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Abstract

If k is a positive real number, we say that a set S of real numbers
is k-sum-free if there do not exist x, y, z in S such that x+y = kz. For
k greater than or equal to 4 we find the essentially unique measurable
k-sum-free subset of (0, 1] of maximum size.

1 Introduction

We say that a set S of real numbers is sum-free if there do not exist x, y, z
is S such that x + y = z. If k is a positive real number, we say that a set
S of real numbers is k-sum-free if there do not exist x, y, z in S such that
x + y = kz (we require that not all x, y, and z be equal to each other to
avoid a meaningless problem when k = 2).

Let f(n, k) denote the maximum size of a k-sum-free subset of {1, 2, . . .
,n}. It is easy to show [1, 2] that

f(n, 1) =
⌈
n

2

⌉
.

For k = 1 and n odd there are precisely two such maximum sets: the odd
integers and the “top half.” For n even and greater than 9 there are precisely
three such sets (see [1]): the two maximum sets for the odd number n− 1,
and the top half.

The problem of determining f(n, 2) is unsolved. Roth [4] proved that a
subset of the positive integers with positive upper density contains three-
term arithmetic progressions. The current best bounds for f(n, 2) were
established by Salem and Spencer [5] and Heath-Brown and Szeméredi [3].
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Chung and Goldwasser [1] proved a conjecture of Erdös that f(n, 3) is

roughly
n

2
. They showed that f(n, 3) =

⌈
n

2

⌉
for n 6= 4 and that for n ≥ 23

the set of odd integers less than or equal to n is the unique maximum set.
Loosely speaking, the set of odd numbers less than or equal to n qualifies

as a k-sum-free set for odd k because of “parity” considerations while the top
half maximum sum-free set qualifies because of “magnitude” considerations:
the sum of two numbers in the top half is too big. There is an obvious way to
take a “magnitude” k-sum-free subset of {1, 2, . . . , n} and get an analogue
k-sum-free subset of the interval (0, 1]. The top half maximum sum-free

subset of {1, 2, . . . n} becomes
(

1
2
, 1
]

and the “size” seems to be preserved.

On the other hand it is not so obvious how to get the analogue on (0, 1] for
the odd numbers maximum sum-free subset of {1, 2, . . . n}. One could try
to “fatten up” each odd integral point on [0, n] by as much as possible while
keeping it sum-free and then normalize. It turns out one can fatten each

odd integer j to
(
j − 1

3
, j +

1
3

)
and, after normalization, one ends up with

a subset of (0, 1] of size roughly
1
3

.
Chung and Goldwasser have conjectured that if k ≥ 4, n is sufficiently

large, and S is a k-sum-free subset of {1, 2, . . . , n} of size f(n, k), then S is
the union of three strings of consecutive integers. Such a set has an analogue
k-sum-free subset of (0, 1] of the same “size,” so we can learn someting about
k-sum-free subsets of {1, 2, . . . , n} by studying k-sum-free subsets of (0, 1].

We say that a (Lebesgue) measurable subset S of (0, 1] is a maximum
k-sum-free-set if S is k-sum-free, has maximum size among all measurable
k-sum-free subsets of (0, 1], and is not a proper subset of any k-sum-free
subset of (0, 1]. So S is a maximum k-sum-free set if both S and µ(S) are
maximal where µ(S) denotes the measure of S. In this paper, for each real
number k greater than or equal to 3 we will construct a family of k-sum-free
subsets (0, 1], each of which is the union of finitely many intervals (Lemma
1). We will find which set in the family has maximum size (Theorem 1).
Then we will show that for k ≥ 4 any maximum k-sum-free subset of (0, 1]
must be in the family (Section 3). This also gives us a lower bound for

lim
n→∞

f(n, k)
n

, and we conjecture that the bound is the actual value.
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2 A family of k-sum-free sets.

Let k be a positive integer greater than or equal to 3. (In fact, the con-
struction works for any real number k greater than 2.) Let m be a positive
integer, and a1 and c be real numbers such that

0 < c <
k

2
a1. (2.1)

We define sequences {ai} and {bi} by

bi =
k

2
ai i = 1, 2, . . . ,m

(2.2)
ai+1 = kbi − c i = 1, 2, . . . ,m− 1.

We normalize to get sequences {e1} and {fi} defined by

e1 =
1
bm

max{a1, c}

ei =
ai
bm

i = 2, 3, . . . ,m

(2.3)

fi =
bi
bm

i = 1, 2, . . . ,m

It is easy to show that e1 < f1 < e2 < f2 < · · · < em < fm, so the set
W = ∪mi=1 [ei, fi) is the union of m disjoint intervals and is a subset of (0, 1].
Furthermore, W is k-sum-free because if x ∈ [ei, fi), y ∈ [ej, fj), z ∈ [er, fr)
and if r = max{i, j, r} then x + y < kz, while if r < max{i, j, r} then
x + y > kz. In fact it is not hard to show that W is a maximal k-sum-free
set (i.e. it is not a proper subset of any k-sum free subset of (0, 1]).

