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ABSTRACT. We give combinatorial proofs of three identities, each of which general-
izes Weyl’s denominator formula for two of the three root systems By, Cy,, Dy,. Two
of the three identities are due to S. Okada; the third appears in the author’s doctoral
thesis, upon which this work is based.

Each of the identities we prove has a “sum side” and a “product side”; both sides
are polynomials in several commuting indeterminates. We use weighted digraphs to
represent the terms on each side; the set of such digraphs that corresponds to the
sum side is a proper subset of the set corresponding to the product side.

“Why don’t we pair 'em up in threes” —attributed to Yogi Berra

1. Introduction

Our purpose is to give combinatorial proofs of three identities that generalize
Weyl’s denominator formula. In this section, we provide some background for our
work, describe how the paper is organized, and introduce some basic notation.

BACKGROUND

Weyl’s denominator formula ([C], Theorem 10.1.8) is a collection of identities
involving polynomialsin any finite number n of commutingindeterminates. There is
an identity for each root system of rank n; a root system ([H], Chapter IIT) is a finite
set of vectors that satisfies certain axioms. Root systems correspond to compact
Lie groups and can be used to describe the characters of their representations. For
details of this correspondence, see [W] or [BtD]. Weyl’s character formula ([W],
Kapitel TV, Satz 5; [BtD], Chapter VI, (1.7)) gives a complete description of the
characters of irreducible representations of any compact, connected Lie group. The
formula expresses these characters as ratios of polynomials, the denominators of
which are given by Weyl’s denominator formula.
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It suffices to prove Weyl’s denominator formula for irreducible root systems. A
root system is irreducible if it cannot be written as a disjoint union of two nonempty,
mutually orthogonal subsets. With five exceptions, every irreducible root system
belongs to one of four infinite families, denoted A, B, C, and D (cf. [H], 11.4, 12.1).
The root system of rank n in family A is called A,, and similarly for the other
families. Gessel [G] was the first to prove Weyl’s formula combinatorially for an
infinite family of root systems. He gave a combinatorial proof of Vandermonde’s
determinant formula

Z (_1)Ul‘Z(_1§xZ(_2§"'xa(n—l) = det [x?_]]ijzl = H (xl _xj)a

gES, ’ 1<i<j<n
where S, is the symmetric group on {1, 2, ..., n} and (—1)? denotes the sign of
the permutation ¢. This identity is equivalent to Weyl’s formula for A,_;. Later,
Bressoud [B] found combinatorial proofs of Weyl’s formula for B,,, C,,, and D,,.

Each of the three identities we shall prove implies Weyl’s formula for two of the

three root systems B,,, Cy,, D,. Two of the identities proved here are due to Okada
[O], though one of them is stated there without proof. The third identity appears
in the author’s doctoral thesis [S], upon which this work is based.

ORGANIZATION

In Section 2, we introduce the concepts and notation we need in order to state
our results. The results themselves are given in Theorems 2.2 and 2.4. We also
show how one of the three identities implies two cases of Weyl’s formula.

We begin proving the identities in Section 3. Each of them has a “sum side” and
a “product side.” Our method is like that of [G] and [B], using weighted digraphs
to represent the terms on each side of each identity. Section 3 introduces digraph
terminology and the particular sets of digraphs and weight functions we shall use.
We show that the product side of each identity can be written as a sum of weights
of digraphs belonging to a particular set.

We claim that the sum side of each identity can be written as a sum of weights
of digraphs belonging to a proper subset of the set that corresponds to the product
side. In Section 4, we describe such a subset for each of the identities to be proved.
In Section 5, we state and prove some technical lemmas to be used in the next two
sections.

Sections 6 and 7 are where most of the work is done. To prove the claim above,
we show in Section 6 that the digraphs not belonging to the subset described in
Section 4 have weights that add to 0. In Section 7, we show that the digraphs that
do belong to this subset have weights that add to the sum side of the identity.

