

Let us define a signed interval, which is the most basic example of a signed set. For
any two integers a and b, a signed interval [a, b) is defined by,

[a, b) =


([a, b) ∩ Z, ∅) (a < b),

(∅, ∅) (a = b),

(∅, [b, a) ∩ Z) (a > b).

the electronic journal of combinatorics 33(1) (2026), #P1.9 5



It is noteworthy that we use half-open intervals to describe signed intervals instead of
closed intervals as in [7, 8]. Because of this, we have [b, a) = −[a, b). This relation is
crucial and many properties of Gelfand-Tsetlin patterns are easier to establish using this
notation. For more information, see §4.

2.2 Sijections

A sijection φ from a signed set S to a signed set T is an involution on supp (S)⊔ supp (T )
such that φ(S+⊔T−) = S−⊔T+, namely a sijection φ is a bijection between S+⊔T− and
S− ⊔ T+. We denote it by S ◦=>=◦ T . If there is a sijection from S to T , then #S = #T
holds. This relation is an analogy of the relation between ordinary sets and a bijection.
In particular, if S− = T− = ∅, then we can interpret S and T as ordinary sets and a
sijection between them as an ordinary bijection.

A sijection φ can be also recognized as a triplet of a sign-preserving bijection from a
subset of S to a subset of T , a sign-reversing involution on the remaining part of S, and
a sign-reversing involution on the remaining part of T . Figure 1 below illustrates this
interpretation of a sijection. In the figure, the upper-left square represents the set S+,
and similarly for the other three squares. The symbol ◦=>=◦ was inspired by Figure 1.

S T

+

−

Figure 1: An illustration of a sijection.

Since a sijection φ : S ◦=>=◦ T is an involution, we can use the notion “φ(s)” for an
element s not only of S but also of T . On the other hand, it is sometimes important
to distinguish between the domain and the codomain, especially when we consider a
composition of sijections. Thus, we define an inversion φ−1 : T ◦=>=◦ S of φ by

φ−1 = φ (as an involution),

and distinguish φ−1 from φ as a sijection.
The simplest example of a sijection is the identity sijection idS, defined by

S S

s s

◦=>=◦

for any signed set S. Let us introduce a few more examples which we shall use in later
sections.
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Example 2. For any integers a, b and c, there exists a sijection φ : [a, b) ◦=>=◦ [a, c)⊔ [c, b).
In fact, each integer in [min{a, b, c},max{a, b, c}) ∪ Z appears twice as an element, and
when we let one correspond to the other, we obtain the sijection.

Example 3. Let A, B be ordinary sets and f : A → B a bijection. In this situation, we
can interpret f as a sijection between S = (A,B) and (∅, ∅).

Example 4. Let S, T be signed sets and φ : S ◦=>=◦ T a sijection. Then, we have a
sijection S ⊔−T ◦=>=◦ (∅, ∅). In fact, φ is also a bijection between S+ ⊔ T− and S− ⊔ T+.
Therefore, this is also a sijection between (S+ ⊔ T−, S− ⊔ T+) = S ⊔ −T and (∅, ∅) by
the previous example. Conversely, a sijection between S ⊔ −T can be interpreted as a
sijection between S and T .

In particular, we have
S ⊔ −S ◦=>=◦ (∅, ∅)

derived from the identity sijection on S for any signed set S.

2.2.1 Composition of sijections

A composition of sijections is defined as follows [7].

Lemma & Definition 5 ([7, Proposition 2 (1)]). Let S, T , U be signed sets and φ : S ◦=>=◦
T , ψ : T ◦=>=◦ U sijections. For s ∈ supp (S), we define ψ ◦ φ(s) as the last well-defined
element in the sequence

s, φ(s), ψ(φ(s)), φ(ψ(φ(s))), . . . .

Similarly, for u ∈ supp (U), we define ψ ◦ φ(u) as the last well-defined element in the
sequence

u, ψ(u), φ(ψ(u)), ψ(φ(ψ(u))), . . . .

Then, ψ ◦ φ is a sijection from S to U , and we call it the composition of φ and ψ.

First we should clarify what we mean by “the last well-defined element in the sequence
s, φ(s), ψ(φ(s)), φ(ψ(φ(s))), . . .”. For example if φ(s) belongs to supp (S), then ψ(φ(s))
is not defined because the domain of ψ is supp (T )⊔supp (U). Therefore, (ψ◦φ)(s) is φ(s)
in this case. For the original proof of the lemma, see [4]. Here, we give an alternative proof
of this fact using the language of graphs. A graph in the proof might have multiple edges,
so we fix notations relevant to multisets. We use double braces to describe a multiset,
and use the symbol “+” to describe a sum of multisets.

Proof of Lemma & Definition 5. Consider a graph with vertices V = supp (S)⊔supp (T )⊔
supp (U) and edges E = R +B, where

R = {{ {v, φ(v)} | v ∈ S+ ⊔ T− }},
B = {{ {v, ψ(v)} | v ∈ T+ ⊔ U− }}.
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Note that the graph is an undirected bipartite finite graph, where one part is S+⊔T−⊔U+

and the other part is S− ⊔ T+ ⊔U−. We consider painting edges in R with red and those
in B with blue. Then, by the definitions, each vertex belongs to at most one red edge
and at most one blue edge. Because of the degrees of the vertices and the finiteness of
the graph, the graph consists of finitely many line graphs and cycles. Moreover, all the
endpoints of these line graphs belong to supp (S) ⊔ supp (U) and for each line graph or
cycle the color of the edges alternate. Please refer to Figure 2 below for an example:
dashed edges represent those in B and the others those in R. In addition, the shape of a
node corresponds to which part it belongs to.

S
φ

◦=>=◦ T
ψ

◦=>=◦ U

+

−

+

+

−

+

+

+

+

−

−

−

+

+

−

Figure 2: A composition of sijections.

Consider s ∈ supp (S). The degree of s is 1, so it is an endpoint of a line graph.
Therefore, ψ ◦ φ(s) is the other endpoint of the line graph. If ψ ◦ φ(s) ∈ supp (S), the
first edge and the last edge in the line graph are both red, so its length is odd. Thus, s
and ψ ◦ φ(s) belong to different parts of G as a bipartite graph. Therefore, the sign of
ψ ◦ φ(s) is different from that of s. In the other case, namely when ψ ◦ φ(s) ∈ supp (U),
the length of the line graph is even and ψ ◦ φ(s) belongs to the same part as s, so the
sign of ψ ◦ φ(s) is equal to that of s.

For u ∈ supp (U), we can give a similar proof. Therefore, ψ ◦ φ is a well-defined
sijection from S to U .

Relating to this proof we define a graph G = (V,E) of a sijection φ : S ◦=>=◦ T as
follows:

V := supp (S) ⊔ supp (T ) ,

E := {{ {v, φ(v)} | v ∈ S+ ⊔ T− }}.

the electronic journal of combinatorics 33(1) (2026), #P1.9 8



This notion is useful to prove some lemmas and to understand properties of sijections.
For example, with this language, the sijection φ : [1, 3) ⊔ [3, 2) ◦=>=◦ [1, 2) in Example 2 is
described as:

[1, 3) ⊔ [3, 2) [1, 2)φ : ◦=>=◦

+

−

1

2

2

1

Remark 6. There are two reasons why we impose finiteness on signed sets. One of them is
because, without the finiteness it could simply be meaningless since (N,N) is in sijection
to arbitrary signed sets (and any infinite “signed set”). The other reason is because it is
needed for the well-definedness of compositions of sijections. For example, let S = ({1}, ∅),
T = (2N, 2N+1), U = (∅, ∅), φ(2x− 1) = 2x and ψ(2x) = 2x+1. If we define a graph in
the same way as in finite cases, the connected component that 1 ∈ S+ belongs to is still
a line graph but not finite since we have

φ(1) = 2, ψ(φ(1)) = 3, φ(ψ(φ(1))) = 4, . . . .

Thus, the proof and the definition are broken in infinite cases.

Last, we prove that compositions of sijections have the associative property.

Proposition 7 ([4], Corollary 3). Let S, T , U and V be signed sets and φ : S ◦=>=◦ T ,
ψ : T ◦=>=◦ U , and ξ : U ◦=>=◦ V sijections. Then,

ξ ◦ (ψ ◦ φ) = (ξ ◦ ψ) ◦ φ.

Proof. Consider a graph with vertices supp (S) ⊔ supp (T ) ⊔ supp (U) ⊔ supp (V ) and
edges {{ {v, φ(v)} | v ∈ S+ ⊔ T− }} + {{ {v, ψ(v)} | v ∈ T+ ⊔ U− }} + {{ {v, ξ(v)} | v ∈
U+ ⊔ V − }}. This graph consists of line graphs and cycles. Moreover, for any endpoint v
of a line graph the other endpoint of the line graph is (ξ ◦(ψ◦φ))(v) = ((ξ ◦ψ)◦φ)(v).

2.2.2 Cartesian products of sijections

The definition of the Cartesian product of sijections is a bit more complicated. For
sijections φi : Si ◦=>=◦ Ti (i = 1, 2), we can construct a sijection φ1 × φ2 between S1 × S2

and T1 × T2 as follows:

For s = (s1, s2) ∈ supp (S1 × S2) = supp (S1)× supp (S2),

(φ1×φ2)(s) =


(φ1(s1), s2) φ1(s1) ∈ supp (S1) ,

(s1, φ2(s2)) φ1(s1) ∈ supp (T1) and φ2(s2) ∈ supp (S2) ,

(φ1(s1), φ2(s2)) φ1(s1) ∈ supp (T1) and φ2(s2) ∈ supp (T2) ,
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and for t = (t1, t2) ∈ supp (T1 × T2) = supp (T1)× supp (T2),

(φ1 × φ2)(t) =


(φ1(t1), t2) φ1(t1) ∈ supp (T1) ,

(t1, φ2(t2)) φ1(t1) ∈ supp (S1) and φ2(t2) ∈ supp (T2) ,

(φ1(t1), φ2(t2)) φ1(t1) ∈ supp (S1) and φ2(t2) ∈ supp (S2) .

It is easy to check that this sijection is an involution on supp (S1 × S2) ⊔ supp (T1 × T2)
and that it meets the sign conditions:

• if (φ1 × φ2)(s) ∈ supp (S1 × S2), the sign of (φ1 × φ2)(s) is different from the sign
of s,

• if (φ1 × φ2)(s) ∈ supp (T1 × T2), the sign of (φ1 × φ2)(s) is equal to the sign of s,

• and similar results are true for t ∈ supp (T1 × T2).

Therefore, it is indeed a sijection. Additionally, this definition has the associative property.

Proposition 8. Let φi : Si ◦=>=◦ Ti be a sijection for i = 1, 2, 3. Then, we have

(φ1 × φ2)× φ3 = φ1 × (φ2 × φ3).

Proof. Regardless of how one puts the parentheses, if all φi send si to Ti, then s =
(s1, s2, s3) corresponds to (φ1(s1), φ2(s2), φ3(s3)). Otherwise, only the leftmost element si
of s such that φi(si) ∈ Si is replaced with φi(si).

Thus, we can define the Cartesian product of a finite number of sijections as follows.
(See also Proposition 2(2) of [7].)

Definition 9. Let S1, S2, . . . , Sk, T1, T2, . . . , Tk be signed sets and let φi : Si ◦=>=◦ Ti be a
sijection for i = 1, 2, . . . , k. We define

φ1 × φ2 × · · · × φk = (· · · ((φ1 × φ2)× φ3)× · · · )× φk.

Let s = (s1, s2, . . . , sk) ∈ supp (S1 × S2 × · · · × Sk) = supp (S1) × supp (S2) × · · · ×
supp (Sk). Then, according to the proof of Proposition 8, when φi(si) ∈ supp (Ti) for all
i = 1, 2, . . . , k, we have

(φ1 × φ2 × · · · × φk)(s) = (φ1(s1), φ2(s2), . . . , φk(sk)).

Otherwise, we have

(φ1 × φ2 × · · · × φk)(s) = (s1, s2, . . . , sj−1, φj(sj), sj+1, . . . , sk),

where j is the minimum index such that φj(sj) ∈ supp (Sj).
For an element of supp (T1 × T2 × · · · × Tk), a similar expression can be given.
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Remark 10. We remark on a disadvantageous feature of this Cartesian product of sijec-
tions. Let φi : Si ◦=>=◦ Ti and ψi : Ti ◦=>=◦ Ui be sijections for i = 1, 2. In general, it does
not hold that

(ψ1 × ψ2) ◦ (φ1 × φ2) = (ψ1 ◦ φ1)× (ψ2 ◦ φ2). (3)

For example, let S = ({A}, ∅), T = ({A,B}, {B†}) and define a sijection φ as

S Tφ : ◦=>=◦

+

−

A

B

B†

A

.

If the relation (3) is always true, it must hold that

(idT ×φ) ◦ (φ× idS) = φ× φ = (φ× idT ) ◦ (idS ×φ).

However, we have by a simple calculation that

((idT ×φ) ◦ (φ× idS))((B,B)) = (B,B†) ̸= (B†, B) = ((φ× idT ) ◦ (idS ×φ))((B,B)),

so we have a contradiction. Thus, the relation (3) is not always true.
This feature is inevitable, namely it is not due to a defect in the definition. For

instance, in the above situation, we cannot determine which of (B,B†) and (B†, B) should
be (φ× φ)((B,B)) a priori because of symmetry.

2.2.3 Disjoint unions of sijections

For sijections φi : Si ◦=>=◦ Ti (i = 1, 2), the disjoint union φ1 ⊔ φ2 : S1 ⊔ S2 ◦=>=◦ T1 ⊔ T2 is
defined by

(φ1 ⊔ φ2)(s) =

{
φ1(s) s ∈ supp (S1) ⊔ supp (T1) ,

φ2(s) s ∈ supp (S2) ⊔ supp (T2) .

We define the disjoint union of a finite number of sijections in the same manner. Con-
sidering the graph of sijections, the disjoint union is just a juxtaposition, so we have
(φ1 ⊔ φ2) ⊔ φ3 = φ1 ⊔ (φ2 ⊔ φ3).

Next, we define the disjoint union with signed index of a family of sijections.

Definition 11 (Proposition 2(3) in [7]). Let T , T̃ be signed sets and ψ : T ◦=>=◦ T̃ a
sijection. Assume that we have signed sets {St}t∈supp(T )⊔supp(T̃) and sijections {φt : St ◦=>=◦

Sψ(t)}t∈T+⊔T̃− . Let φt = φ−1
(ψ(t)) for t ∈ T− ⊔ T̃+. Then, we have a sijction φ from

⊔
t∈T St

to
⊔
t∈T̃ St defined by

φ ((st, t)) =

{
(φt(st), t) if φt(st) ∈ St,

(φt(st), ψ(t)) if φt(st) ∈ Sψ(t).
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We denote it by ⊔
t ;ψ : T◦=>=◦T̃

φt or
⊔
t ;ψ

φt

Considering the graphs of sijections, the disjoint union of this type is also a juxtapo-
sition. Therefore, it is indeed a sijection. When T = T̃ and ψ = idT hold, the situation
becomes simple.

Let {φt : St ◦=>=◦ S̃t}t∈supp(T ) be sijections, then we have⊔
t∈T

φt

(
:=

⊔
t ; idT

φt

)
:
⊔
t∈T

St ◦=>=◦
⊔
t∈T

S̃t.

We shall construct another four canonical sijections.

Construction 12. Let S, T1 and T2 be signed sets. Then, we have a canonical sijection

S × (T1 ⊔ T2) ◦=>=◦ (S × T1) ⊔ (S × T2),

which is derived from the identities

(S × (T1 ⊔ T2))+ = ((S × T1) ⊔ (S × T2))
+

= (S+ × T+
1 ) ⊔ (S+ × T+

2 ) ⊔ (S− × T−
1 ) ⊔ (S− × T−

2 ),

(S × (T1 ⊔ T2))− = ((S × T1) ⊔ (S × T2))
−

= (S+ × T−
1 ) ⊔ (S+ × T−

2 ) ⊔ (S− × T+
1 ) ⊔ (S− × T+

2 ).

Construction 13. Let S and T be signed sets and {St}t∈supp(T ) a family of signed sets.
Then, we have a canonical sijection

S ×
⊔
t∈T

St ◦=>=◦
⊔
t∈T

(S × St)

which is derived from the identities.

Construction 14. Let T , U be signed sets and {Sv}v∈supp(T )⊔supp(U) a family of signed
sets. Then, we have a canonical sijection⊔

t∈T

St ⊔
⊔
u∈U

Su ◦=>=◦
⊔

v∈T⊔U

Sv,

which is derived from the identities.

Construction 15. Let S1 and S2 be signed sets and {Ts1,s2}s1∈supp(S1),s2∈supp(S2) a family
of signed sets. Then, we have a canonical sijection⊔

s1∈S1

⊔
s2∈S2

Ts1,s2 ◦=>=◦
⊔
s2∈S2

⊔
s1∈S1

Ts1,s2 ,

which is derived from bijections of the form⊔
a∈A

⊔
b∈B

Ca,b →
⊔
b∈B

⊔
a∈A

Ca,b : ((c, b), a) 7→ ((c, a), b),

where A, B and Ca,b (for each a ∈ A and b ∈ B) are ordinary sets.
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Construction 16. Let U be a signed set and {Tu}u∈supp(U), {St,u}u∈supp(U),t∈supp(Tu) fam-
ilies of signed sets. Then, we have a canonical sijection⊔

u∈U

⊔
t∈Tu

St,u ◦=>=◦
⊔

t∈
⊔

u∈U Tu

St,u,

which is derived from bijections of the form⊔
a∈A

⊔
b∈Ba

Ca,b →
⊔

b∈
⊔

a∈ABa

Ca,b : ((c, b), a) 7→ (c, (b, a)).

These constructions can be decomposed to bijections, which are almost identities. In
these cases, we shall identify the domain with the codomain and use “=” to describe these
sijections.

Lastly, we explain the operator precedence for signed sets. The operators should be
evaluated in the order:

1. taking the opposite (−),

2. the Cartesian products (×),

3. disjoint unions (⊔).

For example, we can write S×T1⊔S×T2 instead of (S×T1)⊔(S×T2), but not S×T1⊔T2
instead of S × (T1 ⊔ T2).

3 Compatibility

We introduce the notion of compatibility, the most important idea in this paper.