The parameter c controls the spacing of the intervals and the size of
[e1, f1). If c = a1 then the set S can be constructed by a greedy procedure.
We first put e1 into S and then, moving to the right from e1 we put in
anything we can as long as the set remains k-sum-free. So f1 = sup{x ∈
[e1, 1] | [e1, x] is k-sum-free}. But f1 cannot be in S, so we have [e1, f1) so
far. Then let e2 = inf{x ∈ [f1, 1] | [e1, f1)∪{x} is k-sum-free}, and so on. A
lengthy calculation (Lemma 1) is required to determine e1 so that the value
of fm turns out to be 1. An alternative procedure would be to let a1 = 1,



the electronic journal of combinatorics 3 (1996), #R1 4

perform the greedy procedure to get m intervals, and then normalize. In
Section 3 we will show that if c = a1, m = 3, and k ≥ 4, then S is a maximum
k-sum-free set.

If c ∈ (a1,
k

2
a1) then the greedy procedure would produce f1 =

k

2
e1, a

larger value of f1 than produced by equations (2.3). However, the greedy
procedure does produce S if you start with [e1, f1)∪ {e2} and then work to
the right from e2. If c ∈ (0, a1) then the greedy procedure would produce
a smaller value of ei than that produced by equations (2.2) and (2.3) for
i = 2, 3, 4, · · · , m.

Now we calculate µ(S). From equations (2.2) we get

ai+1 − ai =
k2

2
(ai − ai−1) i = 2, 3, . . . ,m− 1

a2 − a1 =
k2 − 2

2
a1 − c

which has solution

ai = c1

(
k2

2

)i
+ c2 i = 1, 2, . . . ,m

where

c1 =
2
k2
a1 −

4
k2(k2 − 2)

c

(2.4)

c2 =
2c

k2 − 2
.

If d = max{0, c− a1} then
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µ(W ) =
1
bm

m∑
i=1

(bi − ai)−
d

bm

=
k − 2
2bm

k
2c1

2
·

(
k2

2

)m
− 1

k2

2
− 1

+ c2m

− d

bm

=
k(k − 2)
k2 − 2

1 +

k2 − 2
k2

· c2

c1
·m− 2(k2 − 2)

k2(k − 2)
· d
c1
− c2

c1
− 1(

k2

2

)m
+
c2

c1


where we have summed the geometric series and simplified. Now we let
y =

c

a1
so that

0 < y <
k

2
by equation (2.1). Then from equations (2.4) we get

c1 =
2a1

k2(k2 − 2)
[k2 − 4− 2(y − 1)]

c2 =
2a1

k2 − 2
y

and

c2
c1

=
k2y

k2 − 2− 2y
.

So now we substitute and simplify to get

µ(W ) =
k(k − 2)
k2 − 2

1 +
k2 − 2
k2

·
2y(m− 1)− 2−max

{
0,

2(k2 − 2)(y − 1)
k − 2

}

(k2 − 2)

(
k2

2

)m−1

− 2y

(k2

2

)m−1

− 1




(2.5)
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With k fixed we note that because of the normalization, µ(W ) is a function
of m and y alone. So we have the following result.

Lemma 1 Let m be a positive integer, k a positive integer greater than or

equal to 3, a1 and c real numbers such that 0 < c <
k

2
a1, y =

c

a1
, and let

Sk(m,y) = ∪mi=1(ei, fi) where {ei} and {fi} are defined by (2.2) and (2.3).
Then Sk(m, y) is a k-sum-free set. If c ≤ a1, then 0 < y ≤ 1 and

µ(Sk(m,y)) =
k(k − 2)
k2 − 2

+
2
k
· [y(m− 1)− 1](k − 2)

(k2 − 2)

(
k2

2

)m−1

− 2y

(k2

2

)m−1

− 1


(2.6)

while if c ≥ a1 then 1 ≤ y < k

2
and

µ(Sk(m,y)) =
k(k − 2)
k2 − 2

+
2
k
· k(k − 1)− y[(k2 + k − 4)−m(k − 2)]

(k2 − 2)

(
k2

2

)m−1

− 2y

(k2

2

)m−1

− 1

 .
(2.7)

For any positive integer k greater than 2 we define the set Sk(∞) by

Sk(∞) = ∪∞i=1

(
2
k

(
2
k2

)i−1

,

(
2
k2

)i−1
)
.

If Pk(∞) is formed from Sk(∞) by including one end-point of each interval
then it is easy to see that Pk(∞) is a maximal k-sum-free set and

µ(Pk(∞)) = µ(Sk(∞)) =
k − 2
k

∞∑
i=1

(
2
k2

)i−1

=
k(k − 2)
k2 − 2

.