Finally, there is an Appendix, which contains some discussion of the connection
between the usual way of writing Weyl’s denominator formula and the way we write
it in Section 2.
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NOTATIONAL CONVENTIONS

We write N, Ny, and Z for the sets of positive integers, nonnegative integers,
and all integers; R denotes the set of all real numbers.

For any n € N, we define [n] = {1,2,... n}. If X is any set, then X™ denotes
the Cartesian product of n copies of X. If X has an algebraic structure, then so
does X™; for instance, R” is a real vector space and Z" a free Abelian group.

We use cycle notation for permutations. For instance, ¢ = (134) means that
o(1) =3, 0(3) =4, 0(4) = 1, and (i) = i otherwise. Permutations are composed
right-to-left.

Given a statement A, we define x(A) to be 1if A is true, 0 if A is false.

2. Statement of Results

We begin this section by introducing partitions and Schur functions, which we
need in order to state Theorems 2.2 and 2.4.

PARTITIONS

A partition is a nonincreasing sequence A = (A1, Aa,...) of nonnegative integers,
with only finitely many nonzero terms. The nonzero terms of A are called its parts.
The number of parts of a partition A is its length, which we denote £(A). For any
n > {(A), we may identify A with the finite sequence (A1, As,...,Ay) € Nj. Thus
the expressions (5,4,2,1), (5,4,2,1,0,0,0), and (5,4,2,1,0,...) all describe the
same partition of length 4. The weight of a partition A, which we denote |}|, is
the sum of its parts. We say that A is a partition of n into k parts if |A|] = n and
£(X) = k. For instance, (5,4,2,1,0,...) is a partition of 12 into 4 parts. We denote
the unique partition of length and weight zero by 0.

A useful idea in the study of partitions is that of the Ferrers diagram of a partition
A. This is the set D(A) = {(4,7) € N? : 1 < i < (), 1 < j < A }. One often thinks
of D(A) as a left-justified array of unit squares, in which the number of squares in
the ¢th highest row is A;. Figure 2.1 portrays the Ferrers diagram of (5,4,2,1).

FIGURE 2.1
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The rank of a partition A, denoted p(}), is the largest ¢ such that (4,7) € D(X).
Equivalently, p(A) = max{i : A; > i}. For example, the partition (5,4, 2, 1) has
rank 2.

If A is a partition, then the set {(j,7) : (¢,4) € D(A)} is the Ferrers diagram of
a partition A’| called the conjugate of A. For example, the conjugate of (5,4,2,1)
is (4,3,2,2,1). We have £(X) = Ay, [X]| = |A|, p(X) = p(A), and A" = A for any
partition A. We say that A is self-conjugate if A = A’. An alternative definition of
X', which does not require Ferrers diagrams, is given by A} = max{j : A; > i}.

We now define the Frobenius representation of a partition A. For each ¢ € [p(A)],
let a; = A —i and B; = A} — 4. Both (ay,...,ap)) and (B1,..., Byx)) are
strictly decreasing sequences of nonnegative integers. The Frobenius representation
of Mis (a1,...,apn)|B1,- .-, Bpr)), or more concisely (a| ). We note that [A] =
p(A) + ng)(ai + 5;). And if the Frobenius representation of A is («| /), then
A =(F]a).

If X and p are partitions, then D(p) € D(X) if and only if p; < A; for all ¢ > 1.
It is customary to identify partitions with their Ferrers diagrams, so one usually
writes g C X instead of D(y) € D(X). The relation C is a partial order on the
set of all partitions. In case ¢ C A, we define the skew diagram A — p; this is
simply the set-theoretic difference D(A)\ D(y). One may think of it as an array of
unit squares in which the ¢th highest row is indented p; units and contains A; — p;
squares. For example, Figure 2.2 depicts the skew diagrams (5,3,3,1)— (3,2,2,1)
and (4,2,2,1) — (3,2, 1).

-
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|
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|

|

|

|

FIGURE 2.2

Observe that no row of (4,2,2,1) — (3,2, 1) contains more than one square. A
skew diagram with this property is called a vertical strip. Evidently A — p 18 a
vertical strip if 0 < A; — p; < 1 for all 4.