Definition 17. A statistic of a signed set is a function on (at least) its support. Let S,
T be signed sets and let η be a statistic of S ⊔ T . A sijection ϕ : S ◦=>=◦ T is compatible
with η if

∀s ∈ supp (S ⊔ T ) , η(ϕ(s)) = η(s).

The codomain of statistics does not matter, so we will not pay attention to it. For

simplicity, we will sometimes write s
◦
∈ S instead of s ∈ supp (S).

Compatibility is a generalization of the notion of normality which is used in [7]. For
example, let us consider the sijection φ in Example 2, which is normal in the language
of [7]. We can define a canonical Z-valued statistic of [a, b) ⊔ ([a, c) ⊔ [c, b)), because we
can recognize each element of the support of [a, b) ⊔ ([a, c) ⊔ [c, b)) as an integer in the
canonical way. The sijection φ is compatible with this statistic. We call statistics of this
type normal statistics. The precise definition is given in Definition 22.

Compatibility is preserved under compositions and so is normality.

Lemma 18. Let ϕ : S ◦=>=◦ T , ψ : T ◦=>=◦ U be sijections and η a statistic of S ⊔ T ⊔ U .
If ϕ and ψ are compatible with η, then ψ ◦ ϕ is compatible with η.
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Proof. For any s
◦
∈ S, η(s) = η(ϕ(s)) = η(ψ(ϕ(s))) = · · · while they are well-defined.

Therefore, η(s) = η(ψ ◦ ϕ(s)). The same is true for an element of supp (U).

As well as for compositions, compatibility is preserved under disjoint unions and Carte-
sian products.

Lemma 19. Let φi : Si ◦=>=◦ Ti be a sijection compatible with a statistic ηi for i = 1, 2.
When we define a statistic η = η1 ⊔ η2 by

η(u) = (η1 ⊔ η2)(u) =

{
η1(u) (u

◦
∈ S1 ⊔ T1)

η2(u) (u
◦
∈ S2 ⊔ T2),

φ1 ⊔ φ2 is compatible with η1 ⊔ η2.

Lemma 20. Let φi : Si ◦=>=◦ Ti be a sijection compatible with a statistic ηi for i = 1, 2.
When we define a statistic η = η1 × η2 by

η((u1, u2)) = (η1 × η2)(u) = (η1(u1), η2(u2)),

φ1 × φ2 is compatible with η1 × η2.

By these definitions, a disjoint union and the Cartesian product of more than two
sijections can be treated in the same manner. Furthermore, in the situation of Definition
11, if all the sijections {φt} are compatible with some statistic η, then

⊔
t ;ψ φt is also

compatible with η. Proofs can be given either by considering the graphs of sijections or
by using the definitions. The following lemma is a special case of this.

Lemma 21. Let ψ : T ◦=>=◦ T̃ be a sijection compatible with a statistic η and let
{Sa}a∈η(supp(T )⊔supp(T̃)) be a family of signed sets. Then the sijection obtained by applying

the Definition 11: ⊔
t ;ψ : T◦=>=◦T̃

idSη(t) :
⊔
t∈T

Sη(t) ◦=>=◦
⊔
t∈T̃

Sη(t) (4)

is compatible with the statistic:

supp

⊔
t∈T

Sη(t) ⊔
⊔
t∈T̃

Sη(t)

→
⋃

a∈η(supp(T )⊔supp(T̃))

supp (Sa) ;

{
((s, t), 0) 7→ (s, η(t))

((s, t), 1) 7→ (s, η(t)).

Definition 22. A normal signed set is a signed interval or a signed set that is made by
finite operations of disjoint union or Cartesian product of signed intervals. For a signed
interval, its normal statistic is the inclusion map to Z. For two pairs of normal signed
sets and their normal statistics (S1, η1), (S2, η2), we define the normal statistic of S1 ⊔ S2

by η1 ⊔ η2 as in Lemma 19 and the normal statistic of S1×S2 by η1× η2 as in Lemma 20.

Remark 23. These definitions are similar to those of elementary signed sets and normality
in [7].
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We prepare one notation for later use.

Definition 24. Let S be a signed set and η a statistic of S. For an element a ∈
η(supp (S)), we define the restriction of S as follows:

S |η=a=
(
{s ∈ S+ | η(s) = a}, {s ∈ S− | η(s) = a}

)
.

Let us explain the motivation for introducing the notion of compatibility. In bijective
combinatorics, we like to think that the more natural a bijection (or a sijection for that
matter), the better. However, whether one particular bijection (or sijection) is more
natural than another can be controversial. The notion of compatibility is intended to offer
an answer to this problem. More specifically, a bijection (or a sijection) is considered to
be ‘more natural’ if it is compatible with a finer statistic, where the size of the image
of a statistic determines how fine it is. Unfortunately however, for any given sijection
Γ: S ◦=>=◦ T , we can always construct one of the finest possible statistics which, at the
same time, is also entirely trivial: η : supp (S ⊔ T ) → S+ ⊔ T− such that

∀s ∈ S+ ⊔ T−, η(s) = s,

∀s ∈ S− ⊔ T+, η(s) = Γ(s).

Nevertheless, we believe that the notion of compatibility is useful because it allows us to
translate a sense of ‘naturalness’ (as opposed to ‘contrivedness’) of a sijection into the
naturalness of a statistic. When a ‘natural looking’ sijection is given, we can explain why it
can truly be regarded as natural using the notion of compatibility. This process sometimes
leads us to novel combinatorial structures. Our first application of compatibility concerns
Gelfand-Tsetlin patterns. It is an example of this type of application of compatibility.
For more details, see §4.

In another interpretation, a construction of a sijection with compatibility gives a bijec-
tive proof of a refined enumeration. In this context, first, a seemingly natural statistic is
given according to a computational proof of a refined enumeration. After that, we can try
to construct a sijection compatible with that statistic. In fact, the existence is guaranteed
through the computational proof but we need to find an algorithm to construct it. Our
second application of compatibility is of this type. We define statistics on alternating
sign matrices and shifted Gelfand-Tsetlin patterns by referring to refined enumerations
for alternating sign matrices [1, 2], and construct a sijection which is compatible with
the statistics. The construction is similar to Fischer and Konvalinka’s work [7], but our
construction is more elementary. For more details, see §5.

In the first type of application we make a statistic referring to a sijection and vice
versa in the second type of application. Either way, we have to obtain a pair of a natural
looking statistic and a natural sijection compatible with the statistic to state that they
are truly natural in the sense explained above.
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4 About Gelfand-Tsetlin patterns

4.1 Definitions

A Gelfand-Tsetlin pattern is a triangular array (ai,j)1⩽j⩽i⩽n of integers such that for any
1 ⩽ j ⩽ i ⩽ n− 1, it holds that ai+1,j ⩽ ai,j ⩽ ai+1,j+1. When the elements are arranged
as follows

a1,1
a2,1 a2,2

a3,1 a3,2 a3,3

. .
. ...

...
. . .

an,1 · · · · · · · · · · · · · · · · · · · · · an,n,

each element is greater than or equal to the element left-below and is less than or equal
to the element right-below. We call the sequence (an,1, an,2, . . . , an,n) the bottom row of
a Gelfand-Tsetlin pattern (ai,j)ij. For reasons that will become clear afterwards, we shall
modify this definition a bit. We impose the condition

ai+1,j ⩽ ai,j < ai+1,j+1, for all 1 ⩽ j ⩽ i ⩽ n− 1, (5)

instead of ai+1,j ⩽ ai,j ⩽ ai+1,j+1. We call triangular arrays subject to this new conditions
modified Gelfand-Tsetlin patterns. Clearly, Gelfand-Tsetlin patterns with bottom row
(k1, k2, . . . , kn) are in one-to-one correspondence with modified Gelfand-Tsetlin patterns
with bottom row (k1, k2 + 1, . . . , kn + n − 1). Indeed, a Gelfand-Tsetlin pattern (ai,j)ij
corresponds to a modified Gelfand-Tsetlin pattern (ai,j + j − 1)ij. For example,

3
1 3

1 3 4
7→

3
1 4

1 4 6.

A generalization of Gelfand-Tsetlin patterns for bottom rows that are not monoton-
ically increasing is introduced in [7]. The signed set of the generalization is defined as
follows.

Definition 25 (Definition 5 in [7]). For k ∈ Z, define GTFK(k) = ({∅}, ∅), and for
k = (k1, k2, . . . , kn) ∈ Zn, n ⩾ 2, define GTFK(k) recursively as

GTFK(k) = GTFK(k1, k2, . . . , kn) =
⊔

l∈[k1,k2]×···×[kn−1,kn]

GTFK(l).

Here, [a, b] is a variant of a signed interval and is equal to [a, b+ 1). (Please pay
attention to the closing parenthesis.) As well as this definition, the signed set of modified
Gelfand-Tsetlin patterns is defined as follows.

Definition 26. For k ∈ Z, define GT(k) = ({∅}, ∅), and for k = (k1, k2, . . . , kn) ∈ Zn,
n ⩾ 2, define GT(k) recursively as

GT(k) = GT(k1, k2, . . . , kn) =
⊔

l∈[k1,k2)×···×[kn−1,kn)

GT(l).
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The only difference between the two definitions is the closing parenthesis. As well as
in the unsigned case, for k = (k1, k2, . . . , kn) ∈ Zn and k′ = (k1, k2 + 1, . . . , kn + n − 1),
two signed sets GTFK(k) and GT(k′) are essentially the same. In fact, we can make

l = (l1, l2, . . . , ln−1) ∈ [k1, k2]× · · · × [kn−1, kn]

correspond to

l′ = (l1, l2 + 1, . . . , ln−1 + n− 2) ∈ [k1, k2 + 1)× · · · × [kn−1 + n− 2, kn + n− 1).

Therefore, we can check recursively

#GTFK(k)+ = #GT(k′)+ and #GTFK(k)− = #GT(k′)−.

Example 27. For example, ((2, (1, 3)), (3, 1, 4)) is an element of GT((7, 1, 3, 5)) because

2
◦
∈ [1, 3), (1, 3)

◦
∈ [3, 1)× [1, 4), (3, 1, 4)

◦
∈ [7, 1)× [1, 3)× [3, 5).

This sign is plus because there is an even number of ‘ >’ in the following:

1 < 3, 3 > 1 < 4, 7 > 1 < 3 < 5.

We can interpret an element of GT(k) (or GTFK(k)) as a triangular array. For the above
example, we can draw it as

2
1 3

3 1 4
7 1 3 5.

Accordingly, it is clear that the formal definition of GT(k) is indeed identical to the
triangular array-based definition of modified Gelfand-Tsetlin patterns when the bottom
row k is monotonically increasing. From this correspondence, we call l the second bottom
row of T = (T ′, l) ∈ GT(k). For instance, the second bottom row of our running example
is (3, 1, 4).

4.2 Known sijections relevant to Gelfand-Tsetlin patterns

Fischer and Konvalinka construct some sijections relevant to Gelfand-Tsetlin pattern in
[7]. In this subsection, we explain these known results. Using our notations, it is easy to
describe the results and the constructions become transparent, which is why we choose to
give considerable details for them although they are essentially the same as Fischer and
Konvalinka’s work.

Construction 28 (Problem 4 in [7]). Let a = (a1, a2, . . . , an) ∈ Zn, b = (b1, b2, . . . , bn) ∈
Zn and x ∈ Z. We construct a sijection

ρ = ρa,b,x :
⊔

l∈[a1,b1)×[a2,b2)×···×[an,bn)

GT(l) ◦=>=◦
⊔

m∈S1×S2×···×Sn

GT(m, x),

where Si = ({ai}, {bi}), m = (m1,m2, . . . ,mn) and GT(m, x) = GT(m1,m2, . . . ,mn, x).
First, we construct the following sijection.
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Subconstruction 28.1 (Problem 2. in [7]). We construct a sijection

β = βa,b,x : [a1, b1)× [a2, b2)× · · · × [an, bn)

◦=>=◦
⊔

m∈S1×S2×···×Sn

[m1,m2)× [m2,m3)× [mn−1,mn)× [mn, x),

which is compatible with the normal statistic. The construction is by induction on n.
If n = 1, it coincides with Example 2. In fact, we have [a1, b1) ◦=>=◦ [a1, x) ⊔ [x, b1) =
[a1, x) ⊔ −[b1, x) =

⊔
m1∈S1

[m1, x). If n > 1, we have, by induction,

[a1, b1)× [a2, b2)× · · · × [an, bn)

ind.
◦=>=◦ [a1, b1)×

⊔
(m2,m3,...,mn)∈S2×S3×···×Sn

[m2,m3)× [mn−1,mn)× [mn, x)

C. 13
◦=>=◦

⊔
(m2,m3,...,mn)∈S2×S3×···×Sn

[a1, b1)× [m2,m3)× [mn−1,mn)× [mn, x).

Here, we have [a1, b1) ◦=>=◦
⊔
m1∈S1

[m1,m2) by substituting m2 for x in the result of
base step, then the construction is completed. The compatibility is induced in the obvious
way.

We return to the construction of ρ. By applying Lemma 21, where we use ψ : β,
η : the normal statistic, and {Sa}a : {GT(l)}l, we obtain the sijection⊔

l∈[a1,b1)×[a2,b2)×···×[an,bn)

GT(l)

⊔l;β idGT(l)

◦=>=◦
⊔

l∈
⊔

m∈S1×S2×···×Sn
[m1,m2)×[m2,m3)×···×[mn−1,mn)×[mn,x)

GT(l).

Furthermore, we have a sijection⊔
l∈

⊔
m∈S1×S2×···×Sn

[m1,m2)×[m2,m3)×[mn−1,mn)×[mn,x)

GT(l)

E. 16
=

⊔
m∈S1×S2×···×Sn

 ⊔
l∈[m1,m2)×[m2,m3)×[mn−1,mn)×[mn,x)

GT(l)


D. 26
=

⊔
m∈S1×S2×···×Sn

GT(m, x),

which completes the construction.

Construction 29 (Problem 5 in [7]). We construct the following sijections:
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1. for any k = (k1, k2, . . . , kn) ∈ Zn and i ∈ {1, 2, . . . , n− 1},

π = πk,i : GT(k1, k2, . . . , kn) ◦=>=◦ −GT(k1, k2, . . . , ki−1, ki+1, ki, ki+2, . . . , kn),

2. for any a = (a1, a2, . . . , an),b = (b1, b2, . . . , bn) ∈ Zn satisfying ai = bi and ai+1 =
bi+1 for some i ∈ {1, 2, . . . , n− 1},

σ = σa,b,i :
⊔

l∈[a1,b1)×[a2,b2)×···×[an,bn)

GT(l) ◦=>=◦ (∅, ∅).

The construction is by induction on n. First, we construct σ from π for the same n.
We have the decomposition⊔

l∈[a1,b1)×[a2,b2)×···×[an,bn)

GT(l) =
⊔

l∈[a1,b1)×[a2,b2)×···×[an,bn) s.t. li<li+1

GT(l)

⊔
⊔

l∈[a1,b1)×[a2,b2)×···×[an,bn) s.t. li>li+1

GT(l)

⊔
⊔

l∈[a1,b1)×[a2,b2)×···×[an,bn) s.t. li=li+1

GT(l).

The last term is the empty signed set, by the definition of Gelfand-Tsetlin patterns. From
the assumption, we have⊔

l∈[a1,b1)×[a2,b2)×···×[an,bn) s.t. li<li+1

πl,i :

⊔
l∈[a1,b1)×[a2,b2)×···×[an,bn) s.t. li<li+1

GT(l) ◦=>=◦ −
⊔

l∈[a1,b1)×[a2,b2)×···×[an,bn) s.t. li>li+1

GT(l),

which, combined with Example 4, completes the construction.
On the other hand, we can construct π from σ for one smaller n. Note that when

n = 1 there is nothing to prove. Because the construction is too long, we shall describe it
in Appendix A. We only describe the proof for the case n = 5 and i = 3. For x1, x2, x3, x4 ∈
Z, we have sijections compatible with the normal statistics

[x1, x2)×[x2, x3)× [x3, x4)

◦=>=◦ ([x1, x3) ⊔ [x3, x2))×−[x3, x2)× ([x3, x2) ⊔ [x2, x4))

◦=>=◦ −[x1, x3)× [x3, x2)× [x3, x2) ⊔ −[x1, x3)× [x3, x2)× [x2, x4)

⊔ −[x3, x2)× [x3, x2)× [x3, x2) ⊔ −[x3, x2)× [x3, x2)× [x2, x4).
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Then, we have

GT(l) =
⊔

m∈[l1,l2)×[l2,l3)×[l3,l4)×[l4,l5)

GT(m)

L. 21, C. 14
◦=>=◦

⊔
m∈−[l1,l2)×[l2,l4)×[l4,l3)×[l4,l3)

GT(m) ⊔
⊔

m∈−[l1,l2)×[l2,l4)×[l4,l3)×[l3,l5)

GT(m)

⊔
⊔

m∈−[l1,l2)×[l4,l3)×[l4,l3)×[l4,l3)

GT(m) ⊔
⊔

m∈−[l1,l2)×[l4,l3)×[l4,l3)×[l3,l5)

GT(m)

σ⊔id⊔σ⊔σ
◦=>=◦ (∅, ∅) ⊔ −

⊔
m∈[l1,l2)×[l2,l4)×[l4,l3)×[l3,l5)

GT(m) ⊔ (∅, ∅) ⊔ (∅, ∅)

= −
⊔

m∈[l1,l2)×[l2,l4)×[l4,l3)×[l3,l5)

GT(m) = −GT(l1, l2, l4, l3, l5).

Construction 30 (Problem 6 in [7]). Let k = (k1, k2, . . . , kn) ∈ Zn and x ∈ Z. We
construct a sijection

τ = τk,x : GT(k1, k2, . . . , kn) ◦=>=◦
n⊔
i=1

GT(k1, k2, . . . , ki−1, x, ki+1, . . . , kn).

When n = 1, it is trivial. In the following we assume that n ⩾ 2. First, we construct the
following sijection.