We remark that µ(Sk(∞)) = µ(Sk(2, 1)) and that Sk(∞) = lim
m→∞

Sk(m,y)

for any y ∈
(

0,
k

2

)
in the following sense. For m fixed, let vim = em−i

and wim = fm−i for i = 1, 2, · · · , m, so that (vim, wim) is the i-th interval
from the right in Sk(m,y). Then for any fixed positive integer i, lim

m→∞
vim =

2
k

(
2
k2

)i−1 and lim
m→∞

wim = (
2
k2

)i−1.
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If m is fixed, the expression in (2.6) is clearly an increasing function of y

on (0, 1], so to maximize µ(Sk(m,y)) we need only consider y ∈
[
1,
k

2

)
and

use (2.7). For fixed k we define the functions

f(m,y) = k(k − 1)− y[(k2 + k − 4)−m(k − 2)]

g(m,y) = (k2 − 2)

(
k2

2

)m−1

− 2y

(k2

2

)m−1

− 1


h(m,y) =

f (m,y)
g(m,y)

where m is a positive integer and y ∈
[
1,
k

2

)
. With y fixed, the function

Fy(m) = f(m,y) is an increasing linear function of m with root m(y) given
by

m(y) = k + 3− k(k − 1)− 2y
y(k − 2)

.

So the root m(y) of Fy(m) is an increasing function of y for y ∈
[
1,
k

2

)
and

hence

2 = m(1) ≤ m(y) < m

(
k

2

)
= k + 1

This means that for each y ∈
[
1,
k

2

)
there is a positive integer mc(y) ∈

{2, 3, . . . , k + 1} such that f(m,y) < 0 for m < mc(y) and f(m,y) ≥ 0 for
m ≥ mc(y). It is easy to show that if y is fixed then h(m,y) > h(m+ 1, y)
for all m greater than mc(y) (because g(m,y) is positive and exponential
in m). So for fixed y the maximum value of h(m,y) occurs when m ∈
{mc(y), mc(y) + 1}, which means for some m satisfying

2 ≤ m ≤ k + 2. (2.8)

Now with m fixed and satisfying (2.8) we let Hm(y) = h(m,y). We
differentiate to get
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H ′m(y) =
A

[g(m,y)]2

where

A = 2k(k − 1)

(k2

2

)m−1

− 1


−(k2 − 2)

(
k2

2

)m−1

[(k2 + k − 4)−m(k − 2)]

≤ −k2(k − 2)

(
k2

2

)m−1

− 2k(k − 1)

by (2.8). So Hm(y) is strictly decreasing on
[
1,
k

2

)
for any m satisfying

(2.8). And hence µ (Sk(m,y)) is a maximum if and only if y = 1 and
R(m) = h(m, 1) is a maximum over {2, 3, . . . , k + 2}. We have

R(m) =
k(k − 1)− (k2 + k − 4) +m(k − 2)

(k2 − 4)

(
k2

2

)m−1

+ 2

=
1

k + 2
· m− 2(

k2

2

)m−1

+
2

k2 − 4

which clearly is maximum only at m = 3. Since k ≥ 3 it is easy to see that
R(m) is decreasing on [3,∞) and that lim

m→∞
R(m) = R(2) = 0. We have

proved the following result.

Theorem 1 Let m be a positive integer, k a positive integer greater than

or equal to 3, a1 and c real numbers such that 0 < c <
k

2
a1, y =

c

a1
, and let

Sk(m,y) = ∪mi=1(ei, fi) where {ei} and {fi} are defined by (2.2) and (2.3).
Then µ(Sk(m,y)) is a maximum only when m = 3 and y = 1 and

µ (Sk(3, 1)) =
k(k − 2)
k2 − 2

+
8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
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Furthermore, if m is greater than 2, then µ (Sk(m, 1)) > µ (Sk(m+ 1, 1))

and µ (Sk(m, 1)) > µ (Sk(2, 1)) = µ (Sk(∞)) =
k(k − 2)
k2 − 2

.

We remark that while the construction of Sk(m,y) above makes sense for
any real number k greater than 2, the maximum of µ(Sk(m,y)) is at m = 3

only if k ≤
√

2 + 2
√

2 ≈ 2.20. In fact, it can be shown that for each integer
t greater than or equal to 3, there exists a real number k(t) ∈ (2, 2.2) such
that the maximum value of µ(Sk(m,y)) is at m = t for k = k(t) (though

µ(Sk(∞)) =
k(k − 2)
k2 − 2

for any value of k greater than 2).

3 Maximum k-sum-free sets are in the family.

In Section 2 we constructed a family S = {Sk(m,y)} of k-sum-free sets and
showed that if k ≥ 3 then µ(Sk(m, y)) is a maximum over S only when
m = 3 and y = 1. In this section we will show that if k ≥ 4 and S is a
maximum k-sum-free subset of (0, 1] (so both S and µ(S) are maximal)
then S can be obtained by adding an end-point to each of the three disjoint
open interval components of Sk(3, 1).