ScHUR FUNCTIONS

Let ®1,22,...,2, be commuting indeterminates and let & = (ay1,...,ap) €
Np§. We denote by z* the monomial x{'x5?---2%~. The ring Z[z1, ..., 2,] of
polynomials in z1, ..., x, with integer coefficients is generated as a free Z-module
by the monomials.

The symmetric group S,, acts on Z[z1,...,2,] by permuting indeterminates.

We define z7(®) = x?(ll)ngz) . x?("n) for any ¢ € 5, and o € Njj. A polynomial
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=2, fax® € L1, ... x,) is said to be symmetric if it is invariant under this
action of S, in other words, if

f(xla e ,l‘n) = Zfozxa = Zfozxa(a) = f(xa(l)a e axa(n))

for all ¢ € S,. A polynomial a € Z[z1, ..., x,] such that

a(zy, ..., x,) = (=1)7a(®s01), -, To(n))

for all o € S, 18 called antisymmetric. If a is antisymmetric, then @ = 0 whenever
x; = x; for some ¢ # j. This implies that « is divisible by

An = H (l‘i—l‘]’).

1<i<j<n

And since A, is itself antisymmetric, the quotient a/A,, is symmetric.
Let A be a partition of length at most n and let § =6, = (n—1,...,1,0). The
polynomial

1P
args(®1, ... xn) = Z (_1)axa(>\+é) — det [xj‘f"" ]] L
gES, 2,]=

is antisymmetric, and therefore

a>\+5(1‘1,... ,l‘n) a>\+5
2.1 ) = =
(2.1) sx(o1, ' n) Az, ..., 2n) as

is a symmetric polynomial, called the Schur function corresponding to A. Note that
Vandermonde’s determinant formula implies the equality of the two denominators

in (2.1).

LiTTLEWOOD’S IDENTITIES

In his study of the characters of representations of orthogonal groups, Littlewood
derived several identities involving Schur functions ([L], p. 238). Our results are
generalizations of three of these identities.

For any integer ¢, let Py(n) denote the set of all partitions

A=(ar+tas+t,...,ap+t|a, e ..., ap)

such that ¢(A) < n. For instance, (5,4,2,1) € Pi(n) for all n > 4. We write P,
to denote the set of all partitions belonging to Pi(n) for sufficiently large n. If ¢ is
odd, then the partitions in P; all have even weight; if ¢ is even, then |A| + p(A) is
even for all A € P;.
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We now state the three of Littlewood’s Schur function identities that our results
generalize:

(2.2b)
H (1—2) H (1 —ze;) = Z (—1)(“””(”)/2&(9@1, e En);
i=1 1<i<j<n AEPy(n)
(2.2¢)
H(l—x?) H (1—zz;) = Z (—1)|>‘|/25>\(1‘1,... , T );
i=1 1<i<j<n AEPi(n)
(2.2d) [T G=zwj)= > DM si(ar,. . w0).
1<i<j<n AEP_;(n)

Multiply these by Vandermonde’s determinant to obtain the equivalent identities

(2.3b)
[Ta-=) TI G -wapei—z)= Y ()P 1)7grton);
i=1 1<i<j<n MEPy(n)
gES,
(2.3¢)
[Tt T Q-wiepe—e)= > (HHE(1)727C+),
i=1 1<i<j<n AEP:(n)
gES,
(2.3d) [T -mzp@i—a)= > (=D2(=1)7e7O+0),
1<i<j<n NEP_(n)
gES,

We think of the latter identities as cases of Weyl’s denominator formula. Macdon-
ald ([M], p. 46) observed that Weyl’s formula for the root system B,, (respectively,
Cy, Dy) implies (2.2b) (respectively, (2.2¢), (2.2d)). Bressoud’s [B] combinatorial
proofs of Weyl’s formula for By, Cy,, and D,, are in fact proofs of (2.3b), (2.3¢), and
(2.3d). See the Appendix for details on the relation between Littlewood’s identities
and Weyl’s formula.