Subconstruction 30.1 (Problem 3. in [7]). We construct a sijection compatible with the
normal statistic

γ = γk,x : [k1, k2)× [k2, k3)× · · · × [kn−1, kn)

◦=>=◦
n⊔
i=1

[k1, k2)× [k2, k3)× · · · × [ki−2, ki−1)× [ki−1, x)× [x, ki+1)× · · · × [kn−1, kn)

⊔
n−2⊔
i=1

[k1, k2)× · · · × [ki−1, ki)× [ki+1, x)× [ki+1, x)× [ki+2, ki+3)× · · · × [kn−1, kn),

where we replaced ki with x in the first term and [ki, ki+1) and [ki+1, ki+2) with [ki+1, x)
in the second term. The construction is by induction on n. If n = 2, it coincides with
Example 2. For n > 2, we shall calculate the difference of the right hand side from that
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for n− 1 multiplied by [kn−1, kn). First, we have

n⊔
i=1

[k1, k2)× · · · × [ki−2, ki−1)× [ki−1, x)× [x, ki+1)× · · · × [kn−1, kn)

⊔ −

(
n−1⊔
i=1

[k1, k2)× · · · × [ki−2, ki−1)× [ki−1, x)

× [x, ki+1)× · · · × [kn−2, kn−1)

)
× [kn−1, kn)

◦=>=◦

(
n−3∏
i=1

[ki, ki+1)

)
×
(
[kn−2, x)× [x, kn) ⊔ [kn−2, kn−1)× [kn−1, x) ⊔ −[kn−2, x)× [kn−1, kn)

)
and

n−2⊔
i=1

[k1, k2)× · · · × [ki−1, ki)× [ki+1, x)× [ki+1, x)× [ki+2, ki+3)× · · · × [kn−1, kn)

⊔ −

(
n−3⊔
i=1

[k1, k2)× · · · × [ki−1, ki)× [ki+1, x)× [ki+1, x)

× [ki+2, ki+3)× · · · × [kn−2, kn−1)

)
× [kn−1, kn)

◦=>=◦

(
n−3∏
i=1

[ki, ki+1)

)
× [kn−1, x)× [kn−1, x).

Here, we have a sijection

[kn−2, x)× [x, kn) ⊔ [kn−2, kn−1)× [kn−1, x) ⊔ [kn−1, x)× [kn−1, x)

◦=>=◦ [kn−2, x)× [x, kn) ⊔ [kn−2, x)× [kn−1, x) ◦=>=◦ [kn−2, x)× [kn−1, kn),

which means [kn−2, x)×[x, kn)⊔[kn−2, kn−1)×[kn−1, x)⊔−[kn−2, x)×[kn−1, kn)⊔[kn−1, x)×
[kn−1, x) is in sijection to (∅, ∅) by Example 4. Therefore, the difference is also in sijection
to the empty signed set. By Example 4, we thus obtain the result. The compatibility can
be checked step by step.

We return to the construction of τ . By using Lemma 21, Construction 14, the sijection
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γ and the sijection σ constructed in Construction 29, we have

GT(k) =
⊔

l∈[k1,k2)×[k2,k3)×···×[kn−1,kn)

GT(l)

L. 21 : ⊔l;γ idGT(l)

◦=>=◦
⊔

l∈
⊔n

i=1 [k1,k2)×[k2,k3)×···×[ki−2,ki−1)×[ki−1,x)×[x,ki+1)×···×[kn−1,kn)

GT(l)

⊔
⊔

l∈
⊔n−2

i=1 [k1,k2)×···×[ki−1,ki)×[ki+1,x)×[ki+1,x)×[ki+2,ki+3)×···×[kn−1,kn)

GT(l)

(C. 14)⊔σ
◦=>=◦

n⊔
i=1

GT(k1, k2, . . . , ki−1, x, ki+1, . . . , kn) ⊔ (∅, ∅)

=
n⊔
i=1

GT(k1, k2, . . . , ki−1, x, ki+1, . . . , kn).

The construction is thus completed.

4.3 New compatibility properties

We define a statistic ηrow of Gelfand-Tsetlin patterns. First, we define a set of multisets

MS(Z, n) = {{{k1, k2, . . . , kn}} | k1 ⩽ k2 ⩽ · · · ⩽ kn} ≃ Zn/Sn,

where we use double braces to describe a multiset. We define Arow by

Arow =
∞⋃
i=1

Ai
row, Ai

row = MS(Z, 1)×MS(Z, 2)× · · · ×MS(Z, i).

Then, we define ηrow as follows.

• For ∅ ∈ GT(k), ηrow(∅) = {{k}} ∈ MS(Z, 1) = A1
row.

• For T ∈ GT(k), where k ∈ Zn and n ⩾ 2, we have l ∈ Zn−1 and T ′ ∈ GT(l) such
that T = (T ′, l). Then, we define

ηrow(T ) = (ηrow(T
′), {{k1, k2, . . . , kn}}) ∈ An−1

row ×MS(Z, n) = An
row.

For example, let T = (4, (2, 5)) ∈ GT((2, 5, 7)), then

ηrow (T ) = ({{4}}, {{2, 5}}, {{2, 5, 7}}) .

The following theorem is the main result of this section.

Theorem 31. The sijections π and σ in Construction 29 are compatible with the statistic
ηrow.
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Proof. The proof is by tracing the constructions. First, the compatibility of σ follows
from the compatibility of π. Next, the compatibility of π follows from the compatibility
of σ without the bottom row. The sijection π acts on the bottom row as swapping an
element with the next element, so it does not affect the value of ηrow. Therefore, π and σ
are compatible with the statistic ηrow.

The theorem means that the sijection π acts on GT(k) as a permutation of elements in
each row. This result is one of the most important reasons why we use half-open intervals
to describe signed intervals and Gelfand-Tsetlin patterns. Based on the theorem, we can
decompose the equinumerous relation of Gelfand-Tsetlin patterns by using the statistic
ηrow. Namely, we have

GT(k1, k2, . . . , kn) |ηrow=A◦=>=◦ −GT(k1, k2, . . . , ki−1, ki+1, ki, ki+2, . . . , kn) |ηrow=A

from the compatibility with ηrow of the sijection π. When l is a permutation of k, we have
#GT(k) |ηrow=A= sgn s · #GT(l) |ηrow=A, where s is a permutation of {1, 2, . . . , n} such
that li = ks(i) and sgn s means the sign of s. Let (ai,j)1⩽j⩽i⩽n be the elements of A as

A = ({{a1,1}}, {{a2,1, a2,2}}, . . . , {{an,1, an,2, . . . , an,n}}), ai,j ⩽ ai,j+1(∀1 ⩽ j < i ⩽ n),

and let a = (an,1, an,2, . . . , an,n). When (ai,j)ij form an unsigned modified Gelfand-Tsetlin
pattern, namely when for any 1 ⩽ j ⩽ i ⩽ n − 1, ai+1,j ⩽ ai,j < ai+1,j+1 holds, we
have #GT(a) |ηrow=A= 1. Therefore, we have #GT(ã) |ηrow=A= sgn s, where s ∈ Sn

and ãi = as(i). Otherwise, when (ai,j)ij do not form a classical Gelfand-Tsetlin pattern,
#GT(ã) |ηrow=A= 0 for any ã ∈ Zn. To describe what occurs in this situation, we need
some new notions.

Definition 32. A system of combinatorial objects consists of

• a family {Aλ}λ∈Λ of combinatorial objects,

• a set M , a source function s : M → Λ and a target function t : M → Λ,

• a family {φµ : As(µ) ◦=>=◦ At(µ)}µ∈M of sijections between combinatorial objects,

where the term “a combinatorial object” refers to a signed set Aλ, rather than an element
of Aλ. We define an integrability condition for a pair of combinatorial objects (Aλ, Aλ′)
as follows:

There exists a path of sijections from Aλ to Aλ′ , namely (µ1, µ2, . . . , µk) ∈Mk

such that s(µ1) = λ, t(µi) = s(µi+1) for any 1 ⩽ i ⩽ k − 1 and t(µk) = λ′. In
addition, the composition φµk ◦ φµk−1

◦ · · · ◦ φµ1 is independent to the choice
of the path.

When any pair of combinatorial objects meets the integrability condition, we say the
system is integrable, and when any pair (Aλ, Aλ′) of combinatorial objects such that
A−
λ = A−

λ′ = ∅ meets the integrability condition, we say the system is partially integrable.
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The following lemma is useful to prove a system is partially integrable.

Lemma 33. Let ({Aλ}λ∈Λ, {φµ}µ∈M , s, t) be a system of combinatorial objects. When
the system is strongly connected, namely for any pair (λ, λ′) ∈ Λ2 there exists a path
of sijections from Aλ to Aλ′, the system is partially integrable if it meets the following
condition:

There exists λ ∈ Λ such that A−
λ = ∅ and (Aλ, Aλ) meets the integrability

condition.

Proof. Let λ1, λ2 ∈ Λ such that A−
λ1

= A−
λ2

= ∅. Since the system is strongly connected,

there is a path of sijections from Aλ1 to Aλ2 . Let ψ, ψ̃ be compositions of sijections from
Aλ1 to Aλ2 along two different paths. Since A−

λ1
= A−

λ2
= ∅, they are ordinary bijections.

Similarly, we can take sijections φ1 : Aλ ◦=>=◦ Aλ1 , φ2 : Aλ ◦=>=◦ Aλ2 along some paths in
the system and they are also bijections. From the integrability condition for (Aλ, Aλ), we

have φ−1
2 ◦ ψ ◦ φ1 = φ−1

2 ◦ ψ̃ ◦ φ1, namely ψ = ψ̃. Since this means that (Aλ1 , Aλ2) meets
the integrability condition, the system is partially integrable.

Remark 34. In this lemma, if the system has an ordinary set as its objects, the converse
of the lemma holds by definition.

Remark 35. In general, it does not holds that

f ◦ g = f ◦ h⇒ g = h

for sijections f , g and h, unlike the case of bijections. For example, let f and g be
sijections from (∅, ∅) to ({a, b}, {c, d}) such that f(a) = c, f(b) = d, g(a) = d, g(b) = c.
Then, f−1 ◦ g = f−1 ◦ f : (∅, ∅) ◦=>=◦ (∅, ∅) holds, but f ̸= g.

In bijective (as well as in sijective) combinatorics, our goal is to construct larger (par-
tially) integrable systems of combinatorial objects. In this sense, to construct a compatible
sijection is a weak goal. For a strongly connected system ({Aλ}λ∈Λ, {φµ}µ∈M , s, t) and
a statistic η on

⊔
λ∈Λ supp (Aλ), we say the system is compatible with η when each φµ

is compatible with η. If the statistic η is injective on supp (Aλ) (note that this requires
A−
λ = ∅), according to the lemma, the system is partially integrable.
For instance, in the case of Gelfand-Tsetlin patterns the system with k ∈ Zn is de-

scribed as

• a set of combinatorial objects: {GT(l) | l is a permutation of k},

• a set of sijections: {πl,i | l is a permutation of k and i ∈ {1, 2, . . . , n}}.

Then the system is compatible with ηrow. Since ηrow is injective on supp (GT(k)) when k
is increasing, the system is partially integrable. Therefore, the above discussion results in
the following corollary.

Corollary 36. Let k ∈ Zn and Sk = {l | l is a permutation of k}. Then, {GT(l)}l∈Sk

and {πl,i}l∈Sk,i∈{1,2,...,n} form a partially integrable system of combinatorial objects.
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Remark 37. In this remark, we explain why the definition of “partially integrable” is
needed, or in other words why “integrable” is too strict. For this purpose, we give an
example of a partially integrable system of combinatorial objects which is not integrable.
Let φ : S ◦=>=◦ T be the sijection constructed in Remark 10. We consider the system
described as

S × T

S × S T × T

T × S .

φ×idT◦=>=◦
φ×idS◦=>=◦

idS
×φ

◦=>=◦

idT
×φ

◦=>=◦

Here, when we define a system by a diagram like as above, “ψ : U ◦=>=◦ V ” in a diagram
implies that the system includes not only ψ : U ◦=>=◦ V but also ψ−1 : V ◦=>=◦ U . We
showed that (idT ×φ) ◦ (φ × idS) ̸= (φ × idT ) ◦ (idS ×φ) in the remark. Therefore, the
system is not integrable. However, by Lemma 33, this system is partially integrable
because of #(S × S)+ = 1 and #(S × S)− = 0.

This example is very simple and a similar situation occurs in general when we take
the Cartesian product of two or more sijection that have some cancellations. Therefore,
there are no integrable systems that do not involve at least some trivial cases.

Last, we give two proofs of the signed enumeration of the Gelfand-Tsetlin patterns,
one of which is combinatorial and the other is partially computational. The enumeration
for a strictly increasing k ∈ Zn is known to be (for example, see [12])

#GT(k) =
∏

1⩽i<j⩽n

kj − ki
j − i

,

and we shall prove that the result is true for general cases. First, let us prepare some
definitions. For k ∈ Zn, we define sgn(k) as the sign of a permutation s ∈ Sn such
that ks(1) < ks(2) < · · · < ks(n) when all elements of k are distinct. Otherwise, we define
sgn(k) = 0. Let kinc be a weakly increasing sequence such that {{k}} = {{kinc}}. For a
signed set S and numbers {as}s∈supp(S), we define∑

s∈S

as =
∑
s∈S+

as −
∑
s∈S−

as.

Proof. We provide a combinatorial proof of the signed enumeration. When sgn(k) ̸= 0,
we have a sijection GT(k) ◦=>=◦ sgn(k)GT(kinc) according to Construction 29. Therefore,

#GT(k) = sgn(k) ·#GT(kinc) =
∏

1⩽i<j⩽n

kj − ki
j − i

.

When sgn(k) = 0, similarly we have a sijection GT(k) ◦=>=◦ GT(kinc) and since k has
duplicate elements, we have

#GT(k) = 0 =
∏

1⩽i<j⩽n

kj − ki
j − i

.
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Proof. We provide a computational proof of the signed enumeration. It is sufficient to
prove the following claim.

Claim 38. Let A = (A1, A2, . . . , An) ∈ An
row such that {{k}} = An. Then, we have

#GT(k) |ηrow=A

=

{
sgn(k) when A forms an unsigned modified Gelfand-Tsetlin pattern,

0 otherwise.

The proof is given by induction on n. For n = 1, this is trivial. For n > 1, let
A′ ∈ An−1

row such that A = (A′, {{k}}). Then, we have

#GT(k) |ηrow=A=
∑

l∈[k1,k2)×[k2,k3)×···×[kn−1,kn)

#GT(l) |ηrow=A′ .

Let a1 ⩽ a2 ⩽ · · · ⩽ an−1 be the elements of An−1. If they are not distinct, A′ does not
form an unsigned modified Gelfand-Tsetlin pattern and neither does A. Therefore, in
this case we obtain the result that #GT(k) |ηrow=A= 0. In the following, we assume that
a1 < a2 < · · · < an−1.

Now, with the assumption of the induction, we have

#GT(k) |ηrow=A =
∑

l∈[k1,k2)×[k2,k3)×···×[kn−1,kn)

#GT(l) |ηrow=A′

=
∑

l∈[k1,k2)×[k2,k3)×···×[kn−1,kn) s.t. {{l}}=An−1

#GT(l) |ηrow=A′

= 1A′ forms a classical Gelfand-Tsetlin pattern

×
∑

l∈[k1,k2)×[k2,k3)×···×[kn−1,kn) s.t. {{l}}=An−1

sgn(l).

For i ∈ {1, 2, . . . , n}, let ti be the integer such that ati−1 < ki ⩽ ati , where we define
a0 = −∞ and an = +∞. Then, it is sufficient to show that

∑
l∈[k1,k2)×[k2,k3)×···×[kn−1,kn) s.t. {{l}}=An−1

sgn(l) =

{
sgn(k) if t1, t2, . . . , tn are distinct,

0 otherwise,

because A forms an unsigned modified Gelfand-Tsetlin pattern if and only if A′ does
and t1, t2, . . . , tn are distinct. Let e1, e2, . . . , en−1 be the canonical basis of Rn−1 and
fi =

∑i−1
j=1 ej for i ∈ {1, 2, . . . , n}. Then, we have∑

l∈[k1,k2)×[k2,k3)×···×[kn−1,kn) s.t. {{l}}=An−1

sgn(l) = det
(
ft2 − ft1 , ft3 − ft2 , . . . , ftn − ftn−1

)
.

The reason why this determinant formula holds is the following:
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Taking an element l of [k1, k2) × [k2, k3) × · · · × [kn−1, kn) such that {{l}} =
An−1, is equivalent to assigning each element of An−1 = {{a1, a2, . . . , an−1}} to
an element of l = (l1, l2, . . . , ln−1) one-to-one, such that ai corresponds to lj
with ai ∈ [kj, kj+1), including its sign. By the definition of tj and tj+1, ai ∈
[kj, kj+1) means that i ∈ [tj, tj+1). From the viewpoint of lj this assignment

is identical to a bijection σ ∈ Sn−1; j 7→ i = σ(j) such that σ(j) ∈ [tj, tj+1).

Furthermore, sgn(l) is equal to sgn(σ) by the definition of sgn(l), and we
obtain the determinant formula.

If ti = tj for some 1 ⩽ i < j ⩽ n, then fti+1
− fti , fti+2

− fti+1
, . . . , ftj − ftj−1

are
not linearly independent. Thus, if t1, t2, . . . , tn are not distinct, the determinant is equal
to zero. Otherwise, we will show that the determinant is equal to the sign of T =
(t1, t2, . . . , tn), which is equal to sgn(k). First, let

F (x1, x2, . . . , xn) = det
(
fx1 − fx2 , fx2 − fx3 , . . . , fxn−1 − fxn

)
,

and then F has the anti-symmetric property. In fact, we have

F (x1, x2, . . . , xn) = det (fx1 − fx2 , fx2 − fx3 , ∗, . . . , ∗)
= det (fx1 − fx2 , (fx1 − fx2) + (fx2 − fx3), ∗, . . . , ∗)
= − det (fx2 − fx1 , fx1 − fx3 , ∗, . . . , ∗)
= −F (x2, x1, x3, . . . , xn),

F (x1, x2, . . . , xn) = det
(
∗, . . . , ∗, fxn−2 − fxn−1 , fxn−1 − fxn

)
= det

(
∗, . . . , ∗, (fxn−2 − fxn−1) + (fxn−1 − fxn), fxn−1 − fxn

)
= − det

(
∗, . . . , ∗, fxn−2 − fxn , fxn − fxn−1

)
= −F (x1, . . . , xn−2, xn, xn−1),

and for all i ∈ {2, 3, . . . , n− 2}

F (x1, x2, . . . , xn)

= det
(
∗, . . . , ∗, fxi−1

− fxi , fxi − fxi+1
, fxi+1

− fxi+2
, ∗, . . . , ∗

)
= det

(
∗, . . . , ∗, (fxi−1

− fxi) + (fxi − fxi+1
),

fxi − fxi+1
, (fxi+1

− fxi+2
) + (fxi − fxi+1

), ∗, . . . , ∗
)

= det
(
∗, . . . , ∗, fxi−1

− fxi+1
, fxi − fxi+1

, fxi − fxi+2
, ∗, . . . , ∗

)
= − det

(
∗, . . . , ∗, fxi−1

− fxi+1
, fxi+1

− fxi , fxi − fxi+2
, ∗, . . . , ∗

)
= −F (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn).
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Now, the determinant is evaluated as follows:

det
(
ft2 − ft1 , ft3 − ft2 , . . . , ftn − ftn−1

)
= (−1)n−1F (t1, t2, . . . , tn)

= sgn(T) · (−1)n−1F (1, 2, . . . , n)

(∵ the anti-symmetry of F )

= sgn(T) · det (f2 − f1, f3 − f2, . . . , fn − fn−1)

= sgn(T) · det (e1, e2, . . . , en−1)

= sgn(T).