The proof is quite long, so we have broken it up into several lemmas. The
over-all procedure is basically to assume that S is a maximum k-sum-free
set and then to construct it from right to left. There are two techniques that
we use frequently in proving the lemmas. The first is that if every element
of a k-sum-free set T is multiplied by a positive real number y, then the
new set Ty is also k-sum-free (while the translated set T + y may not be
k-sum-free). The second is that if x ∈ S then not both y and kx − y can
be in S. We refer to this as “forbidden pairs with respect to x”. We can

use this idea to show that µ(S ∩ T ) ≤ 1
2
µ(T ) for certain subsets T of (0, 1].

Since µ(S) >
k(k − 2)
k2 − 2

≥ 1
2

for k > 2 +
√

2, forbidden pairing can be used

to learn about the structure of S. For example, we know immediately that
1
k

is not in S, since if it were in S then not both y and 1− y could be in S

for any y ∈ (0, 1], so µ(S) ≤ 1
2

, a contradiction.

Finding the value of u2 = sup{x ∈ S | x <
2
k
} is the key point in

determining the structure of S; u2 will turn out to be the right end-point of
the second component from the right in S. Lemmas 2,3,and 4 deal primarily
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with the value of u2. In Lemma 5 it is shown that [ (
2
k
u2, u2)∪ (

2
k
, 1) ] ⊆ S

and that u3 = sup{x ∈ S | x < 2
k
u2} can be determined in much the same

way as u2. In Lemma 6 it is shown that if ui = sup {x ∈ S | x < 2
k
ui−1 } for

i = 2, 3, · · · , then there exists a positive integer m ≥ 3 such that um exists
but um+1 does not. The sequence 1, u2, u3, · · · , um then gives the right-hand
end points of the components of S, and S turns out to be Sk(m,y) for some
m and y, i.e. S ∈ S.

Lemma 2 If S is a maximum k-sum-free subset of (0, 1] where k is an

integer greater than or equal to 4 and if u2 = sup
{
x ∈ S|x < 2

k

}
then

2
k2

<

u2 <
2

k2 − 2
.

Proof: If
1
k
< u2 ≤

2
k

then there exists a real number x in S ∩
(

1
k
,

2
k

)
.

Then 0 < kx − 1 < 1, and for each y ∈ [kx− 1, 1], not both y and kx− y
are in S. Because of these “forbidden pairs with respect to x,”

µ (S ∩ [kx− 1, 1]) ≤ 1
2

[1− (kx− 1)]. (3.1)

If we now let

S′ =
{

1
kx− 1

w|w ∈ S ∩ (0, kx− 1]
}

then S′ is k-sum-free and

µ(S′) =
1

kx− 1
µ(S ∩ (0, kx− 1]

)
=

1
kx− 1

(µ(S)− µ(S ∩ [kx− 1, 1]))

≥ 1
kx− 1

(
(kx− 1)µ(S) + [1− (kx− 1)]µ(S)− 1

2
[1− (kx− 1)]

)
> µ(S)

where the first inequality follows from (3.1) and the second follows because

µ(S) >
k2 − 2k
k2 − 2

≥ 1
2

for k ≥ 2 +
√

2. We have contradicted the assumption

that S is a maximum set, so u2 ≤
1
k

.
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Now suppose u2 ∈
[

2
k2 − 2

,
1
k

]
. For each ε > 0 there exists a real number

x in S such that 0 ≤ u2 − x < ε. If u2 < ku2 −
2
k

then ε can be chosen

such that x < kx− 2
k

, and for each y ∈ (0, x], not both y and kx − y can
be in S. Because of this “forbidden pairing with respect to x” of (0, x] with

[kx− x, kx), and since
2
k
< kx− x < kx < 1,

µ(S) = µ

(
S ∩

[
x,

2
k

])
+ µ

(
S ∩

(
(0, x] ∪

(
2
k
, 1
]))

≤ (u2 − x) + 1− 2
k

< 1− 2
k

+ ε

and µ(S) is not a maximum since 1− 2
k
<
k2 − 2k
k2 − 2

.

If u2 ≥ ku2−
2
k

then since x ≥ kx− 2
k

and due to the forbidden pairing

with respect to x of
(

0, kx− 2
k

]
with

[2
k
, kx

)
,

µ(S) ≤
(

1− 2
k

)
+ u2 −

(
kx− 2

k

)
= 1− (k − 1)u2 + k(u2 − x)

≤ 1− (k − 1)
2

k2 − 2
+ k(u2 − x)

<
k2 − 2k
k2 − 2

+ kε.

But
k2 − 2k
k2 − 2

is the size of Sk(2, 1), so µ(S) is not a maximum. Hence

u2 <
2

k2 − 2
.