(GENERALIZATIONS

We begin by defining the sets of partitions that will index the terms on the “sum
sides” of our generalizations of Weyl’s formula:

P_; o(n) consists of all A = (aq,...,ap|f1,...,5p) such that

n—1>p2>a1>P2>ar> 2> 0 > ap.

Py 1(n) consists of all A = (a1, ..., ap|B1,..., Fp) such that
n>pf+l>2a1>P+1>2a> 20, +12> ap.

P_; 1(n) is the set of all A with £(X) < n such that for some x € P_1(n), we have
0< A —r; <2forallie€[n]and {i € [n]: A —&; = 1} is a disjoint union of pairs
{j,j+ 1} with x; = kj41.
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An alternative definition of Py 1(n) may be given in terms of Ferrers diagrams.
A domino is a subset of Z? of the form {(4, ), (¢, j+1)} or {(4,7), (i+1,7)}. Just as
we visualize Ferrers diagrams as arrays of unit squares, we think of dominos as pairs
of squares having a common edge. A partition A of length at most n is in P_; 1(n)
if and only if A — k can be written as a disjoint union of dominos, with at most one
domino per row, for some s € P_j(n). In Figure 2.3, we have two partitions A such
that A — « is a disjoint union of dominos for £ = (3,2,2,1) € P_;(4). The diagram
on the left shows that (5,3,3,1) is in P4 1(n) for any n > 4, because no row has
more than one domino. This condition is violated on the right, as indeed it must
be, since the partition (4,4,3, 1) is not in P_; 1(4).

r—T-"~~ - r—T-"~~

| | | ; | | |

-+ = s -+ = - o d
| | | |

L_L_ - L1 _ __

| | | |

L] L

| |

| |

FIGURE 2.3

We have Pi(n) U Pj(n) C F;;(n) for =1 <i < j < 1. We also note that |A| is
even whenever A € P_; 1(n).

To state the first of our three generalizations, we shall need to describe, for any
partition A € Py g(n), the largest y € P_1(n) such that g C A. To state the second
generalization, we shall need, given A € Py1(n), the largest v € Py(n) such that
v C A. The partitions p and v may be described in terms of their Ferrers diagrams
as follows.

For any partition A, we define the following subsets of N?:

M) ={(i,j=1):i<j, M+X >i+j—1};
M'(X) ={(, 1) : (4,7 — 1) € M(A)};
N ={(5,§) : X + X > i+ 5}

The sets M (A)UM'(A) and N(A) are Ferrers diagrams of partitions. Let g = u(A)
and v = v(A) denote these partitions, so that D(p) = M(A) U M'(A) and D(v) =
N(X). There is some p > 0 and a1 > @y > -+ > @, > 1 such that

D(p) = U{(i,i),...,(i,i+ai—1),(i+1,i),...,(i—l—ai,i)}.

This shows that u(A) € P_j(n) for all sufficiently large n. Meanwhile, we have
(¢,7) € N(A) if and only if (j,¢) € N(A), which implies that v(}) is self-conjugate,
or equivalently that v(A) € Py(n) for large enough n. The table in Figure 2.4
compares A; + A; to i+ j — 1, where A = (5,4,4, 3,2). The diagram depicts D(u),
the bold line separating M () from M'(X).
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j=2 3 4 5 6

i=1 92 93 84 75 56

2 84 75 66 47

3 76 67 48

4 58 39

5 2,10
FIGURE 2.4

The following lemma tells us that g and v have the properties we need. We shall
prove it in Section 7.

Lemma 2.1. ([S], Lemma 3.1.1) (a) If A € P_; o(n), then p(A) C A, and we have
& C pu(A) for any £ € P_y(n) such that & C A,

(b) If X € Py1(n), then v(A) C A, and we have & C v(A) for any & € Py(n) such
that £ C \.