4.4 Gelfand-Tsetlin Graph sequences

In this subsection, we will define a generalization of modified Gelfand-Tsetlin patterns
and we extend the scope of the results in the previous subsection to these objects. The
generalization is also a generalization of the notion of Gelfand-Tsetlin tree sequences,
which is introduced in [5]. In particular, we prove a generalization of Claim 38 and a signed
enumeration of the generalized Gelfand-Tsetlin patterns, which leads us to the notion of
“Gelfand-Tsetlin graph sequences”, a more generalized version of Gelfand-Tsetlin tree
sequences.

Definition 39. Let n be a positive integer and k ∈ Zn, and for 1 ⩽ j ⩽ i ⩽ n − 1
let pi,j, qi,j be positive integers less than or equal to i + 1. Then, we define the signed
set GGT (k; {pi,j}, {qi,j}) of generalized Gelfand-Tsetlin patterns with bottom row k and
parameters {pi,j}, {qi,j} as:

• when n = 1, GGT (k; {pi,j}, {qi,j}) = ({∅}, ∅),

• otherwise,

GGT (k; {pi,j}, {qi,j})

=
⊔
l∈K

GGT(l; {pi,j}1⩽j⩽i⩽n−2, {qi,j}1⩽j⩽i⩽n−2) ,

where K =
[
kpn−1,1 , kqn−1,1

)
×
[
kpn−1,2 , kqn−1,2

)
× · · · ×

[
kpn−1,n−1 , kqn−1,n−1

)
.

When we set pi,j = j and qi,j = j + 1 for all 1 ⩽ i ⩽ j ⩽ n − 1, then this definition
coincides with the definition of modified Gelfand-Tsetlin patterns GT(k). This definition
is also a generalization of (modified) Gelfand-Tsetlin tree sequences. We consider the
graph Gi for i ∈ {1, 2, . . . , n} with vertices {1, 2, . . . , i+ 1} and (named) edges {j : pi,j →
qi,j | 1 ⩽ j ⩽ i}, where s → t denotes a directed edge from s to t. When all Gi are trees
(note that here the directions of edges do not matter), the definition of the generalized
Gelfand-Tsetlin patterns coincides with a signed set of Gelfand-Tsetlin tree sequences
with some parameters, or its opposite. To explain the relation between them, we define
the sign of parameters {pi,j}, {qi,j}.
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Definition 40. Let n be a positive integer and for 1 ⩽ j ⩽ i ⩽ n− 1 let pi,j and qi,j be
positive integers less than or equal to i + 1. Let Gi be the graph described above. We
define the sign of ({pi,j}, {qi,j}) as follows and denote it by sgn({pi,j}, {qi,j}):

• when Gi is not a tree for some i ∈ {1, 2, . . . , n− 1}, the sign is 0.

• otherwise, the sign is
∏n−1

i=1 (−1)#{j|1⩽j⩽i, pi,j=ri(j)} · sgn(ri), where ri is a bijection
from {0, 1, . . . , i} to {1, 2, . . . , i+ 1} constructed as below and its sign is defined by
sgn(ri) = sgn(ri − 1) (note that ri − 1 is a permutation of {0, 1, . . . , i}):

We choose ri(0) ∈ {1, 2, . . . , i + 1} arbitrarily. For j ∈ {1, 2, . . . , i}, if
pi,j is further from ri(0) than qi,j in Gi with respect to the shortest path
distance, let ri(j) = pi,j and otherwise let ri(j) = qi,j.

In fact, the sign of ri is independent of the choice of ri(0). For a proof, see [5, after
equation (2.1)].

When the sign is +1, the definition of the generalized Gelfand-Tsetlin patterns coin-
cides with the signed set of Gelfand-Tsetlin tree sequences and when the sign is −1 it
coincides with the opposite. Conversely, Gelfand-Tsetlin tree sequences are always ex-
pressed as generalized Gelfand-Tsetlin patterns with some parameters. The notion of
generalized Gelfand-Tsetlin patterns is a true generalization of Gelfand-Tsetlin tree se-
quences, but we will prove that #GGT (k; {pi,j}, {qi,j}) = 0 when some Gi is not a tree
(See Proposition 41).

We define the statistic ηrow in a similar way for Gelfand-Tsetlin patterns, namely

• for k ∈ GGT(k; ∅, ∅), ηrow(k) = {{k}} ∈ MS(Z, 1) = A1
row.

• for T ∈ GGT(k; {pi,j}, {qi,j}), where k ∈ Zn and n ⩾ 2, we have T ′ ∈ GGT
(
l;

{pi,j}1⩽j⩽i⩽n−2, {qi,j}1⩽j⩽i⩽n−2

)
and l ∈ Zn−1 such that T = (T ′, l). Then, we define

ηrow(T ) = (ηrow(T
′), {{k1, k2, . . . , kn}}) ∈ An−1

row ×MS(Z, n) = An
row.

Proposition 41 (cf. Claim 38 and the enumeration of modified Gelfand-Tsetlin pat-
terns). Let n be a positive integer and k ∈ Zn, and for 1 ⩽ j ⩽ i ⩽ n− 1 let pi,j and qi,j
be positive integers less than or equal to i+1. Moreover, let A be an element of An

row such
that {{k}} = An ∈ MS(Z, n). Then, we have

#GGT(k; {pi,j}, {qi,j}) |ηrow=A= sgn(k) · sgn({pi,j}, {qi,j}),

when A forms an unsigned modified Gelfand-Tsetlin pattern, and otherwise

#GGT(k; {pi,j}, {qi,j}) |ηrow=A= 0.

In particular,

#GGT(k; {pi,j}, {qi,j}) = sgn(k) · sgn({pi,j}, {qi,j}) ·#GT(kinc)

= sgn({pi,j}, {qi,j}) ·
∏

1⩽i<j⩽n

kj − ki
j − i

.

the electronic journal of combinatorics 33(1) (2026), #P1.9 29



Proof. When all Gi are trees, the proof runs parallel to the proof of Claim 38, and we
therefore defer the details of the first step to Appendix B. As a result, it is sufficient to
show that for n ⩾ 2 ∑

l∈[kpn−1,1 ,kqn−1,1)×[kpn−1,2 ,kqn−1,2)×···×[kpn−1,n−1 ,kqn−1,n−1) s.t. {{l}}=An−1

sgn(l)

=

{
sgn(k) · sgn({pi,j}1⩽j⩽i⩽n−1,{qi,j}1⩽j⩽i⩽n−1)

sgn({pi,j}1⩽j⩽i⩽n−2,{qi,j}1⩽j⩽i⩽n−2)
if t1, t2, . . . , tn are distinct,

0 otherwise,
(6)

instead of

∑
l∈[k1,k2)×[k2,k3)×···×[kn−1,kn) s.t. {{l}}=An−1

sgn(l) =

{
sgn(k) if t1, t2, . . . , tn are distinct,

0 otherwise.

(For the definition of the invariants, see the proof of Claim 38.) Here, the LHS is equal
to

det
(
ftqn−1,1

− ftpn−1,1
, ftqn−1,2

− ftpn−1,2
, . . . , ftqn−1,n−1

− ftpn−1,n−1

)
. (7)

Here, each row of the matrix in (7) is of the form ±(fpar(v) − fv), where par(v) is the
parent of the vertex v in G with root 0. Furthermore, each v ∈ {1, 2, . . . , n− 1} appears
exactly once. Therefore, when we consider treating vertices of G in postorder (with root
0), the determinant (7) is equal to

(−1)#{j|1⩽j⩽n−1, pn−1,j=r(j)} · det
(
ftr(1) , ftr(2) , . . . , ftr(n−1)

)
= (−1)#{i|1⩽j⩽n−1, pn−1,j=r(j)} · sgn(T) · sgn(r).

Note that we defined sgn(T) = 0 when T has duplicates. It immediately implies (6)
by the definition of the sign of parameters.

When some Gi is not a tree, let i be the minimum such index. When i < n − 1, by
the induction, the statement becomes trivial because it is holds that

#GGT(l; {pi,j}1⩽j⩽i⩽n−2, {qi,j}1⩽j⩽i⩽n−2) = 0

independent of l. Otherwise, it is sufficient to show that the determinant (7) is equal to 0.
Now, Gn−1 has n vertices and n−1 edges but it is not a tree. Therefore, Gn−1 has at least
one cycle. (Here, we forget the direction of the edges.) When the edges j1, j2, . . . , jℓ form
a cycle, then ftqn−1,j1

− ftpn−1,j1
, ftqn−1,j2

− ftpn−1,j2
, . . . , ftqn−1,jℓ

− ftpn−1,jℓ
are not linearly

independent, which implies that the determinant is 0.

This proposition is an answer to Fischer’s question relevant to the notion of Gelfand-
Tsetlin Graph sequences in [5]:
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“ we want to mention an obvious generalization of Gelfand-Tsetlin tree se-
quences, which we do not consider in this article, but might be interesting to
look at: the notion of admissibility makes perfect sense if the tree T is replaced
by any other graph. Are there any nice assertions to be made on “Gelfand-
Tsetlin graph sequences”? ”

We can also interpret the proposition via the notions of signed sets, sijections and com-
patibility. This interpretation results in the following corollary.

Corollary 42. Let n, k, {pi,j}, {qi,j} and A be the parameters defined in the above
proposition. Then, there exists a sijection between GGT(k; {pi,j}, {qi,j}) |ηrow=A and the
signed set S defined by

S =


(∅, ∅) when sgn({pi,j}, {qi,j}) = 0,

GT(k) |ηrow=A when sgn({pi,j}, {qi,j}) = +1,

−GT(k) |ηrow=A when sgn({pi,j}, {qi,j}) = −1,

which is compatible with ηrow.

This corollary states only the existence of such sijections. It should be possible to
construct them explicitly by generalizing the constructions in this section with the com-
binatorial operations illustrated in [5].

4.5 Preparation for §5

For use in §5 we check the compatibilities of the sijections constructed in the present
section. First, we define statistics ηrow,i as the i-th component of ηrow on Gelfand-Tsetlin
patterns with a bottom row of length at least i. Moreover, we define a Z-valued statistic
ηtop of Gelfand-Tsetlin patterns as the value of the unique element of ηrow,1.

For example,

ηrow,1

 4
2 5

2 5 7

 = {{4}}, ηrow,3

 4
2 5

2 5 7

 = {{2, 5, 7}},

and

ηtop

 4
2 5

2 5 7

 = 4.

In addition, we define ηtop for a signed set which is in the form of
⊔
s∈S GT(ks) by

ηtop : (T, s) ∈
⊔
s∈S

GT(ks) 7→ ηtop(T ).

We extend the statistics ηrow,i to such signed sets analogously. Note that the signed sets
of Gelfand-Tsetlin patterns themselves are in the form stated above and the extended
definitions of these statistics are consistent with the original definitions.
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Proposition 43. The sijection ρ in Construction 28 is compatible with ηtop, ηrow,1, ηrow,2,
. . ., ηrow,n.

Proof. The sijection is constructed as a disjoint union of idGT(l). Therefore, the top n
rows are preserved under ρ. In particular, ρ is compatible with the statistics.

Proposition 44. The sijections π, σ in Construction 29 are compatible with ηtop, ηrow,1,
ηrow,2, . . ., ηrow,n.

Proof. It follows directly from Theorem 31.

Proposition 45. The sijection τ in Construction 30 is compatible with ηrow,1, ηrow,2, . . .,
ηrow,n−1. In particular, it is compatible with ηtop when n ⩾ 2.

Proof. As in the proof of Proposition 43, a disjoint union of idGT(l) is compatible with the
statistics. The sijection σ is also compatible, so the sijection τ , which is constructed by
composing them, is also compatible.

5 New sijections pertaining to monotone triangles

In this section, we simplify the sijection between alternating sign matrices and shifted
Gelfand-Tsetlin patterns that is constructed in [7], and using the notion of compatibility
we argue that it is more natural than the conventional one. First, in §5.1 we give definitions
of some combinatorial objects. After that we define generalized inversion numbers for
these combinatorial objects in §5.2. In §5.3 and §5.4 we construct a sijection and prove
the compatibility of our construction with two statistics, one of which is the generalized
inversion numbers we defined.

5.1 Definitions

5.1.1 Monotone Triangles

A monotone triangle is a Gelfand-Tsetlin pattern satisfying ai,j < ai,j+1 for any 1 ⩽ j <
i ⩽ n− 1, i.e., the entries are strictly increasing in each row. Note that we do not impose
the condition on the bottom row. We define a modified monotone triangle as a modified
Gelfand-Tsetlin pattern such that for any 1 ⩽ j < i ⩽ n − 1, ai,j < ai,j+1 − 1 holds.
Here, the “−1” in the RHS is needed for consistency with our notation using half-open
intervals.

There is a well-known bijection between alternating sign matrices and monotone tri-
angles. (For example, see [7].) Here, we illustrate a bijection between alternating sign
matrices and modified monotone triangles without bothering with the details of the proof.
First, for an alternating sign matrix, we calculate the cumulative sum along columuns from
above. Next, row by row, we pick up the indices of columns where the element is 1. Last,
we add to each element the number of elements on the left of it, to use half-open in-
tervals (cf. the bijection between Gelfand-Tsetlin patterns and modified Gelfand-Tsetlin
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patterns).
0 0 1 0
1 0 −1 1
0 0 1 0
0 1 0 0


alternating sign matrices

→


0 0 1 0
1 0 0 1
1 0 1 1
1 1 1 1


(cumulative sum)

→

3
1 4

1 3 4
1 2 3 4

monotone triangles

→

3
1 5

1 4 6
1 3 5 7
modified monotone triangles

In general, there is a one-to-one correspondence between alternating sign matrices with
rank n and monotone triangles with bottom row (1, 2, . . . , n) and therefore between them
and modified monotone triangles with bottom row (1, 3, . . . , 2n− 1).

Last, we define the top of a modified monotone triangle A = (ai,j)ij as ηtop(A) = a1,1.
This statistic corresponds to Behrend, Di Francesco and Zinn-Justin’s first statistic for
alternating sign matrices, the column number of the 1 in the first row.

5.1.2 Generalized Monotone Triangles

We denote the signed set of modified monotone triangles with bottom row k, by MT(k).
Namely, we define

MT(k)+ = {modified monotone triangles with bottom row k}, MT(k)− = ∅,

for a strictly increasing sequence k ∈ Zn. For the case that k is not strictly increasing,
see Remark 52.

Before explaining our definition of a generalized monotone triangle, some preparation
is needed. An arrow row is a sequence of {↖,↗,↖↗}, and as an element of a signed
set its sign is (−1)#of↖↗. More formally, the signed set of arrow rows with length n is
ARn = ({↖,↗}, {↖↗})n. An arrow row µ with length n acts on k ∈ Zn as follows:

µ(k) = [k1 + δ↗(µ1), k2 − δ↖(µ2))× · · · × [kn−1 + δ↗(µn−1), kn − δ↖(µn)) (8)

where δ↖(↖) = δ↖(↖↗) = 1, δ↖(↗) = 0 and δ↗(↗) = δ↗(↖↗) = 1, δ↗(↖) = 0.
Fischer and Konvalinka prove some recursive relation of monotone triangles (with their
generalized definition of (modified) monotone triangles [7, Problem 7]. This result can be
translated to the following recursive relation:

∃Ξ(FK)
k : MT(k) ◦=>=◦

⊔
µ∈ARn

⊔
l∈µ(k)

MT(l).

We shall adopt the RHS of this relation as a definition of generalized monotone triangles.
Namely, our variant of the definition is described as follows.
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Definition 46. For k ∈ Zn, a generalized monotone triangle with bottom row k is a
sequence(

µ(n),k(n−1), µ(n−1), . . . ,k(1), µ(1)
)
∈ Zn × ARn × Zn−1 × ARn−1 × · · · × Z1 × AR1,

such that for 1 ⩽ i ⩽ n − 1, k(i) ∈ µ(i+1)(k(i+1)). More formally, the signed set of
generalized monotone triangles with bottom row k is

GMT(k) :=
⊔

µ(n)∈ARn

⊔
k(n−1)∈µ(n)(k)

⊔
µ(n−1)∈ARn-1

⊔
k(n−2)∈µ(n−1)(k(n−1))

· · ·
⊔

µ(2)∈AR2

⊔
k(1)∈µ(2)(k(2))

AR1 .

Another interpretation of a generalized monotone triangle is given by the (extented)
arrowed monotone triangles which are introduced in [9]. An arrowed monotone triangle
is a triangular array of integers such that each entry is decorated by ↖, ↗ or ↖↗ with
some condition. The condition used in our variant is described as follows:

For each entry a that is not in bottom row, let b, c be the left-below and
the right-below entry and let µb, µc be the decoration of b, c. Then, a ∈
[b+ δ↗(µb), c− δ↖(µc)) holds.

For
(
µ(n),k(n−1), µ(n−1), . . . ,k(1), µ(1)

)
∈ GMT(k),

(
k(1),k(2), . . . ,k(n−1),k

)
is an arrowed

monotone triangle when it is decorated by (µ1, µ2, . . . , µn). In particular, when k is strictly
increasing,

(
k(1),k(2), . . . ,k(n−1),k

)
is a monotone triangle with bottom row k.

Example 47. Let k = (1, 3, 5) and µ = (↖,↖↗,↗). Then, we have

µ(k) = [1, 2)× [4, 5) = ({(1, 4)}, ∅).