If u2 ≤
2
k2

then the set

S′ =

{
k2

2
x|x ∈ S ∩ (0, u2]

}

has size
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µ(S′) =
k2

2
µ(S ∩ (0, u2])

≥ k2

2

(
2
k2
µ(S) +

k2 − 2
k2

µ(S)−
(

1− 2
k

))

= µ(S) +
k2 − 2

2

(
µ(S)− k2 − 2k

k2 − 2

)
> µ(S)

which again is a contradiction, so µ2 >
2
k2

completing the proof.

We remark that the bounds for u2 in Lemma 2,
2
k2

and
2

k2 − 2
, are

the right end-points of the second component from the right in Sk(∞) and
Sk(2, 1) respectively.

Lemma 3 If S is a maximum k-sum-free subset of (0, 1] where k is an

integer greater than or equal to 4 and if u2 = sup
{
x ∈ S|x < 2

k

}
, then

(ku2, 1) ⊆ S and µ
(
S ∩

(
0, ku2 −

2
k

])
+ µ

(
S ∩

[2
k
, 1
])

=
k − 2
k

.

Proof: First we will show that if S is a maximum k-sum-free subset of (0, 1]
then S ∪ (ku2, 1) is also k-sum-free. If x and y are in S and z ∈ (ku2, 1)

then x+y < kz, since ku2 >
2
k

by Lemma 2. If x ∈ (ku2, 1) and z ≥ 2
k

then

x + y > kz, while if x ∈ (ku2, 1) and z <
2
k

then x + y > kz, since z ≤ u2.
Thus S ∪ (ku2, 1) is k-sum-free and hence (ku2, 1) ⊆ S.

As in the proof of Lemma 2, for each x in S∩
(

2
k2
, u2

]
there is a forbidden

pairing with respect to x of
(

0, kx− 2
k

]
and

[2
k
, kx

)
, so

µ

(
S ∩

((
0, ku2 −

2
k

]
∪
[

2
k
, ku2

]))
≤ ku2 −

2
k
. (3.2)

If the inequality in (3.2) is strict, then the set S′ =
(
S ∩

(
ku2 −

2
k
, u2

])
∪(

2
k
, 1
]

is also k-sum-free and µ(S) < µ(S′). Thus equality holds in (3.2).
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Lemma 4 If S is a maximum k-sum-free subset of (0, 1] where k is an

integer greater than or equal to 4 and if u2 = sup
{
x ∈ S|x < 2

k

}
then

µ(S) >
1
2
u2 +

(
1− 2

k

)
.

Proof: If not then since u2 <
2

k2 − 2
(Lemma 2) we have

µ(S) <
1

k2 − 2
+
(

1− 2
k

)
≤ 1

k2 − 2
· 2(k − 2)

k
+
k − 2
k

=
k2 − 2k
k2 − 2

which is a contradiction since this is the size of Sk(2, 1). The second in-

equality above is because
2(k − 2)

k
≤ 1 when k ≥ 4. We remark that this is

the only place where the proof does not work for all real k ≥ 2 +
√

2, the

bound imposed by the necessity of having
k(k − 2)
k2 − 2

≥ 1
2

to make forbidden

pairing arguments work.

Lemma 5 If S is a maximum k-sum-free subset of (0, 1] where k is an

integer greater than or equal to 4 and if u2 = sup
{
x ∈ S|x < 2

k

}
then

(a) µ

(
S ∩

(
0,

2
k
u2

])
> 0.

(b) If u3 = sup
{
x ∈ S|x < 2

k
u2

}
then u3 ≤

1
k
u2.

(c) There exists a positive number c such that ku3 −
2
k
u2 = ku2 −

2
k

= c.

(d)
[(

2
k
u2, u2

)
∪
(

2
k
, 1
)]
⊆ S and S ∩ (0, c) = ∅.

Proof:

(a) If µ
(
S ∩

(
0,

2
k
u2

])
= 0 then, since u2 <

2
k2 − 2

(Lemma 2), µ(S) ≤(
1− 2

k

)
+ u2

(
1− 2

k

)
<
k2 − 2k
k2 − 2
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(b) if x ∈ S ∩
(

1
k
u2,

2
k
u2

)
then there are forbidden pairs with respect to

x in [kx− u2, u2] : If y ∈ S ∩ [kx− u2, u2] then kx− y 6∈ S. If we let

|S ∩ [kx− u2, u2]| = r and µ

(
S ∩

[
ku2 −

2
k
, u2

])
= p then

r <
1
2

[u2 − (kx− u2)] (3.3)

because of the forbidden pairing and

p >
1
2
u2 (3.4)

by Lemma 3 and Lemma 4. From equations (3.3) and (3.4) we get

p− r > 1
2

(kx− u2). (3.5)

Now let S′ =
{

u2

kx− u2
w|w ∈ S ∩

[
ku2 −

2
k
, kx− u2

]}
∪
(

2
k
, 1
]
. It is

easy to check that S′ is k-sum-free and

µ(S′) =
u2

kx− u2
(p− r) +

(
1− 2

k

)
= (p− r) +

u2 − (kx− u2)
kx− u2

(p− r) +
(

1− 2
k

)
> (p− r) +

2r
2(p− r)(p− r) +

(
1− 2

k

)
= µ(S)

where the inequality follows from equations (3.3) and (3.5) and the

last equality follows from Lemma 3. Hence S ∩
(

1
k
u2,

2
k
u2

)
= ∅ and

u3 ≤
1
k
u2.