Given any partition A, we define

y(A) = (@ 5) i< j i+ A =i+ j— 1}
and

2(A)=[{{,5) i <j X+ A =i+
We are ready to state the first two of our three generalizations of Weyl’s formula:

Theorem 2.2. ([S], Theorem 3.1.2) We have

(BD) H(1_mi) H (1 — wi)(x; — ;)

1<i<n 1<i<j<n

— Z (=)A= I72 M =Tal (g 2yy ) ()7 oA ten)

AEP_; 0(n)
gES,
and
(BC) [T =z +te) [T (1 - wizy)(ai - 2y)
1<i<n 1<i<j<n

- Z (_1)(|V|+p(v))/2 tIAI—Ivl(l _ t)x(ﬂiykzzi)(l _ t2)2(k)(_1)%0(k+6n)

A€EPy,1(n)
gES,



THE ELECTRONIC JOURNAL OF COMBINATORICS 3 (1996), #R12 9

for alln > 1.

In [O], Okada proves an identity (Lemma 3.5) equivalent to (BC). He also states
without proof an identity equivalent to (BD).

At the end of this section, we shall show how (BD) specializes to (2.3d) at t = 0
and to (2.3b) at ¢ = 1. A similar argument shows that (BC) gives us (2.3b) and
(2.3c) at t = 0 and t = 1 respectively.

In order to state the third of our generalizations of Weyl’s formula, we shall need,
given A € P_y 1(n), the largest k € P_;(n) such that x C A and A — & is a disjoint
union of dominos with no more than one domino per row. We have not found an
elegant description of this partition & like those of y and v above.

Given a partition A, let K(A) be the set of all partitions » C A such that:
n € P_i(n) for some n, and A — 5 is a disjoint union of dominos with no more than
one domino in any one row of D(A). Observe that A € Py 1(n) for some n if and
only if K(A)# 0.

Figure 2.5 shows that A = (6,5,5,3,3,2) is in P 1(n) for n > 6. The par-
titions (3,2,1]4,3,2) and (3,1,0]4,2,1) belong to K(A). On the other hand,
n=(3,2,0]4,3,1)is not in K(X), even though 0 < A; — n; < 2 for all ¢, because
A — 1 cannot be written as a disjoint union of dominos.

FIGURE 2.5

Lemma 2.3 tells us that there is a largest partition in K(X) for any A € Py 1(n).
We shall prove it in Section 7.

Lemma 2.3. ([S], Lemma 3.1.3) For any A € P_; 1(n), there is a partition x =
k(A) € K(X) such that n C & for all n € K(A).

The role & will play in our third generalization is like that of g in (BD) and of v
in (BC). We remark that « is defined only for partitions in P_; 1(n), whereas the
definitions of u and v make sense for any partition.

Given A € P_; 1(n), let ¢(A) be the number of “horizontal” dominos in A — &.
Equivalently, ¢(A) is the cardinality of the set {i € [n] : A; — k; = 2}. For instance,
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with A as in Figure 2.5, we have « = (3,2,1]4,3,2) and ¢(A) = 2. We can now
state our third generalization of Weyl’s formula:

Theorem 2.4. ([S], Theorem 3.1.4) We have

(CD) [T—t) T] (0 —wia)(@i— )

1<i<n 1<i<j<n

- Z (_1)|n|/2+q(k) t(IAI—Inl)/2(1 _ t)x(ﬂiykzzi)(l _ t2)2(k)(_1)%0(k+6n)
XEP_11(n)
gES,
for any n > 1.

We obtain (2.3d) from (CD) by setting t = 0 and (2.3¢) by setting ¢ = 1.

OBTAINING (2.3d) AND (2.3b) FrROM (BD)

If ¢ = 0, then the product side of (BD) is the same as that of (2.3d). The sum
side of (BD), meanwhile, is

Z (=1)IA/2(—1)7 g7 A tbe)

APy a(n): A=l
gES,

Lemma 2.1(a) tells us that 1 C A for any A € P g(n). If ¢ C A and |A| = ||, then
clearly A = pr. Therefore the latter sum is taken over P_j(n); it is the sum side of
(2.3d).