Next, let k(2) = (1, 4) and µ(2) = (↖↗,↖↗), we have µ(2)(k(2)) = [2, 3). From the above, for
example we have

((↖), (2), (↖↗,↖↗), (1, 4), (↖,↖↗,↗))
◦
∈ GMT((1, 3, 5)),

and its sign is−1. With the interpretation as an arrowed monotone triangle, we sometimes
describe it by  2

1 4
1 3 5

,
↖

↖↗ ↖↗
↖ ↖↗ ↗

 ◦
∈ GMT((1, 3, 5)).

To see that our generalized monotone triangle is indeed a generalization of a (modi-
fied) monotone triangle, we first construct a sijection ιMT(k) : MT(k) ◦=>=◦ GMT(k) for a
strictly increasing k ∈ Zn.
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Construction 48. We construct a sijection ιMT(k) : MT(k) ◦=>=◦ GMT(k) for a strictly
increasing k ∈ Zn. For n = 1, MT(k) = ({k1}, ∅) and GMT(k) = AR1. We define
ιMT(k) as

MT(k) GMT(k)φ : ◦=>=◦

+

−

k1

↗

↖↗

↖

.

For n > 1, it is sufficient to construct a sijection Ξk : MT(k) ◦=>=◦
⊔
µ∈ARn

⊔
l∈µ(k) MT(l).

Indeed, the construction is completed by induction on n:

MT(k) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

MT(l) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

GMT(l) = GMT(k). (9)

Note that for any µ ∈ ARn and a strictly increasing k ∈ Zn, every element of µ(k) is
weakly increasing. For an l ∈ µ(k) that is not strictly increasing, it holds that li = li+1 for
some 1 ⩽ i ⩽ n − 1, and thus MT(l) = (∅, ∅) holds. Therefore, we can obtain the result
for general n by the induction.

Let us now construct Ξk. First, we decompose MT(k) with respect to the second bottom
row. We define a signed set MT(k, l) by

MT(k, l)+ = {T ∈ MT(k)+ | the second bottom row of T is l}, MT(k)− = ∅.

Then, we have

MT(k) =
⊔

l∈Zn−1

MT(k, l),

where Zn−1 is identified with the signed set (Zn−1, ∅), and the same identification shall be
used in the following without mentioning. Here, in case l ∈

⋃
µ∈ARn

supp (µ(k)) we have
MT(k, l) = MT(l). In the other case, we have MT(k, l) = (∅, ∅), because with an arrow
row µl satisfying

(µl)i =

{
↗ when i ⩾ 2 and ki = li−1 + 1,

↖ otherwise,
(10)

we have l ∈ supp (µl(k)) if MT(k, l)+ is not empty. Consequently, we have

MT(k) =
⊔

l∈
⋃

µ∈ARn
supp(µ(k))

MT(l).

Let Ml be a signed set defined by M±
l = {µ ∈ AR±

n | l ∈ supp (µ(k))}. Then, we have⊔
µ∈ARn

⊔
l∈µ(k)

MT(l) =
⊔

l∈Zn−1

⊔
µ∈Ml

MT(l) =
⊔

l∈
⋃

µ∈ARn
supp(µ(k))

⊔
µ∈Ml

MT(l).

the electronic journal of combinatorics 33(1) (2026), #P1.9 35



Therefore, it suffices to construct a sijection ({·}, ∅) ◦=>=◦ Ml for l ∈
⋃
µ∈ARn

supp (µ(k)).
Now, supp (Ml) is described as follows, when it is not empty (equivalently when l ∈⋃
µ∈ARn

supp (µ(k)) holds):

supp (Ml) =

µ ∈ ARn

∣∣∣∣∣∣
µi =↖ when i ⩽ n− 1 and ki = li,
µi =↗ when i ⩾ 2 and ki = li−1 + 1
otherwise, µi ∈ {↖,↗,↖↗}

 .

Then, the following rule defines a sijection ({·}, ∅) ◦=>=◦ Ml:

The arrow row µl ∈ M+
l defined by (10) corresponds to a unique element

on the LHS of the sijection. For any other element µ of Ml, there exists
a minimum index i such that µi ̸= (µl)i. The counterpart of µ is obtained
by adding or removing a ↖ at µi; that is, by replacing ↗ with ↖↗ and vice
versa.

Remark 49. This construction is similar to Problem 7 in [7]. The most important differ-
ence with that reference is the definition of (µl)n, which is crucial from the viewpoint of
compatibility. For more details, see Proposition 57.

Next, we define some statistics.

Definition 50. Let k ∈ Zn. Define ηTA as the triangular array-valued statistic of GMT(k)
such that

∀s =
(
µ(n),k(n−1), µ(n−1), . . . ,k(1), µ(1)

)
∈ GMT(k), ηTA(s) =

(
k(1),k(2), . . . ,k(n−1),k

)
.

In addition, for a triangular array T , define ηTA(T ) = T .

Last, the following proposition shows that the generalized monotone triangles are
indeed a generalization of monotone triangles.

Proposition 51. Let k ∈ Zn such that k is strictly increasing. Then, ιMT(k) : MT(k) ◦=>=◦
GMT(k) in Construction 48 is compatible with ηTA.

Proof. For n = 1, this is trivial. For n > 1, the second bottom row is preserved, because
both sides are first decomposed by the second bottom row in the construction. Therefore,
according to (9), the proof is completed by induction on n.

The top of a generalized monotone triangle T is defined by ηtop = ηtop(ηTA(T )). Ac-
cording to Proposition 51, the sijection ιMT(k) in Construction 48 is compatible with ηtop.

Remark 52. In [7], the definition of a monotone triangle with general bottom row is given
as a triangular array. Accordingly, one can extend the definition of a modified monotone
triangle for general bottom row as follows. First one defines a binary relation l ≺ k for
l ∈ Zn−1 and k ∈ Zn as:

l ≺ k ⇔


li ∈ [ki, ki+1 − 1], for all 1 ⩽ i ⩽ n− 1

ki−1 < ki < ki+1, 2 ⩽ i ⩽ n− 1 ⇒ li−1 ̸= ki − 1 or li ̸= ki,

ki > li = ki+1 − 1, 1 ⩽ i ⩽ n− 1 ⇒ i ⩽ n− 2 and li+1 = ki+1,

ki = li ⩾ ki+1, 1 ⩽ i ⩽ n− 1 ⇒ i ⩾ 2 and li−1 = ki − 1.
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Then, a modified monotone triangle with bottom row k is defined as a triangular array
(k1, k2, . . . , kn) ∈ Z × Z2 × · · · × Zn such that k1 ≺ k2 ≺ · · · ≺ kn = k. The sign of a
modified monotone triangle (k1, k2, . . . , kn) is (−1)r, where r is the sum of:

• the number of (i, j) such that 1 ⩽ j < i ⩽ n and ki,j ⩾ ki,j+1,

• the number of (i, j) such that 1 ⩽ j + 2 ⩽ i ⩽ n, ki,j ⩾ ki,j+1 ⩾ ki,j+2, ki−1,j =
ki,j+1 − 1 and ki−1,j+1 = ki,j+1.

Let MT(FK)(k) be the signed set of modified monotone triangles with bottom row k
according to this definition. This definition might seem strange but it is in fact correct.
The purpose of this remark is to explain why, by showing uniqueness in a certain sense.
Let us extend the definition of modified monotone triangles independently of Fischer and
Konvalinka’s work, but rather according to Construction 48. First, we define Mk,l as:

• supp (Mk,l) = {µ ∈ supp (ARn) | l ∈ supp (µ(k))},

• The sign of µ ∈ supp (Mk,l) is the product of:

– the sign of µ as an element of ARn,

– the sign of l as an element of µ(k).

In addition, we define l ≺′ k ⇔ #Mk,l ̸= 0 and define a modified monotone triangle
with bottom row k as a triangular array (k1, k2, . . . , kn) ∈ Z × Z2 × · · · × Zn such that
k1 ≺′ k2 ≺′ · · · ≺′ kn = k. Note that when k is strictly increasing, this definition coincides
with the original one. For k ∈ Zn, let X(k) denote the set of modified monotone triangles
with bottom row k removed, that is, the collection of all triangular arrays (k1, k2, . . . , kn−1)
satisfying k1 ≺′ k2 ≺′ · · · ≺′ kn−1 ≺′ k. If #Mk,l = 0,±1 holds for any l ∈ Zn−1 and
k ∈ Zn such that X(l) ̸= ∅, then there exists a way to assign signs to the monotone
triangles such that one can construct the sijection

MT(k) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

MT(l)

=
⊔

l∈Zn−1

⊔
µ∈Mk,l

MT(l)

 ,

in the way similar to Construction 48, where MT(k) is a signed set derived from X(k)
with that signs. The explicit way to attach signs to elements of X(k) is as follows:

Let T ∈ X(k), and l the second bottom row of T . Let T ′ be a triangular array
obtained by removing l from T . Since T ′ ∈ X(l), we have X(l) ̸= ∅, therefore
#Mk,l = 0,±1 by the assumption. Since l ≺′ k, it holds that #Mk,l ̸= 0, we
thus have #Mk,l = ±1. Then, the sign of T is the sign of T ′ ∈ X(l) multiplied
by #Mk,l.

We prove that when X(l) ̸= ∅ it holds that #Mk,l = 0,±1. First, we define a function
f : supp (ARn) → {0, 1}2n by

µ 7→ (δ↖(µ1), δ↗(µ1), δ↖(µ2), δ↗(µ2), . . . , δ↖(µn), δ↗(µn)) .
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Then, the image of f is{
(a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1) ∈ {0, 1}2n | ∀i ∈ {1, 2, . . . , n}, ai,0 + ai,1 ⩾ 1

}
.

We fix l ∈ Zn−1 and k ∈ Zn. We established the necessary and sufficient condition for
µ ∈ supp (ARn) to satisfy µ ∈ supp (Mk,l) in terms of a = f(µ). In detail, the conditions
are described as follows:

conditions on a trans. mat.
ki+1 ⩾ ki + 2, li = ki ai,1 = 0 A1

li = ki+1 − 1 ai+1,0 = 0 A2

ki < li < ki+1 − 1 True A3

otherwise False O
ki+1 = ki + 1, li = ki = ki+1 − 1 ai,1 = ai+1,0 A4

otherwise False O
ki+1 ⩽ ki, li = ki ai,1 = 1 −A5

li = ki+1 − 1 ai+1,0 = 1 −A6

ki+1 − 1 < li < ki True −A3

otherwise False O

where i ∈ {1, 2, . . . , n − 1}, (a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1) = f(µ) and the data in the
last column will be explained later. For j ∈ {1, 2, . . . , n} and t ∈ {0, 1}, we define signed
sets Bj,t by

supp (Bj,t) =

#
{
(a1,0, a1,1, a2,0, a2,1, . . . , aj,0) ∈ {0, 1}2j−1 | aj,0 = t and for i ∈ {1, 2, . . . , j − 1},

it meets the condition described above and ai,0 + ai,1 ⩾ 1
}
,

with the sign of (a1,0, a1,1, a2,0, a2,1, . . . , aj,0) being (−1)r, where r is the sum of:

• the number of integers i ∈ {1, 2, . . . , j − 1} such that ai,0 = ai,1 = 1,

• the number of integers i ∈ {1, 2, . . . , j − 1} such that ki + ai,1 > ki+1 − ai+1,0.

We denote the size of Bj,t by bj,t. For each a ∈ supp (Bj,t), the number of pairs (x, y) ∈ Z2

satisfying (a, x, y) ∈ supp (Bj+1,t′) is determined by t, t′, kj, kj+1 and lj. Therefore, we
introduce a transition matrix Tj such that(

bj+1,0

bj+1,1

)
= Tj

(
bj,0
bj,1

)
,

where j ∈ {1, 2, . . . , n − 1}. The explicit values of T are given in the last column of the
above table, where

A1 =

(
0 1
0 1

)
, A2 =

(
1 0
0 0

)
, A3 =

(
1 0
1 0

)
,

A4 =

(
0 1
−1 1

)
, A5 =

(
1 −1
1 −1

)
, A6 =

(
0 0
1 0

)
.
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Then the value of #Mk,l is expressed as

#Mk,l =
(
1 0

)
Tn−1Tn−2 · · ·T1

(
1
1

)
.

Here, in order to use the condition X(l) ̸= ∅, we prove the following lemma. For
m = (mi)i ∈ Zd, if there exists an integer 1 ⩽ i ⩽ d−2 such thatmi = mi+1−1 = mi+2−2,
we say it is partially successive.

Lemma 53. For a partially successive sequence m ∈ Zd, we have X(m) = ∅.

Proof. We assume, for the sake of contradiction, that there exists a sequence m(1) ≺′

m(2) ≺′ · · · ≺′ m(d) = m. Let i be the minimum index such that m(i) is partially suc-
cessive and j the minimum index such that m

(i)
j = m

(i)
j+1 − 1 = m

(i)
j+2 − 2. We calculate

#Mm(i),m(i−1) . We set (k, l) = (m(i),m(i−1)) in the above context and consider the transi-
tion matrices. First, we have Tj = Tj+1 = A4 if they are not O because of the choice of j.

Furthermore, we have m
(i−1)
j = m

(i)
j = m

(i−1)
j+1 − 1 = m

(i)
j+1 − 1. Therefore, m

(i−1)
j+2 ̸= m

(i)
j+2

if it exists because of the choice of i. Thus, we have Tj+2 = A2,±A3,−A6, O or j +2 = i.
Similarly, if j ̸= 1 then Tj−1 = A1,±A3,−A5, O. Here, we can decompose A2, A3, A6, O
as

A2 =

(
1
0

)(
1 0

)
, A3 =

(
1
1

)(
1 0

)
, A6 =

(
0
1

)(
1 0

)
, O =

(
0
0

)(
1 0

)
,

and thus Tj+2 can be expressed as

(
∗
∗

)(
1 0

)
. Similarly, we can decompose A1, A3, A5, O

as

A1 =

(
1
1

)(
0 1

)
, A3 =

(
1
1

)(
1 0

)
, A5 =

(
1
1

)(
1 −1

)
, O =

(
1
1

)(
0 0

)
,

and thus Tj−1 =

(
1
1

)(
∗ ∗

)
. Therefore, we have

#Mm(i),m(i−1) =
(
1 0

)
Ti−1Ti−2 · · ·T1

(
1
1

)
= 0.

because Tj = O, Tj+1 = O, or
(
1 0

)
Tj+1Tj

(
1
1

)
=
(
1 0

)
A2

4

(
1
1

)
= 0. This means that

m(i−1) ̸≺′ m(i), and it contradicts the assumption. Finally, we obtain X(m) = ∅, for a
partially successive sequence m.

Coming back to the purpose of this remark, according to this lemma, it is sufficient
to show that #Mk,l = 0,±1 when l is not partially successive. We assume that l is
not partially successive and Tj = A4 for some j. Then, we have kj = lj = kj+1 − 1,
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so j = 1, n − 1 or lj−1 ̸= kj − 1 or lj+1 ̸= kj+1. Therefore, we have j = 1, n − 1 or
Tj−1 = A1,±A3,−A5, O or Tj+1 = A2,±A3,−A6, O. Here, we have

(
1 0

)
A4 =

(
0 1

)
, A4

(
1
1

)
=

(
1
0

)
and

A2A4 =

(
0 1
0 0

)
=: A7, A3A4 =

(
0 1
0 1

)
= A1, A6A4 =

(
0 0
0 1

)
=: A8,

A4A1 =

(
0 1
0 0

)
= A7, A4A3 =

(
1 0
0 0

)
= A2, A4A5 =

(
1 −1
0 0

)
=: A9.

Therefore, because the set

{(
0
0

)
,±
(
0
1

)
,±
(
1
0

)
,±
(
1
1

)}
is closed under the action of

±A1,±A2,±A3,±A5, ±A6,±A7,±A8,±A9, O, we obtain

#Mk,l =
(
1 0

)
Tn−1Tn−2 · · ·T1

(
1
1

)
= 0,±1.

From the above, we can define the signed set MT(k) of modified monotone triangles
with bottom row k as follows:

• supp (MT(k)) = X(k),

• the sign of an element (k1, k2, . . . , kn)
◦
∈ MT(k) is

#Mkn,kn−1#Mkn−1,kn−2 · · ·#Mk2,k1 .

With this definition, we can construct a sijection ι : MT(k) ◦=>=◦ GMT(k) which is com-
patible with ηTA in a way similar to Construction 48. In [7], Fischer and Konvalinka
construct the sijection equivalent to ι : MT(FK)(k) ◦=>=◦ GMT(k). We can check it is also

compatible with ηTA. Since the restrictions of ηTA to X(k) or to supp
(
MT(FK)(k)

)
are

injective, the two definitions of modified monotone triangles coincide.
In fact, the binary relation l ≺′ k is a bit different from the original one l ≺ k. After

some cumbersome calculations, we obtain

l ≺′ k ⇔ l ≺ k and for any i ∈ {1, 2, . . . , n− 3}, it does not hold that

li = ki+1 − 1 = li+1 − 1 = ki+2 − 2 = li+2 − 2.

However, if l ̸≺′ k and l ≺ k, then l is partially successive. Therefore, the difference
does not matter in the definition of modified monotone triangles. Also, we can recover
the explicit (namely, without the language of M s) definition of the sign of an element of
MT(k) through direct calculation.
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5.1.3 Shifted Gelfand-Tsetlin Patterns

Next, we define a shifted Gelfand-Tsetlin pattern. An arrow pattern T = (ti,j)1⩽i<j⩽n is
a triangular arrangement of {↘,↙,↘↙} that is indexed as below:

t1,n
t1,n−1 t2,n

t1,n−2 t2,n−1 t3,n

. .
. ...

...
. . .

t1,2 · · · · · · · · · · · · · · · · · · · · · tn−1,n.

The sign of an arrow pattern is defined as (−1)#of↘↙, or more formally, the signed set of
arrow patterns with size n is

APn = ({↘,↙}, {↘↙})n−1 × ({↘,↙}, {↘↙})n−2 × · · · × ({↘,↙}, {↘↙})1

≃ ({↘,↙}, {↘↙})(
n
2),

where AP1 = ({∅}, ∅). An arrow pattern T = (ti,j)1⩽i<j⩽n acts on k ∈ Zn as:

ci(T ) =
n∑

j=i+1

δ↙(ti,j)−
i−1∑
j=1

δ↘(tj,i)

T (k) = (k1 + c1(T ), k2 + c2(T ), . . . , kn + cn(T )) ∈ Zn, (11)

where δ↘(↘) = δ↘(↘↙) = 1, δ↘(↙) = 0 and δ↙(↙) = δ↙(↘↙) = 1, δ↙(↘) = 0. Lastly,
the signed set of shifted Gelfand-Tsetlin patterns with bottom row k ∈ Zn is defined as

SGT(k) =
⊔

T∈APn

GT(T (k)).