(c) By Lemma 2, ku2 −
2
k

is equal to some positive number c. Let ku3 −
2
k
u2 = b and assume b < c. Let
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S′ = A ∪B ∪C where

A =


c+

2
k
u2

ku3
x|x ∈ S ∩ (c, u3)

 , B =
(

2
k
u2, u2

]
, and C =

(
2
k
, 1
]
.

If z ∈ B ∪ C or if {x, y, z} ⊆ A it is clear that S′ has no solution to

x + y = kz. If z ∈ A and y 6∈ A then x+ y > c +
2
k
u2 > kz, so S′ is

k-sum-free. And

µ(S′) =
c+

2
k
u2

ku3
µ (S ∩ (c, u3)) +

(
1− 2

k

)
u2 +

(
1− 2

k

)
> µ (S ∩ (c, u3)) +

(
1− 2

k

)
u2 +

(
1− 2

k

)
> µ(S)

where the first inequality is because µ (S ∩ (c, u3)) > 0 (otherwise

µ(S) ≤ µ (Sk(2, 1)) and ku3 = b +
2
k
u2 < c +

2
k
u2, while the second

inequality follows from Lemma 3.

On the other hand, if b > c then b is positive and for each

x ∈ S ∩
[

2
k2
u2, u3

]
there is a forbidden pairing with respect to x of(

0, kx− 2
k
u2

]
and

[2
k
u2, kx

)
. Since x can be arbitrarily close to u3,

µ

(
S ∩

(
(0, b] ∪

[
2
k
u2, ku3

]))
≤ b. (3.6)

It is not hard to check that the set

S0 = (S ∩ (b, u3]) ∪
(

2
k
u2, u2

)
∪
(

2
k
, 1
]

(3.7)

is k-sum-free and that µ(S) ≤ µ(S0) (by (3.6) and Lemma 5(b)). We
define the set S′ by

S′ = (S ∩ (b, u3]) ∪
(

2
k
u′2, u

′
2

]
∪
(

2
k
, 1
]
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where u′2 is chosen so that

ku3 −
2
k
u′2 = ku′2 −

2
k
.

Since b > c we have k2u3 + 2 > k2u2 + 2u2, so

u′2 =
k2u3 + 2
k2 + 2

>
k2u2 + 2u2

k2 + 2
= u2.

Hence µ(S′) > µ(S0) ≥ µ(S). It remains to show S′ is k-sum-free. If

z ∈ (
2
k
, 1], or if z ∈ (

2
k
u′2, u

′
2] and neither x nor y is in (

2
k
, 1], or if

x, y, z ∈ S ∩ (b, u3] then clearly x+ y < kz. If x ∈ S, y ∈ S\(b, u3] and
z ∈ S ∩ (b, u3] then

kz < ku3 +
2
k

(u′2 − u2)

= b+
2
k
u′

< x+ y

while if x ∈ S, y ∈
(

2
k
, 1
]
, and z ∈

(
2
k
u′2, u

′
2

]
, then

kz ≤
(
ku′2 −

2
k

)
+

2
k

=
(
ku3 −

2
k
u′2

)
+

2
k

<

(
ku3 −

2
k
u2

)
+

2
k

< x+ y

Hence b = c.

(d) If µ(S ∩ (0, c]) = δ > 0 then, because of the forbidden pairing of (0, c]

with each of
[

2
k
u2, ku3

)
and

[
2
k
, ku2

)
we have

µ(S) ≤ µ(S ∩ (0, u3]) +
[(

1− 2
k

)
u2 − δ

]
+
(

1− 2
k

)
− δ < µ(S0)



the electronic journal of combinatorics 3 (1996), #R1 17

where S0 is given by (3.7) with b = c. And if δ = 0 but

µ

(
S ∩

((2
k
u2, u2

]
∪
(2
k
, 1
]))

< u2

(
1− 2

k

)
+
(

1− 2
k

)
we would still have µ(S) < µ(S0). So S ∩ (0, c) and[(2

k
u2, u2

)
∪
(2
k
, 1
)]
\S

are both sets of measure 0; we will now show each is the empty set.