Now suppose t = 1. The product sides of (BD) and (2.3b) coincide, whereas the
sum side of (BD) is

Z (—1)PI=lul/2(_p)o o htén)

AEP_; 0(n):y(A)=0
gES,

If A € Py p(n) and y(A) = 0, then the quantities |A; — i + %|, i € [n], are distinct.
And they are not larger than n — %, since Ay < n. In this situation, Lemma
A.1 (in the Appendix) implies that A € Py(n), and it remains only to show that
[A| — % = W, or equivalently, |A| — || = p(A). To this end, let p = p(A) and
g=p—x(Ap =p). Then for 1 < i< g and i< j<A;, wehave (4,5) € D(A), and
since A = X, we have (j,4) € D(A). Therefore Ay > j, A; >4, Ai+ A, >i4+j—1,
and we have (4,7 — 1),(4,7) € D(p). Meanwhile, for 1 <i<pand j> X +1, we
have A; + A; < i+ j — 1. This means that if A = (a1,..., 0, |a1,..., ), then
p=(a1—1,...,ap—1]aq,...,a,). We conclude that |A| — |u| = p as required.
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3. The Product Sides

We shall now introduce the digraphs and weight functions to be used in proving
(BD), (BC), and (CD).

Let V be a set, whose elements we call vertices. We shall say that a subset g of
V x V 1s a digraph on V if it has the following two properties:

For all i € V, (i,¢) ¢ g.

If (é,4) € g, then (j,7) ¢ g.

We call the elements of g arcs; we say that (4, j) is an arc from i to j. Observe that
by our definition, a digraph cannot have an arc from a vertex to itself, nor can it
have more than one arc between two distinct vertices. We say that g is complete if
it has an arc between any two distinct vertices. In other words, g is complete if we
have either (7,7) € g or (j,¢) € g whenever ¢ # j. Complete digraphs on finite sets
of vertices are often called tournaments.

We shall work exclusively with digraphs on finite vertex sets. Such digraphs can
be visualized, using points in the plane to represent vertices and arrows from one
point to another to represent arcs. In Figure 3.1, g1 = {(a,d), (b,a), (b,d), (e,¢)}
and g» = {(1,2), (1,3), (2,3), (3,4), (4,1), (4,2)} are digraphs on {a,b,¢,d, e} and
[4] respectively.

b C 2 3
[ ] [ ] [ ] [ ]
o [ ]
a d
[ ] [ ] [ ]
e 1 4
FIGURE 3.1

The out-degree of a vertex ¢ in a digraph g is the number of arcs in g from i
to other vertices. We denote this number by o(é,g). In Figure 3.1, for example,
o(b,g1) = 2 and o(3,g2) = 1. A path from i to j is a sequence of arcs (¢, k1),
(k1,k2), ..., (kn—1,7) in g. The length of a path is the number of arcs it contains.
A cycle is a path from a vertex to itself. By our definition of digraphs, any cycle
must have length at least 3. We say g is transitive if it contains no cycles. For
instance, gy is transitive, but g; has a cycle. If g is a digraph on V and W C V,
then g N (W x W) is a digraph on W, the restriction of g to W. For example, the
restriction of go to [3] is {(1,2),(1,3),(2,3)}.

We are ready to define the sets of digraphs we shall use in our proofs of Theorems
2.2 and 2.4. Given a positive integer n, let V,, = {—n,... —1,0,1,... n}. Define
sets €, and B, of digraphs on V,, as follows:
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¢, consists of all complete digraphs ¢ on V, such that (—j, —i) € ¢ whenever
(i) €.

B, consists of all digraphs b on V,, such that: for all i € V,,, (¢, —¢) ¢ b; for all
i,j € Vi, with j # %4, either (¢,7) € b or (j,¢) € b; and (—j, —i) € b whenever
(7,J) € b. (Given ¢ € €,, the digraph b we obtain from ¢ by deleting all arcs of the
form (4, —7) is in By,.)