We define the top of a shifted Gelfand-Tsetlin pattern (A, T )
◦
∈ SGT(k) by

ηtop((A, T )) = ηtop(A).

Note that A is an element of supp (GT(T (k))).

Example 54. Let T = ((↘,↘↙,↙), (↘↙,↙), (↙))
◦
∈ AP4. When we arrange its elements

as
↙

↘↙ ↙
↘ ↘↙ ↙

□ □ □ □

,

ci(T ) is the number of arrows on the anti-diagonal line of the i-th square from the left and
pointing at it, minus the number of arrows on the diagonal line pointing at the square.
Then, we have

c1(T ) = 2− 0 = 2, c2(T ) = 2− 1 = 1, c3(T ) = 1− 2 = −1, c4(T ) = 0− 0 = 0.
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Therefore, when let k = (3, 1, 4, 1), then T (k) = (5, 2, 3, 1). Thus, for example we have
2

3 1
4 2 1

5 2 3 1

,
↙

↘↙ ↙
↘ ↘↙ ↙

 ◦
∈ SGT((3, 1, 4, 1)),

and its sign is (−1)2 · (−1)5 = 1. Last, the value of ηtop on this element is 2.

Remark 55. A shifted Gelfand-Tsetlin pattern is introduced in [7] to explain the combi-
natorial meaning of an ‘operator formula’ stating that

MT(g)(k) =
∏

1⩽p<q⩽n

(Ekp + E−1
kq

− EkpE
−1
kq

)
∏

1⩽i<j⩽n

kj − ki
j − i

,

where Ex denotes the shift operator, i.e., Exp(x) = p(x+1) (This is cited from the theorem

in the induction of [7]). It holds that GT(k) =
∏

1⩽i<j⩽n
kj−ki
j−i , and the action of an arrow

pattern on k corresponds to the operator part
∏

1⩽p<q⩽n(Ekp + E−1
kq

− EkpE
−1
kq

). In this
sense, shifted Gelfand-Tsetlin patterns are a combinatorial realization of this operator
formula.

5.2 Generalized Inversion Numbers

In this subsection, we define generalized inversion numbers of alternating sign matrices,
modified monotone triangles, generalized monotone triangles and shifted Gelfand-Tsetlin
patterns. First, we recall the definition of an inversion number of a permutation and a
permutation matrix. For a permutation p = (p1, p2, . . . , pn) ∈ Sn, its inversion number is
the number of pairs (i, j) such that 1 ⩽ i < j ⩽ n and p(i) > p(j). A permutation matrix
A = (aij)ij corresponding to p is defined by aij = δj,p(i), and its inversion number is that
of p itself. In fact, the inversion number ηinv(A) can be described by using the elements
of A as below [1]:

ηinv(A) =
∑

1⩽i<i′⩽n, 1⩽j′⩽j⩽n

aijai′j′ .

This is also the definition of the inversion number for alternating sign matrices. Namely,
for an alternating sign matrix A = (aij)ij, we define its inversion number by the above
equation.

Remark 56. This statistic is one of four statistics in Behrend, Di Francesco and Zinn-
Justin’s refined enumeration of alternating sign matrices and descending plane partitions
[1, 2], as well as one of three statistics in Mills, Robbins and Rumsey Jr.’s conjecture
[11]. As stated in [1], there exists a variant of an inversion number for alternating sign
matrices,

ηinv’(A) =
∑

1⩽i<i′⩽n, 1⩽j′<j⩽n

aijai′j′ .

However, we adopt the former definition because the corresponding statistic for shifted
Gelfand-Tsetlin patterns can be described simply (See §5.2.3).
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5.2.1 Generalized Inversion Numbers for Modified Monotone Triangles

We define the inversion number ηinv(B) of a modified monotone triangle B = (bij)1⩽j⩽i⩽n
by

ηinv(B) = #{(i, j) | 1 ⩽ j ⩽ i ⩽ n− 1, bi+1,j ⩽ bi,j = bi+1,j+1 − 1}.

This definition is given in [6] without details. In the rest of §5.2.1, we will show that
this definition is compatible with the bijection introduced in §5.1.1. Namely, let A be an
alternating sign matrix and B the modified monotone triangle corresponding to A. We
shall prove that ηinv(A) = ηinv(B). First, we have

ηinv(A) =
∑

1⩽i<i′⩽n, 1⩽j′⩽j⩽n

aijai′j′

=
∑

1⩽i′⩽n

∑
1⩽j⩽n

∑
1⩽i<i′

∑
1⩽j′⩽j

aijai′j′

=
∑

1⩽i′⩽n

∑
1⩽j⩽n

( ∑
1⩽i<i′

aij

)( ∑
1⩽j′⩽j

ai′j′

)
.

Let ci,j =
∑
1⩽i′⩽i

ai′j and di,j = bij − (j − 1). Note that these coincide with elements

of intermediate products in the bijection between alternating sign matrices and modi-
fied monotone triangles (See §5.1.1). Here, we have cij ∈ {0, 1} by the definition of an
alternating sign matrix. Then, we have∑

1⩽i<i′

aij = 1 ⇔ ci′−1,j = 1 ⇔ ∃j̃ ∈ {1, 2, . . . , i′ − 1}, di′−1,̃j = j.

Therefore, we have

ηinv(A) =
∑

1⩽i′⩽n

∑
j∈{di′−1,1,di′−1,2,...,di′−1,i′−1}

( ∑
1⩽j′⩽j

ai′j′

)

=
∑

1⩽j̃⩽i′⩽n−1

 ∑
1⩽j′⩽di′ j̃

ai′+1,j′


=

∑
1⩽j⩽i⩽n−1

 ∑
1⩽j′⩽dij

ai+1,j′

 .

We fix (i, j) such that 1 ⩽ j ⩽ i ⩽ n− 1 and let k = dij. We prove∑
1⩽j′⩽k

ai+1,j′ = 1 ⇔ di+1,j ⩽ di,j = di+1,j+1, (12)

by considering the following two possibilities.
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• Case 1: Assume that ai+1,k = −1. By the definition of an alternating sign matrix,

we have
∑

1⩽j′⩽k

ai+1,j′ = 0 and ci+1,k = 0. In particular, ci+1,k = 0 means di+1,j+1 ̸= k.

Therefore both the RHS and the LHS of (12) are false.

• Case 2: Assume that ai+1,k ∈ {0, 1}. Since k = di,j, we have ci,k = 1. Therefore, we
have ci+1,k = 1 and ai+1,k = 0. In particular, the RHS of (12) is equivalent to #{j′ |
1 ⩽ j′ ⩽ k, ci+1,j′ = 1} = j+1, and then it is equivalent to

∑i+1
i′=1

∑k
j′=1 ai′j′ = j+1.

Since
∑i

i′=1

∑k
j′=1 ai′j′ =

∑k
j′=1 cij′ = j, it is equivalent to the LHS.

From the above, we have

ηinv(A) = #{(i, j) | 1 ⩽ j ⩽ i ⩽ n− 1, di+1,j ⩽ di,j = di+1,j+1}
= #{(i, j) | 1 ⩽ j ⩽ i ⩽ n− 1, bi+1,j ⩽ bi,j = bi+1,j+1 − 1} =: ηinv(B).

5.2.2 Generalized Inversion Numbers for Generalized Monotone Triangles

We define the inversion number of a generalized monotone triangle as the number of
↗ and ↖↗ it includes. More formally, we define the inversion number of a generalized
monotone triangle

T =
(
µ(n),k(n−1), µ(n−1), . . . ,k(1), µ(1)

)
∈ GMT(k)

by

ηinv(T ) = #
{
(i, j) | 1 ⩽ j ⩽ i ⩽ n, µ

(i)
j =↗ or ↖↗

}
.

The following proposition guarantees that this definition is indeed a generalization of the
inversion number for modified monotone triangles. For this proof, we define the inversion
number of an arrow row µ ∈ ARn as the number of ↗ and ↖↗ it includes.

Proposition 57. Let n ∈ Z and let k ∈ Zn be strictly increasing. The sijection
ιMT : MT(k) ◦=>=◦ GMT(k) in Construction 48 is compatible with the inversion number.

Proof. The sijection is constructed by induction on n. When n = 1, the compatibility
can be checked easily. For n > 1, it is constructed along the following relation (see
Construction 48):

MT(k) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

MT(l) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

GMT(l) = GMT(k). (13)

We define the inversion number of (T, l, µ)
◦
∈
⊔

µ∈ARn

⊔
l∈µ(k)

MT(l) by

ηinv ((T, l, µ)) = ηinv(µ) + ηinv(T ),
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and the inversion number of (T, l, µ)
◦
∈
⊔

µ∈ARn

⊔
l∈µ(k)

GMT(l) by

ηinv ((T, l, µ)) = ηinv(µ) + ηinv(T ).

Note that the trivial sijection
⊔

µ∈ARn

⊔
l∈µ(k)

GMT(l) = GMT(k) in (13) is compatible with

the inversion number. In addition, the compatibility of the sijection⊔
µ∈ARn

⊔
l∈µ(k)

MT(l) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

GMT(l)

follows from the results for smaller n. According to Lemma 18, it is sufficient to show

that the sijection MT(k) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

MT(l) is compatible with the inversion number.

Let Φ be the sijection MT(k) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

MT(l). Because MT(k)− = ∅, it is

sufficient to show that
ηinv ((T, l, µ)) = ηinv (Φ((T, l, µ))) (14)

for any (T, l, µ)
◦
∈

⊔
µ∈ARn

⊔
l∈µ(k)

MT(l). When Φ((T, l, µ))
◦
∈

⊔
µ∈ARn

⊔
l∈µ(k)

MT(l), (14) follows

from the fact that Φ((T, l, µ)) is obtained by adding or removing ↖ at µ of (T, l, µ); that
is, by replacing µ =↗ with ↖↗ and vice versa. In the other case µ must be µl, where µl

is defined in Construction 48 as follows:

(µl)i =

{
↗ when i ⩾ 2 and ki = li−1 + 1,

↖ otherwise.

Let T ′ = Φ((T, l, µ)) ∈ supp (MT(k)). Since k is strictly increasing, ki−1 ⩽ li−1 =
ki − 1 holds if and only if (µl)i =↗. Therefore, the number of ↗ in µl coincides with
ηinv(T

′)− ηinv(T ).

Remark 58. We extended the definition of (modified) monotone triangles as pure trian-
gular arrays to general bottom rows in Remark 52, but we cannot define the inversion
number for them for the sijection ι : MT ◦=>=◦ GMT to become compatible with it. For
example, let k = (3, 1) and l = (0), then we have

Mk,l = ({↖,↗}, {↖↗})× ({↖}, {↖↗}).

Then the unsigned distribution of ηinv on supp (Mk,l) is

ηinv = 0 ηinv = 1 ηinv = 2
1 3 2

.

Because the sijection ι is compatible with ηTA, it cannot be compatible with ηinv.
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5.2.3 Generalized Inversion Numbers for Shifted Gelfand-Tsetlin Patterns

We define the inversion number of a shifted Gelfand-Tsetlin pattern (A, T )
◦
∈ SGT(k) =⊔

T∈APn
GT(T (k)) as the number of ↙ and ↘↙ in T . For example, the inversion number

of  3
1 4

1 5 2
,

↙
↘ ↘↙

 ◦
∈ SGT(0, 5, 3),

is 2. This definition is simple so it is meaningful to ask for compatibility with it. However,
Fischer and Konvalinka’s construction is not compatible with this statistic. For example,
according to their paper [7], 2

1 4
1 3 5

 ◦
∈ MT(1, 3, 5)

corresponds to  2
2 4

2 3 5
,

↙
↘ ↙

 ◦
∈ SGT(1, 3, 5),

but the inversion number of the former is 1, which is different from that of the latter, which
is 2. The rest of this section is devoted to the construction of a sijection GMT(k) ◦=>=◦
SGT(k) compatible with these inversion numbers.

5.3 A sijection GMT(k) ◦=>=◦ SGT(k)

Fischer and Konvalinka construct a sijection between GMT(k) and SGT(k) in [7]. They
first construct a sijection Φk,x :

⊔
µ∈ARn

⊔
l∈µ(k) SGT(l) ◦=>=◦ SGT(k), and then construct

the desired sijection by induction on n as (cf. Construction 48):

GMT(k) =
⊔

µ∈ARn

⊔
l∈µ(k)

GMT(l) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

SGT(l) ◦=>=◦ SGT(k).
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For more details, see Problem 10 in [7]. Their construction of Φ is given by composing
the four sijections:⊔
µ∈ARn

⊔
l∈µ(k)

SGT(l)

Φ1◦=>=◦
⊔

µ∈ARn

⊔
T∈APn-1

⊔
m∈S1×S2×···Sn−1

GT(m1 + c1(T ),m2 + c2(T ), . . . ,mn−1 + cn−1(T ), x)

Φ2◦=>=◦
⊔

µ∈ARn

⊔
T∈APn

⊔
m∈S1×S2×···Sn−1

GT(m1 + c1(T ),m2 + c2(T ), . . . ,mn−1 + cn−1(T ), x)

Φ3◦=>=◦
⊔

µ∈ARn

⊔
T∈APn

n⊔
i=1

GT(k1 + δ↗(µ1) + c1(T ), . . . , ki−1 + δ↗(µi−1) + ci−1(T ),

x, ki+1 − δ↖(µi+1) + ci(T ), . . . , kn − δ↖(µn) + cn−1(T ))

Φ4◦=>=◦ SGT(k).

Here, Si = ({ki + δ↗(µi)}, {ki+1 − δ↖(µi+1)}). Note that we have slightly modified
their result following our use of half-open intervals. Our goal is to obtain a sijection
compatible with the statistics ηtop and ηinv by modifying the construction. To describe
our construction, we prepare some notations.

• Let Ω be a signed set ({0}, {1}).

• We define a function mi : supp (ARn)× supp (APn-1)× supp (Ω) → Z by

mi(µ, T, 0) = ki + δ↗(µi) + ci(T ), mi(µ, T, 1) = ki+1 − δ↖(µi+1) + ci(T ).

• We define an involution r on arrows that acts on them as reversing the direction.
Namely,

r(↖) =↘ , r(↗) =↙ , r(↖↗) = ↘↙ ,

r(↘) =↖ , r(↙) =↗ , r(↘↙) = ↖↗ .

Our construction consists of Φ1, a modified Φ3 and a modified Φ4:⊔
µ∈ARn

⊔
l∈µ(k)

SGT(l)

Φ1◦=>=◦
⊔

µ∈ARn

⊔
T∈APn-1

⊔
m∈S1×S2×···Sn−1

GT(m1 + c1(T ),m2 + c2(T ), . . . ,mn−1 + cn−1(T ), x)

Φ′
3◦=>=◦

n⊔
i=1

⊔
µ∈ARn

⊔
T∈APn-1

GT(m1(µ, T, 0), . . . ,mi−1(µ, T, 0),

x,mi(µ, T, 1), . . . ,mn−1(µ, T, 1))

Φ′
4◦=>=◦ SGT(k).
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The sijection Φ′
3 is essentially the same as Φ3, but the difference between Φ′

4 and Φ4

plays a key role for compatibility of Φ. Therefore, we explain the constructions of Φ1

and Φ′
3 in this subsection as essentially known results and we explain Φ′

4 in the next
subsection. The results in this subsection are established in [7]. As was the case in §4,
our explanation is more transparent than the original one because of the use of half-open
intervals.

Construction 59 (See also Problem 9 in [7]). We construct Φ1. By the definition of
shifted Gelfand-Tsetlin patterns and by applying Construction 15, we have⊔

µ∈ARn

⊔
l∈µ(k)

SGT(l) =
⊔

µ∈ARn

⊔
l∈µ(k)

⊔
T∈APn-1

GT(T (l))

=
⊔

µ∈ARn

⊔
T∈APn-1

⊔
l∈µ(k)

GT(T (l))

=
⊔

µ∈ARn

⊔
T∈APn-1

⊔
l′∈

⊔
l∈µ(k)({T (l)},∅)

GT(l′).

Since⊔
l∈µ(k)

({T (l)}, ∅) = [k1 + δ↗(µ1) + c1(T ), k2 − δ↖(µ2) + c1(T ))

× · · · × [kn−1 + δ↗(µn−1) + cn−1(T ), kn − δ↖(µn) + cn−1(T )),

using ρ from Construction 28, we obtain the construction.

Construction 60 (See also Problem 9 in [7]). We construct Φ′
3. Here, we have⊔

µ∈ARn

⊔
T∈APn-1

⊔
m∈S1×S2×···Sn−1

GT(m1 + c1(T ),m2 + c2(T ), . . . ,mn−1 + cn−1(T ), x)

=
⊔

µ∈ARn

⊔
T∈APn-1

⊔
ω∈Ωn−1

GT(m1(µ, T, ω1),m2(µ, T, ω2), . . . ,mn−1(µ, T, ωn−1), x)

=
⊔

ω∈Ωn−1

⊔
µ∈ARn

⊔
T∈APn-1

GT(m1(µ, T, ω1),m2(µ, T, ω2), . . . ,mn−1(µ, T, ωn−1), x).

For 1 ⩽ i ⩽ n, we define ω(i) ∈ supp (Ωn−1) by ω
(i)
j =

{
0 j < i

1 j ⩾ i
. Note that its sign

as an element of Ωn−1 is (−1)(n−i). Let Ω1 = ({ωn, ωn−2, . . .}, {ωn−1, ωn−3, . . .}), where
supp (Ω1) = {ω1, ω2, . . . , ωn}. Furthermore, we define Ω2 by Ω±

2 = (Ωn−1)± \ Ω±
1 . Then,
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using π from Construction 29, we have⊔
ω∈Ω1

⊔
µ∈ARn

⊔
T∈APn-1

GT(m1(µ, T, ω1),m2(µ, T, ω2), . . . ,mn−1(µ, T, ωn−1), x)

=
n⊔
i=1

⊔
µ∈ARn

⊔
T∈APn-1

(−1)(n−i)GT(m1(µ, T, 0), . . . ,mi−1(µ, T, 0),

mi(µ, T, 1), . . . ,mn−1(µ, T, 1), x)

π
◦=>=◦

n⊔
i=1

⊔
µ∈ARn

⊔
T∈APn-1

GT(m1(µ, T, 0), . . . ,mi−1(µ, T, 0),

x,mi(µ, T, 1), . . . ,mn−1(µ, T, 1)).