If y ∈ S ∩ (0, c) we choose r and t in S such that

1
k
y +

2
k2

< r < t ≤ u2

(such r and t exist because S is missing at most a set of measure zero

in
[

2
k2
, u2

]
). Then

2
k
< kr − y < kt− y ≤ ku2

and for each q ∈ S∩ [r, t], kq−y 6∈ S. Hence µ(S∩ [kr−y, kt−y]) = 0,

so µ

(
S ∩

(
2
k
, ku2

))
< ku2 −

2
k

and µ(S) < µ(S0). Thus we have

shown S ∩ (0, c) = ∅. It is each to see that any such maximum S

contains
(

2
k
u2, u2

)
and

(
2
k
, 1
)

. �

Lemma 6 Let S be a maximum k-sum-free subset of (0, 1] where k is an
integer greater than or equal to 4 with the sequence {ui} defined by u1 = 1,

ui = sup
{
x ∈ S|x < 2

k
ui−1

}
for i = 2, 3, . . . . Then

(a) There exists a positive integer m ≥ 3 such that um exists but um+1

does not.

(b) There exists a positive number c ∈
[

2
k(k − 1)

um, um

]
such that [0, c)∩

S = ∅ and kui+1 −
2
k
ui = c i = 1, 2, . . . ,m− 1.

(c)
(

2
k
ui, ui

)
⊆ S i = 1, 2, . . . ,m − 1 and (t, um) ⊆ S where t =

max
{

2
k
um, c

}
.
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Proof: By Lemma 5 there exists a positive number c such that

kui+1 −
2
k
ui = c (3.8)

and

(2
k
ui, ui

)
⊆ S (3.9)

for i = 1 and 2 and where S ∩ [0, c) = ∅. Since c is a fixed positive number
it is clear that the statement in (a) is true. We will show by induction that
equations (3.8) and (3.9) hold for all positive integers integers less than m.
Assume (3.8) and (3.9) hold for all i less than j where j ∈ {3, 4, . . . ,m−1};
we will show they hold for i = j as well.

First we will show that

µ (S ∩ (0, uj)) >
1
2
uj. (3.10)

Since uj+1 exists and S ∩ (0, c) = ∅ we must have c <
2
k
uj. Hence the set

S′ = ∪ji=1

(2
k
ui, ui

)
is k-sum-free and

µ (S ∩ (0, uj)) = µ(S)− µ(S′) +
(

1− 2
k

)
uj

(3.11)

≥ 1
2
uj +

k − 4
2k

uj

since µ(S) ≥ µ(S′). This verifies (3.10) for any k greater than 4. But for

k ≥ 4 the value of µ(S′) is given by Lemma 1 with c < a1 =
2
k
uj. Hence

y < 1 and we use formula (2.6). As remarked earlier, this is an increasing
function of y, so µ(S′) is not a maximum and µ(S)−µ(S′) > 0. This makes
the inequality in (3.11) strict and verifies (3.10).

Next we will show

uj+1 ≤
1
k
uj . (3.12)
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If there exists x ∈ S ∩
(

1
k
uj,

2
k
uj

)
then

µ (S ∩ [kx− uj, uj ]) ≤
1
2

[uj − (kx− uj)] (3.13)

by a forbidden pair argument. If we now let

S′ =

{
uj

kx− uj
w|w ∈ S ∩ (c, kx− uj)

}
∪
(
S ∩

[2
k
uj−1, 1

])
then it is easy to show S′ is k-sum-free and

µ(S′)− µ(S) =
uj

kx− uj
(µ (S ∩ (0, uj])− µ (S ∩ [kx− uj, uj ]))

−µ (S ∩ (0, uj])

≥ uj − (kx− uj)
kx− uj

(µ (S ∩ (0, uj]))

− uj
kx− uj

· 1
2

[uj − (kx− uj)]

=
uj − (kx− uj)

kx− uj

(
µ (S ∩ (0, uj])−

1
2
uj

)
> 0

where the first inequality follows by (3.13) and the second by (3.10). Thus
we have verified equation (3.12).

Now let b = kuj+1 −
2
k
uj. We wish to show b = c. If b < c then we let

S′ =


1
k

(
2
k
uj + c

)
uj+1

w|w ∈ S ∩ (0, uj+1)

 ∪
(
S ∩

[
2
k
uj, 1

])
.

It is easy to check that S′ is k-sum-free and we have

µ(S′)− µ(S) =


1
k

(
2
k
uj + c

)
uj+1

− 1

µ (S ∩ (0, uj+1)) .
(3.14)
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If µ(S ∩ (0, uj+1)) = 0 then (as in the discussion following inequality (3.11)
µ(S) is given by formula (2.6) with y < 1, so it cannot be a maximum.