It is therefore sufficient to construct a sijection⊔
ω∈Ω2

⊔
µ∈ARn

⊔
T∈APn-1

GT(m1(µ, T, ω1),m2(µ, T, ω2), . . . ,mn−1(µ, T, ωn−1), x) ◦=>=◦ (∅, ∅).

If we fix ω
◦
∈ Ω2 then, by the definition of Ω2, there is a minimum index i0 ⩽ n− 2 such

that ωi0 = 1 and ωi0+1 = 0. We define an involution on ARn×APn-1 : (µ, T ) ↔ (µ′, T ′)
as follows:

• For 1 ⩽ j ⩽ i0 − 1, swap tj,i0 and tj,i0+1. Namely, (t′j,i0 , t
′
j,i0+1) = (tj,i0+1, tj,i0).

• For i0 + 2 ⩽ j ⩽ n, swap ti0,j and ti0+1,j. Namely, (t′i0,j, t
′
i0+1,j) = (ti0+1,j, ti0,j).

• Let t′i0,i0+1 = r(µi0+1) and µ
′
i0+1 = r(ti0,i0+1).

• Other elements are left unchanged.

For example, when n = 5 and i0 = 2 the involution can be illustrated as

µ1 µ2 µ3 µ4 µ5

t1,2

t1,3

t1,4

t1,5

t2,3

t2,4

t2,5

t3,4

t3,5

t4,5

.

Then, we have

mi0(µ, T, 1) = ki0+1 − δ↖(µi0+1) + ci0(T )

= ki0+1 + δ↗(µ′
i0+1) + ci0+1(T

′) = mi0+1(µ
′, T ′, 0),

mi0+1(µ, T, 0) = ki0+1 + δ↗(µi0+1) + ci0+1(T )

= ki0+1 − δ↖(µ′
i0+1) + ci0(T

′) = mi0(µ
′, T ′, 1),
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and since the involution acts on (µ, T ) as permuting elements it preserves the sign. There-
fore, from Construction 29, we have

GT(m1(µ, T, ω1),m2(µ, T, ω2), . . . ,mn−1(µ, T, ωn−1), x)

◦=>=◦ −GT(m1(µ
′, T ′, ω1),m2(µ

′, T ′, ω2), . . . ,mn−1(µ
′, T ′, ωn−1), x).

This completes the construction.

5.4 A more natural sijection GMT(k) ◦=>=◦ SGT(k)

In this section we construct Φ′
4 to complete the construction of the sijection between

GMT(k) and SGT(k). After that, we prove its compatibility with the top and the inver-
sion number statistics.

Construction 61. We shall construct Φ′
4. First, we construct a bijection supp (ARn)×

supp (APn-1) → supp (AR1) × supp (APn) ; (µ, T ) 7→ (µ′, T ′) as follows (cf. [7, Problem
8]):

t′p,q =



tp,q p < q < i

tp,q−1 p < i < q

tp−1,q−1 i < p < q

r(µp) p < i = q

r(µq) p = i < q

µ′
1 = µi.

Note that this bijection depends on i. For example, when n = 5 and i = 3 we have

µ′ = (µ3), T ′ =

t1,2

r(µ1)

t1,3

t1,4

r(µ2)

t2,3

t2,4

r(µ4)

r(µ5)

t3,4

.

Since this bijection only rearranges and reverses arrows, it preserves the sign. There-
fore, it can be recognized as a sijection ARn×APn-1 ◦=>=◦ AR1×APn. In addition we
have a sijection φAR1 : AR1 ◦=>=◦ ({·}, ∅) defined by

AR1 ({·}, ∅)φAR1 : ◦=>=◦

+

−

·

↗

↖↗

↖

,
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so we get a sijection Ψn,i : ARn×APn-1 ◦=>=◦ APn such that

mj(µ, T, 0) = kj + cj(Ψn,i(µ, T )) if j < i,

mj(µ, T, 1) = kj+1 + cj+1(Ψn,i(µ, T )) if j ⩾ i.

By applying this result and Definition 11, we have

n⊔
i=1

⊔
µ∈ARn

⊔
T∈APn-1

GT(m1(µ, T, 0), . . . ,mi−1(µ, T, 0), x,mi(µ, T, 1), . . . ,mn−1(µ, T, 1))

◦=>=◦
n⊔
i=1

⊔
T∈APn

GT(k1 + c1(T ), . . . , ki−1 + ci−1(T ), x, ki+1 + ci+1(T ), . . . , kn + cn(T )).

Then, using Construction 15 and τ in Construction 30, we have

n⊔
i=1

⊔
T∈APn

GT(k1 + c1(T ), . . . , ki−1 + ci−1(T ), x, ki+1 + ci+1(T ), . . . , kn + cn(T ))

=
⊔

T∈APn

n⊔
i=1

GT(k1 + c1(T ), . . . , ki−1 + ci−1(T ), x, ki+1 + ci+1(T ), . . . , kn + cn(T ))

◦=>=◦
⊔

T∈APn

GT(k1 + c1(T ), k2 + c2(T ), . . . , kn + cn(T )) = SGT(k),

which completes the construction.

Finally, we obtain the desired sijection.

Construction 62. We construct a sijection Γ: GMT(k) ◦=>=◦ SGT(k) for any k ∈
Zn, n ∈ Z. When n = 1, GMT(k) = AR1 and SGT(k) = ({k1}, ∅). Therefore, the
construction is given as:

GMT(k) SGT(k)φ : ◦=>=◦

+

−

k1

↗

↖↗

↖

.

When n > 1, the construction is given by induction on n:

GMT(k) =
⊔

µ∈ARn

⊔
l∈µ(k)

GMT(l) ◦=>=◦
⊔

µ∈ARn

⊔
l∈µ(k)

SGT(l)
Φ′

◦=>=◦ SGT(k),

where Φ′ = Φ′
4 ◦ Φ′

3 ◦ Φ1.
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Last, we check the compatibility of the sijection Γ.

Proposition 63. The sijection Γ in Construction 62 is compatible with the two statistics
ηtop and ηinv. In particular, it is compatible with the statistic (ηtop, ηinv).

Proof. When n = 1, this is trivial. In the following, we assume that n > 1. First,

we define the statistics for the intermediates. For (T, l, µ)
◦
∈
⊔
µ∈ARn

⊔
l∈µ(k) GMT(l), we

define

ηtop((T, l, µ)) = ηtop(T ),

ηinv((T, l, µ)) = ηinv(T ) + ηinv(µ),

and for (T, l, µ)
◦
∈
⊔
µ∈ARn

⊔
l∈µ(k) SGT(l), we define

ηtop((T, l, µ)) = ηtop(T ),

ηinv((T, l, µ)) = ηinv(T ) + ηinv(µ).

The trivial sijection GMT(k) =
⊔
µ∈ARn

⊔
l∈µ(k) GMT(l) is compatible with these statis-

tics and the compatibility of the second sijection follows from the cases for smaller n.
Therefore, it is sufficient to check the compatibility of Φ′.

• Φ1: The compatibility with ηtop follows from the compatibility of ρ (Proposition
43). The sijection does not act on arrows, and hence it is compatible with inversion
numbers.

• Φ′
3: The compatibility with ηtop follows from the compatibility of π (Proposition 44).

The sijection acts on arrows as reversing and permuting, and hence it is compatible
with inversion numbers.

• Φ′
4: The compatibility with ηtop follows from the compatibility of idGT and τ (Propo-

sition 45). The sijection acts on arrows as a permutation except for the actions of
φAR1 . Since the actions of φAR1 do not affect the inversion number, the sijection is
compatible with it.

According to Lemma 18, the compatibility of Φ′ = Φ′
4◦Φ′

3◦Φ1 follows from the above.

Remark 64. One of the advantages of proving refined enumerations with compatibility
appears in the way one proves doubly-refined enumerations. If a sijection is compatible
with two statistics ηA and ηB then it is also compatible with the pair statistic (ηA, ηB).
On the other hand, without compatibility, the result of doubly-refined enumeration with
respect to (ηA, ηB) does not follow immediately from the results of refined enumeration
with respect to each of ηA and ηB separately.
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5.5 About the choice of the parameter x in the construction

Fischer and Konvalinka’s construction as well as ours depends on a parameter x which,
in fact, can be made to depend on the other parameters in each sijection that appears in
the construction, by induction, notably on k. Here we show that there exists a choice of
x that has particularly nice properties at the level of the sijections. We discuss how to
choose the parameter in this subsection. In particular we prove the following proposition.

Proposition 65. Let k ∈ Zn. Then, there exist X+, X− ∈ Z such that

∀x ⩾ X+, Γk,x = Γk,X+ ,

∀x ⩽ X−, Γk,x = Γk,X− ,

where Γk,x : GMT(k) ◦=>=◦ SGT(k) is the sijection constructed in Construction 62.

According to the proposition, we define Γk,±∞ = Γk,X± . Note that X± depend on k.
Let ft : Z → Z; k 7→ k + 1 be a translation. The definition of ft is extended to Zn, GMT
and SGT in a natural way. The choice of parameters in Γk,±∞ is good in the sense that
it satisfies

ft ◦ Γk,±∞ = Γft(k),±∞ ◦ ft. (15)

The rest of this subsection is devoted to prove the proposition and the above relation.
First we define inclusion relations of signed sets and sijections. Let S and T be signed
sets. We say S is included in T and denote it by S ⊂ T if S+ ⊂ T+ and S− ⊂ T− hold.
Let φi : Si ◦=>=◦ Ti (i = 1, 2) be sijections. We say φ1 is included in φ2 and denote it by
φ1 ⊂ φ2 if all of the following conditions are met:

S1 ⊂ S2, T1 ⊂ T2, ∀s ∈ supp (S1 ⊔ T1) , φ1(s) = φ2(s).

We also define the difference of signed sets and sijections as follows:

• When S ⊂ T , the signed set T \ S is (T+ \ S+, T− \ S−).

• When φi : Si ◦=>=◦ Ti (i = 1, 2) meet φ1 ⊂ φ2, the sijection φ2\φ1 : S2\S1 ◦=>=◦ T2\T1
is a restriction of φ2.

Then, we have S⊔(T \S) = T and φ2 = φ1⊔(φ2\φ1). The converse is also true. Namely,
we have S ⊂ S ⊔ T and (S ⊔ T ) \ S = T for any signed sets S and T and φ ⊂ φ ⊔ ψ
and (φ ⊔ ψ) \ φ = ψ for any sijections φ and ψ. In particular, when φi : Si ◦=>=◦ Ti,
ψi : Ti ◦=>=◦ Ui, (i = 1, 2) satisfy φ1 ⊂ φ2, ψ1 ⊂ ψ2, we have

ψ2 ◦ φ2 = (ψ1 ⊔ (ψ2 \ ψ1)) ◦ (φ1 ⊔ (φ2 \ φ1)) = (ψ1 ◦ φ1) ⊔ ((ψ2 \ ψ1) ◦ (φ2 \ φ1)).

Therefore, we have ψ1 ◦ φ1 ⊂ ψ2 ◦ φ2. Particularly, if S1 = S2 and T1 = T2, then
ψ1 ◦ φ1 = ψ2 ◦ φ2.

Let {φx}x∈Z be a sequence of sijections. We say {φx}x∈Z makes a chain in x ⩾ X,
when

φX ⊂ φX+1 ⊂ φX+2 ⊂ · · · .
Similarly, we say {φx}x∈Z makes a chain in x ⩽ X, when

φX ⊂ φX−1 ⊂ φX−2 ⊂ · · · .
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Proposition 66. Let a, b, x be integers and φx : [a, b) ◦=>=◦ [a, x) ⊔ [x, b) the sijection
constructed in Example 2. Then, {φx}x∈Z makes a chain in x ⩾ max(a, b) and in x ⩽
min(a, b).

Proof. For x ⩾ max(a, b), we have φx+1 = φx ⊔ ψx, where ψx is the unique sijection
between (∅, ∅) and ({x}, {x}). Therefore, {φx}x∈Z makes a chain in x ⩾ max(a, b). We
can prove the case x ⩽ min(a, b) similarly.

We prepare some lemmas to prove Proposition 65.

Lemma 67. Let S and T be signed sets such that S ⊂ T . Then, we have idS ⊂ idT . In
addition, let φS : S ⊔ −S ◦=>=◦ (∅, ∅) be the sijection induced by idS as in Example 4. We
define φT similarly. Then, we have φS ⊂ φT .

Proof. The proof follows immediately from the definitions.

Lemma 68. Let φi : Si ◦=>=◦ Ti be sijections for i = 1, 2 and ψ : U ◦=>=◦ V a sijection.
Then, we have

φ1 ⊂ φ2 ⇒ ψ ⊔ φ1 ⊂ ψ ⊔ φ2.

and
φ1 ⊂ φ2 ⇒ ψ × φ1 ⊂ ψ × φ2.

Proof. The proof follows immediately from the definitions.

When φi : Si ◦=>=◦ Ti and ψi : Ui ◦=>=◦ Vi are sijections for i = 1, 2 such that φ1 ⊂ φ2

and ψ1 ⊂ ψ2, then we have from this lemma that

ψ1 × φ1 ⊂ ψ1 × φ2 ⊂ ψ2 × φ2.

Furthermore, for a disjoint union with signed index, the following lemma holds.

Lemma 69. Let ψi : Ti ◦=>=◦ T̃i be sijections for i ∈ Z⩾1 such that ψ1 ⊂ ψ2 ⊂ · · · . Also,

for S =
⋃∞
i=1

(
T+
i

)
⊔
⋃∞
i=1

(
T̃−
i

)
, let {φs : Us ◦=>=◦ Vs}s∈S be a family of sijections. Then

we have ⊔
t ;ψ1 : T1◦=>=◦T̃1

φt ⊂
⊔

t ;ψ2 : T2◦=>=◦T̃2

φt ⊂ · · · .

Proof. The proof follows immediately from the definitions.

Proof of Proposition 65. The following claims can be checked by tracing the correspond-
ing construction.

1. The sijection β in Subconstruction 28.1 makes a chain in x ⩾ max(an, bn) and in
x ⩽ min(an, bn). This follows from Proposition 66, Lemma 68 and the induction.

2. The sijection ρ in Construction 28 makes a chain in x ⩾ max(an, bn) and in x ⩽
min(an, bn). This follows from the property of β and Lemma 69.
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3. The sijection π in Construction 29 makes a chain in kj ⩾ max(k1, k2, . . . , kj−1, kj+1,
. . . , kn) and in kj ⩽ min(k1, k2, . . . , kj−1, kj+1, . . . , kn) for j ∈ {1, 2, . . . , n}. Also,
the sijection σ in Construction 29 makes a chain in aj ⩾ bj, in aj ⩽ bj, in bj ⩾
aj and in bj ⩽ aj for j ∈ {1, 2, . . . , i − 1, i + 2, . . . , n}. Furthermore, let a′ =
(a1, a2, . . . , ai−1, x, x, ai+2, . . . , an) and b′ = (b1, b2, . . . , bi−1, x, x, bi+2, . . . , bn). Then,
σa′,b,x makes a chain in x ⩾ max(bi, bi+1) and in x ⩽ min(bi, bi+1) and σa,b′,x makes
a chain in x ⩾ max(ai, ai+1) and in x ⩽ min(ai, ai+1). These properties follow from
Lemma 67 and the constructions of the sijections π and σ.

4. The sijection γ in Subconstruction 30.1 makes a chain in x ⩾ max(k) and in x ⩽
min(k). This follows from the lemmas.

5. The sijection τ in Subconstruction 30 makes a chain in x ⩾ max(k) and in x ⩽
min(k). This follows from the properties of γ and σ.

6. The sijection Φ1 in Construction 59 makes a chain in x ⩾ max(k) + n and in
x ⩽ min(k)− n. This follows from the property ρ.

7. The sijection Φ′
3 in Construction 60 makes a chain in x ⩾ max(k) + n and in

x ⩽ min(k)− n. This follows from the property of π.

8. The sijection Φ′
4 in Construction 61 makes a chain in x ⩾ max(k) + n and in

x ⩽ min(k)− n. This follows from the Lemma 69 and the property of τ .

9. The sijection Φ′ = Φ′
4◦Φ′

3◦Φ1 makes a chain in x ⩾ max(k)+n and in x ⩽ min(k)−n.
This follows from the properties of Φ1, Φ

′
3 and Φ′

4.

10. The sijection Γ in Construction 62 makes a chain in x ⩾ max(k) + n and in x ⩽
min(k)− n. This follows from the property of Φ′.

Since the domain and codomain of Γ (GMT(k) and SGT(k)) are independent of the
parameter x, we have

ΓX+ = ΓX++1 = ΓX++2 = · · · , where X+ = max(k) + n,

ΓX− = ΓX−−1 = ΓX−−2 = · · · , where X− = min(k)− n.

Last, we check the property of Φ±∞ with respect to translations:

ft ◦ Γk,±∞ = Γft(k),±∞ ◦ ft.

By the constructions, we have

ft ◦ Γk,x = Γft(k),ft(x) ◦ ft.

Considering a parameter x ⩾ max(X+(k), X+(ft(k))), we have

ft ◦ Γk,+∞ = Γft(k),+∞ ◦ ft.

We can prove a similar result for −∞.
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5.6 A natural sijection GMT(k) ◦=>=◦ ARn × SGT(k)

In this subsection, we start with the weighted enumeration formula of a variant of mono-
tone triangles, which is proved in [9]. From this formula, we construct a sijection that
is compatible with n + 3 statistics between GMT(k) and ARn× SGT(k). This serves
as a good example of transforming a non-constructive proof for a weighted enumeration
formula into a constructive one using the concept of compatibility. First, to align with the
terms of [9], we will slightly modify the definitions of the combinatorial objects introduced
so far.

• Let ÂRn = ({↖,↗,↖↗}, ∅)n. The action of an element of ÂRn on k ∈ Zn is
defined as in (8). The definition of generalized monotone triangles is also modified
accordingly:

ĜMT(k) :=
⊔

µ(n)∈ÂRn

⊔
k(n−1)∈µ(n)(k)

⊔
µ(n−1)∈ÂRn-1

⊔
k(n−2)∈µ(n−1)(k(n−1))

· · ·
⊔

µ(2)∈ÂR2

⊔
k(1)∈µ(2)(k(2))

ÂR1.