Since uj+1 =
1
k

(
2
k
uj + b

)
, each factor in (3.14) is positive, which is a

contradiction.
If b > c then

2
k
uj < kuj+1 ≤ uj and (as in the proof of Lemma 5(c))

from a forbidden pairing we get

µ

(
S ∩

(
(0, b] ∪

[2
k
uj , kuj+1

)))
≤ b. (3.15)

Now we let S′ = (S ∩ (b, uj+1)) ∪ ∪ji=3

(
2
k
ui, ui

)
∪
(

2
k
u′2, u′2

)
∪
(

2
k
, 1
)

where

u′2 =
1
k

(
b+

2
k

)
>

1
k

(
c+

2
k

)
= u2. (3.16)

So S′ is obtained from S by replacing S ∩
(

(0, b] ∪
[

2
k
uj, kuj+1

])
by(

2
k
uj, kuj+1

)
, replacing S∩

[
2
k
u2, u2

]
by
(

2
k
u′2, u′2

)
and possibly omitting

finitely many points (certain end-points). It is easy to check that S′ is k-
sum-free and

µ(S′)− µ(S) ≥
(

1− 2
k

)
u′2 −

(
1− 2

k

)
u2 > 0

by (3.15) and (3.16), so again µ(S) is not a maximum. Therefore b = c

which verifies (3.8) for i = j. And clearly S ∪
(

2
k
uj, uj

)
is k-sum-free,

which verifies (3.9) for i = j. Thus we have shown by induction that (3.8)
and (3.9) hold for i = 1, 2, . . . ,m− 1.

Since um+1 does not exist, if we let t = max
{

2
k
um, c

}
then S ∪ (t, um)

is k-sum-free, so (t, um) ⊆ S verifying (c). Finally, if

kc < c+
2
k
um (3.17)
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then we can choose a real number y greater than c such that ky < y+
2
k
um.

But then S ∪ {y} is k-sum-free which violates the maximality of S. Hence

(3.17) must be false which shows c ∈
[

2
k(k − 1)

um, um

]
. �

Theorem 2 If k is an integer greater than or equal to 4 and S is a max-
imum k-sum-free subset of (0, 1] then S is the union of the set Sk(3, 1) =
∪3
i=1(ei, fi) (of Lemma 1) and three points, one end-point of each interval.

Any of the eight possible ways of choosing the end-points is all right except
{e1, f2, e3}.

Proof: By Lemma 6, if we ignore end-points, S has the form of Sk(m,y)
for some m ≥ 3. By Theorem 1, Sk(3, 1) is the largest of these. To get
a maximal set we need to put in one end-point of each interval, but since
e1 + e3 = kf2 we cannot choose {e1, f2, e3}. �

The end-points turn out to be

f1 =
4

k4 − 2k2 − 4
, f2 =

2(k2 − 2)
k4 − 2k2 − 4

, f3 = 1,

with ei =
2
k
fi i = 1, 2, 3. For k = 4 one gets

S4(3, 1) =
(

1
110

,
2

110

)
∪
(

7
110

,
14
110

)
∪
(

1
2
, 1
)
.

Corollary 1 Let f(n, k) denote the maximum size of a k-sum-free subset

of {1, 2, . . . n}. If k ≥ 4 then lim
n→∞

f(n, k)
n

≥ µ (Sk(3, 1)).

4 Remarks

Moving right to left the greedy procedure does not produce a maximum

k-sum-free set. One gets
(

2
k
, 1
]

for the first interval and then
2

k(k − 1)
is

the largest number that can be added. However the set is now maximal if

k ≥ 3. In fact
2

k(k − 1)
is the only real number x such that {x} ∪

(2
k
, 1
]

is

a maximal k-sum-free subset of (0, 1]. If you first put
8

k(k4 − 2k2 − 4)
in S

and then work right to left from 1 following the greedy procedure, you do
get a maximum k-sum-free set.
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We have already noted that we assumed k ≥ 4 for the proof of Lemma
4 ( so Theorem 2 holds for all real k ≥ 4) and k ≥ 2 +

√
2 for forbidden pair

arguments. But if k ≥ 2.2 then µ(Sk(m,y)) is still maximized when m = 3
and y = 1. Namely, µ(S3(3, 1)) = 77/177.

Conjecture 3 Theorem 2 holds for k = 3 as well.

As mentioned in the Introduction, maximum k-sum-free subsets of (0, 1]
and of {1, 2, . . . , n} have very different structures for k = 3. (There is no
maximum 3-sum-free analogue on (0, 1] of the all odd number maximum
3-sum-free subset of {1, 2, . . . , n}). However, we think they have the same
structures for k ≥ 4.

Conjecture 4 Equality holds in Corollary 1.

We believe that if n is sufficiently large, to get a maximum k-sum-free
subset of {1, 2, . . . , n} one takes the integers within the three intervals ob-
tained by multiplying each real number in S3(3, 1) by n (with slight modi-
fication of the end-points due to integer round-off). To prove this integral
version one can probably use the general outline of the above proof for (0, 1].
There are some technical difficulties due to the fact that if one multiplies
each member of a set of integers by a real number greater than 1, the result
may not be a set of integers, and even if it is, the size of the set is the same
as the size of the original set (as opposed to what happens with the measure
of a set of real numbers).
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