• Let ÂPn = ({↘,↙,↘↙}, ∅)n−1 × ({↘,↙,↘↙}, ∅)n−2 × · · · × ({↘,↙,↘↙}, ∅)1. The

action of an element of ÂPn on k ∈ Zn is defined as in (11). The definition of Shifted
Gelfand-Tsetlin patterns is also modified accordingly:

ŜGT(k) =
⊔

T∈ÂPn

GT(T (k)).

This modification just changes the signs of ↖↗ and ↘↙. Therefore, except for the parts
involving cancellations with ↗↔ ↖↗ and ↙↔ ↘↙, the constructions of the sijection
described thus far remain unaffected. In [9], weighted enumerations of several variants of
monotone triangles are provided. When rewritten in accordance with the definitions and
terminology of this paper, we obtain the following result for the weighted enumeration
of generalized monotone triangles. Here, the weighted enumeration of a signed set S is
defined as: ∑

s∈S+

weight(s)−
∑
s∈S−

weight(s).

Theorem 70 (Theorem 2.2 and 3.2 in [9]). For

T =
(
k(n), µ(n),k(n−1), µ(n−1), . . . ,k(1), µ(1)

) ◦
∈ ĜMT(k),

we define its weight as follows:

• Let ηu(T ), ηv(T ) and ηw(T ) be the number of ↗, ↖ and ↖↗ respectively in µ(1), µ(2),
. . . , µ(n).
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• Let ηXi
(T ) =

∑
k(i) −

∑
k(i−1) +(# of ↗ in µ(i))− (# of ↖ in µ(i)), where

∑
k(i)

means the summation of entries of k(i) and we define
∑

k(0) = 0.

• Then, the weight of T is uηu(T )vηv(T )wηw(T )
∏

iX
ηXi

(T )

i .

As a result, the weighted enumeration of ĜMT(k) is

n∏
i=1

(
uXi + vX−1

i + w
) ∏
1⩽p<q⩽n

(
uEkp + vE−1

kq
+ wEkpE

−1
kq

)
s̃(kn,kn−1,...,k1)(X1, X2, . . . , Xn),

where Ex is a shift operator such that Exp(x) = p(x+1) and s̃(kn,kn−1,...,k1) is a transformed
Schur polynomial.

The relation between the transformed Schur polynomial s̃ and the extended Schur
polynomial s defined in [9] is

s̃(kn,kn−1,...,k1) = s(kn−(n−1),kn−1−(n−2),...,k1−0).

This difference is the result of our change in convention from closed intervals to half-
open ones. For the definition of extended Schur polynomials, which we omit here as it
is not necessary for this paper, please see [9]. What is important in this paper is that
s̃(kn, kn−1, . . . , k1)(X1, X2, . . . , Xn) is the weighted enumeration of GT(k) with appropri-

ate weight. In fact, for A
◦
∈ GT(k) we define Σi(A) =

∑i
j=1 (ηrow(A)i)j, which means

that Σi(A) is the sum of elements in the i-th row when considering A as a triangular

array. Then, we can assign the weight as weight(A) = X
ηXi

(A)

i , where ηXi
(A) = Σi(A)−

Σi−1(A). Based on the observation and the definition of the shift operator, the part of∏
1⩽p<q⩽n

(
uEkp + vE−1

kq
+ wEkpE

−1
kq

)
s̃(kn,kn−1,...,k1)(X1, X2, . . . , Xn) in the weighted enu-

meration of ĜMT(k) is identified with a weighted enumeration of ŜGT(k), which will be
explained in Corollary 71. Furthermore, the remaining part is recognized as a weighted
enumeration of ÂRn with appropriate weight. To summarize the above discussion, the
following corollary can be obtained.

Corollary 71. There exists a sijection ĜMT(k) ◦=>=◦ ÂRn× ŜGT(k) which is compatible
with the following n+ 3 statistics ηu, ηv, ηw, ηX1, ηX2, . . ., ηXn:

• For GMT side, the definitions of statistics are the same in Theorem 70.

• For (µ, (A, T ))
◦
∈ ÂRn × ŜGT(k), where A

◦
∈ GT(T (k)), we define its statistics as

follows:

ηu((µ, (A, T ))) = (# of ↗ in µ) + (# of ↙ in T ),

ηv((µ, (A, T ))) = (# of ↖ in µ) + (# of ↘ in T ),

ηw((µ, (A, T ))) = (# of ↖↗ in µ) + (# of ↘↙ in T ),

ηXi
((µ, (A, T )) = ηXi

(A) + δ↗(µi)− δ↖(µi).
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The rest of this subsection is devoted to actually constructing this sijection.

Construction 72. We shall construct a sijection which satisfies the conditions described
in Corollary 71. The construction is by induction on n. If n = 1, it is trivial since we

have ĜMT(k) = ÂR1 and ŜGT(k) = GT(k) = ({∅}, ∅). If n > 1, it is given as follows:

ĜMT(k) =
⊔

µ∈ÂRn

⊔
l∈µ(k)

ĜMT(l)

◦=>=◦
⊔

µ∈ÂRn

⊔
l∈µ(k)

(
ÂRn-1 × ŜGT(l)

)
=ÂRn-1 ×

⊔
µ∈ÂRn

⊔
l∈µ(k)

ŜGT(l)

id
ÂRn-1

×Φ̂1

◦=>=◦ ÂRn-1 ×
⊔

µ∈ÂRn

⊔
T∈ÂPn-1

⊔
m∈S1×S2×···Sn−1

GT(m1 + c1(T ),m2 + c2(T ), . . . ,mn−1 + cn−1(T ), x)

id
ÂRn-1

×Φ̂′
3

◦=>=◦ ÂRn-1 ×
n⊔
i=1

⊔
µ∈ÂRn

⊔
T∈ÂPn-1

GT(m1(µ, T, 0), . . . ,mi−1(µ, T, 0), x,mi(µ, T, 1), . . . ,mn−1(µ, T, 1))

Φ′′
4◦=>=◦ÂRn-1 × ÂR1 × ŜGT(k)

=ÂRn × ŜGT(k),

where the assumption of induction is used in the second line. For the definition of Si and

mi, refer to Subsection 5.3. The sijections Φ̂1 and Φ̂′
3 are slightly modified versions of Φ1

and Φ′
3 constructed in Subsection 5.3. In fact, since the constructions of Φ1 and Φ′

3 do
not involve the cancellations ↗↔ ↖↗ and ↙↔ ↘↙, these sijections can be applied directly
in the present case. On the other hand, since φAR1 does involve such cancellations in the
construction of Φ′

4, this construction should be modified. However, the modification is not
difficult. The bijection supp (ARn)×supp (APn-1) → supp (AR1)×supp (APn) constructed

in Construction 61 can be considered as a sijection ÂRn × ÂPn-1 ◦=>=◦ ÂR1 × ÂPn. Using
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this sijection instead of Ψn,i : ARn×APn-1 ◦=>=◦ APn, we obtain

n⊔
i=1

⊔
µ∈ÂRn

⊔
T∈ÂPn-1

GT(m1(µ, T, 0), . . . ,mi−1(µ, T, 0), x,mi(µ, T, 1), . . . ,mn−1(µ, T, 1))

◦=>=◦
n⊔
i=1

⊔
(µ,T )∈ÂR1×ÂPn

GT(k1 + c1(T ), . . . , ki−1 + ci−1(T ),

x, ki+1 + ci+1(T ), . . . , kn + cn(T ))

= ÂR1 ×
n⊔
i=1

⊔
T∈ÂPn

GT(k1 + c1(T ), . . . , ki−1 + ci−1(T ),

x, ki+1 + ci+1(T ), . . . , kn + cn(T )),

and the construction of Φ′′
4 can be completed as in Construction 61.

Next, we will verify that the sijection satisfies the compatibility conditions in Corollary
71. First, all the sijections used in the construction act on arrows as reversing and
permuting, and hence the sijection is compatible with ηu, ηv and ηw. In addition, it is
compatible with ηX1 , ηX2 , . . . , ηXn−1 for the same reason as Proposition 63:

• Φ1 is compatible thanks to the construction and Proposition 43,

• Φ′
3 is compatible thanks to the construction and Proposition 44.

• Φ′′
4 is compatible thanks to the construction.

Last, we will prove the sijection is compatible with ηXn. In fact, the value of
∑n

i=1 ηXi
−

ηu + ηv is const. Indeed,

• for T ∈ ĜMT(k), we have(
n∑
i=1

ηXi
− ηu + ηv

)
(T ) =

∑
k, where

∑
k :=

n∑
i=1

(k)i,

• and for (µ, (A, T )) ∈ ÂRn× ŜGT(k), we have(
n∑
i=1

ηXi
− ηu + ηv

)
((µ, (A, T ))) = Σn(A)− (# of ↙ in T ) + (# of ↘ in T ).

Here, Σn(A) =
∑
T (k) from the definition of ŜGT(k). Thus, the value is equal to∑

k, based on the definition of T (k).

Therefore, the value of

ηXn =

(
n∑
i=1

ηXi
− ηu + ηv

)
−

(
n−1∑
i=1

ηXi
− ηu + ηv

)
=
∑

k−

(
n−1∑
i=1

ηXi
− ηu + ηv

)
,

is preserved under the action of the sijection. Thus, the sijection is compatible with all
n+ 3 statistics in Corollary 71.
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Remark 73. Since we have supp
(
ĜMT (k)

)
= supp (GMT(k)), supp

(
ŜGT (k)

)
=

supp (SGT(k)), supp
(
ÂRn

)
= supp (ARn), supp

(
ÂPn

)
= supp (APn) and the compat-

ibility with respect to ηw, we can construct a sijection GMT(k) ◦=>=◦ ARn× SGT(k) in
the same manner.

Remark 74. In Corollary 71, we say there are n + 3 statistics with which the sijection is
compatible, but some of them are degenerate, as can be understood from the proof of the
compatibility in Construction 72. In addition to the relation

∑n
i=1 ηXi

−ηu+ηv =
∑

k, we
have ηu+ηv+ηw =

(
n
2

)
. Thus, there are at most n+1 independent statistics, where we say

statistics are independent if there are no relations between them. Note that the number
of independent statistics is not essentially meaningful. While it may be considered that
the appropriateness of a family of statistics can be measured by how fine it is, we will not
delve further into this as it is beyond the scope of this paper.

6 Conclusions

In this paper, we introduce the notion of compatibility of sijections and give transparent
proofs of basic properties relevant to signed sets, sijections and the notion of compatibility.
In addition, we explain some combinatorial results by means of compatibility. Our main
contributions are as follows.

• We find and describe in detail the canonical one-to-one correspondences between
Gelfand-Tsetlin patterns with a bottom row and that with a permuted bottom row.
This leads us to a new computational proof of the signed enumeration of Gelfand-
Tsetlin patterns. In addition, inspired by this proof, we define Gelfand-Tsetlin
Graph sequences as a generalization of Gelfand-Tsetlin patterns and extend the
signed enumeration to them.

• We extend the definition of inversion numbers for shifted Gelfand-Tsetlin patterns
and construct a more natural sijection than the conventional one between (general-
ized) monotone triangles and shifted Gelfand-Tsetlin patterns, through the notion
of compatibility with the inversion numbers.

• We give a bijective proof for the refined enumeration of an extension of alternating
sign matrices with n+ 3 statistics, first proved in [9].

We would also like to discuss the possibility of future applications of the notion of
compatibility. In fact, we believe it could be applied to many topics in integrable combi-
natorics. On the one hand we have many determinant formulae in this field. (For example,
those derived from the Lindstrom-Gessel-Viennot lemma, the Yang-Baxter equation, etc.)
As mentioned in [8], the theory of signed sets and sijections is closely related to linear al-
gebra. Therefore, known computational proofs of determinant formulae can be translated
into bijective proofs. On the other hand we have many results about refined enumerations
in this field. We should import these results into the bijective proofs through the notion
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of compatibility, since this may offer hints to construct more natural (or completely new)
sijections, as in Section 5. In addition, considering compatibility can lead us to novel
combinatorial results, as in Section 4.

Besides the above, the knowledge of this paper could be applied to the results obtained
in [8], which is the sequel of the paper we mainly based our paper upon. This might lead
to the discovery of novel relations between alternating sign matrices and descending plane
partitions.
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A The details of Construction 29

In this section, we will describe the details of the construction of π in Construction 29. We
construct π from σ for one smaller n. For x1, x2, x3, x4 ∈ Z, we have sijections compatible
with the normal statistics

[x1, x2)× [x2, x3) ◦=>=◦ −[x2, x1)× ([x2, x1) ⊔ [x1, x3))

◦=>=◦ −[x2, x1)× [x2, x1) ⊔ −[x2, x1)× [x1, x3), (A1)

[x1, x2)× [x2, x3) ◦=>=◦ ([x1, x3) ⊔ [x3, x2))×−[x3, x2)

◦=>=◦ −[x1, x3)× [x3, x2) ⊔ −[x3, x2)× [x3, x2) (A2)

and

[x1, x2)× [x2, x3)× [x3, x4)

◦=>=◦ ([x1, x3) ⊔ [x3, x2))×−[x3, x2)× ([x3, x2) ⊔ [x2, x4))

◦=>=◦ −[x1, x3)× [x3, x2)× [x3, x2) ⊔ −[x1, x3)× [x3, x2)× [x2, x4)

⊔ −[x3, x2)× [x3, x2)× [x3, x2) ⊔ −[x3, x2)× [x3, x2)× [x2, x4).

(A3)
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When i = 1, we have from (A1)

GT(l) =
⊔

m∈[l1,l2)×[l2,l3)×···×[ln−1,ln)

GT(m)

C. 14
◦=>=◦

⊔
m∈−[l2,l1)×[l2,l1)×[l3,l4)×···×[ln−1,ln)

GT(m) ⊔
⊔

m∈−[l2,l1)×[l1,l3)×[l3,l4)×···×[ln−1,ln)

GT(m)

σ⊔id
◦=>=◦ (∅, ∅) ⊔ −

⊔
m∈−[l2,l1)×[l1,l3)×[l3,l4)×···×[ln−1,ln)

GT(m)

=−GT(l2, l1, l3, . . . , ln).

When i = n− 1, we have from (A2)

GT(l) =
⊔

m∈[l1,l2)×[l2,l3)×···×[ln−1,ln)

GT(m)

C. 14
◦=>=◦

⊔
m∈[l1,l2)×···×[ln−3,ln−2)×−[ln−2,ln)×[ln,ln−1)

GT(m)

⊔
⊔

m∈[l1,l2)×···×[ln−3,ln−2)×−[ln,ln−1)×[ln,ln−1)

GT(m)

id⊔σ
◦=>=◦ −

⊔
m∈[l1,l2)×···×[ln−3,ln−2)×[ln−2,ln)×[ln,ln−1)

GT(m) ⊔ (∅, ∅)

=−GT(l1, l2, . . . , ln−2, ln, ln−1).

Otherwise, we have from (A3)

GT(l) =
⊔

m∈[l1,l2)×[l2,l3)×···×[ln−1,ln)

GT(m)

C. 14
◦=>=◦

⊔
m∈[l1,l2)×···×[li−2,li−1)×−[li−1,li+1)×[li+1,li)×[li+1,li)×[li+2,li+3)×···×[ln−1,ln)

GT(m)

⊔
⊔

m∈[l1,l2)×···×[li−2,li−1)×−[li−1,li+1)×[li+1,li)×[li,li+2)×[li+2,li+3)×···×[ln−1,ln)

GT(m)

⊔
⊔

m∈[l1,l2)×···×[li−2,li−1)×−[li+1,li)×[li+1,li)×[li+1,li)×[li+2,li+3)×···×[ln−1,ln)

GT(m)

⊔
⊔

m∈[l1,l2)×···×[li−2,li−1)×−[li+1,li)×[li+1,li)×[li,li+2)×[li+2,li+3)×···×[ln−1,ln)

GT(m)

σ
◦=>=◦ (∅, ∅) ⊔ −

⊔
m∈[l1,l2)×···×[li−2,li−1)×[li−1,li+1)×[li+1,li)×[li,li+2)×[li+2,li+3)×···×[ln−1,ln)

GT(m)

⊔ (∅, ∅) ⊔ (∅, ∅)
=−GT(l1, l2, . . . , li−1, li+1, li, li+2, . . . , ln).
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B The details of the proof of Proposition 41

In this section, we implement the first step in the proof of Proposition 41, namely, we
prove that it is sufficient to show that (6) holds. The proof is given by induction on n.
For n = 1, this is trivial. For n > 1, let A′ ∈ An−1

row such that A = (A′, {{k}}). Then, we
have

#GGT (k; {pi,j}, {qi,j}) |ηrow=A=
∑
l∈K

#GGT(l; {pi,j}1⩽j⩽i⩽n−2, {qi,j}1⩽j⩽i⩽n−2) |ηrow=A′ .

where K =
[
kpn−1,1 , kqn−1,1

)
×
[
kpn−1,2 , kqn−1,2

)
× · · · ×

[
kpn−1,n−1 , kqn−1,n−1

)
. Let a1 ⩽ a2 ⩽

· · · ⩽ an−1 be the elements of An−1. If they are not distinct, A′ does not form an unsigned
modified Gelfand-Tsetlin pattern and neither does A. Therefore, in this case we obtain
the result that #GGT (k; {pi,j}, {qi,j}) |ηrow=A= 0. In the following, we assume that
a1 < a2 < · · · < an−1.

Now, with the assumption of the induction, we have

#GGT (k; {pi,j}, {qi,j}) |ηrow=A
=
∑
l∈K

#GGT(l; {pi,j}1⩽j⩽i⩽n−2, {qi,j}1⩽j⩽i⩽n−2) |ηrow=A′

=
∑

l∈K s.t. {{l}}=An−1

#GGT(l; {pi,j}1⩽j⩽i⩽n−2, {qi,j}1⩽j⩽i⩽n−2) |ηrow=A′

= 1A′ forms a classical Gelfand-Tsetlin pattern

×
∑

l∈K s.t. {{l}}=An−1

sgn(l) · sgn({pi,j}1⩽j⩽i⩽n−2, {qi,j}1⩽j⩽i⩽n−2).

For i ∈ {1, 2, . . . , n}, let ti be the integer such that ati−1 < ki ⩽ ati , where we define
a0 = −∞ and an = +∞. Then, it is sufficient to show (6) because A forms an unsigned
modified Gelfand-Tsetlin pattern if and only if A′ does and t1, t2, . . . , tn are distinct.
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