We shall use %, in our proof of (BD) and &, in our proofs of (BC) and (CD).
Observe that for any g € 9B, U€,,, the restriction of g to [r] is a complete digraph,
which we call the positive subtournament of g and denote by gt.

Our proofs begin with the assignment of a weight to each digraph in the appro-
priate set. Given a digraph g, we assign a weight w(¢, j) to each arc (4, j) in g. The
product of all these weights is the weight of g: w(g) = H(z’,j)ea w(i, j). We use the
following functions to assign weights to arcs:

w(i, j) = (=1)XE>D (g =0n)x(>0),
W(i, j) = (=X (g X G==D x>0,
(i, j) = (=)D (g (=0 or j==0)/2)x(>0),
We remark that if p < 0, then w(p, ¢) = w(p, ¢) = w(p,¢) = 1 for all ¢, and that if

p and ¢ are nonzero and ¢ # —p, then w(p, ¢) = w(p, ¢) = w(p, q). For example, if
g is the digraph in B3 shown in Figure 3.2, then w(g) = tzfr,23.

2
[ ]
X1 X3
1 X / 2 3
[ ) 1 [ ]
X
1
Xl ° -tX3 -X3
[ [ ]
-3 x\ / 1
[

-2
FIGURE 3.2
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We can now write the product sides of (BD), (BC), and (CD) as sums indexed
by digraphs:

(3.1bd) [T =t T (=) —2) = D wi(b),

1<i<n 1<i<j<n be®B,,
(3.1bc)
[T -+t [T (1 -2z (@i —x;) =D ),
1<i<n 1<i<j<n €,
(3.1cd) [T —td) T] (0= wiwy) (@i — ) =D (o).
1<i<n 1<i<j<n 11

To prove (3.1cd), consider a digraph ¢ € &,. For each pair 7, j of integers with
1 < i < j < n, we have either (¢,j) and (—j,—¢) in c, contributing #; and 1 to
w(c), or we have (j,¢) and (—¢,—j) in ¢, contributing —z; and 1. We have either
(1,—3),(j, —1) € ¢, contributing —z;z; to w(c), or (—i,j),(—j,¢) € ¢, contributing
1. For each ¢ with 1 < i < n, we have either (¢, —¢) or (—¢,¢), contributing either
t1/22; or 1, and either (4,0), (0, —3) or (0,4), (—1,0), contributing either —t*/?z; or
1. This accounts for all the arcs of c. We conclude that the sum of w(c) as ¢ ranges
over €, is equal to

[T =2+ T (1= wizy) (@i — ),
1<i<n 1<i<j<n
which is equal to the product side of (CD). The proofs of (3.1bd) and (3.1bc) are
similar.
4. The Sum Sides

To describe the subsets of B, and €, that correspond to the sum sides of (BD),
(BC), and (CD), we need to study these sets of digraphs in more detail. The
positive subtournaments of digraphs in B,, U &, will be important in this study,
and we shall also use partially ordered sets.

TRANSITIVE TOURNAMENTS AND PERMUTATIONS

Suppose g is a digraph on V such that no two vertices of V have the same out-
degree in g. We claim that g is complete and transitive, or in other words, that it

is a transitive tournament. This is obvious (and vacuous) if |V] = 1. Otherwise,
observe that the possible out-degrees of any vertex in any digraph on V are 0,
1, ..., |[V| — 1; therefore g must have exactly one vertex of each possible out-

degree. 1If i is the vertex whose out-degree is |V| — 1, then i is not part of any
cycle and there 1s an arc between ¢ and any other vertex in g. The restriction of
g to V' \ {i} has no two vertices with the same out-degree, and if it is complete
and transitive, then so is g. Conversely, suppose g is complete and transitive. If
(7,J) € g, then we have (i, k) € g whenever (j, k) € g. Since (7, J) is not in g, we
see that {k : (j,k) € g} is a proper subset of {k : ({,k) € g}. We conclude that
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o(4,9) > o(j,g). This means that no two vertices have the same out-degree in g.
We have shown that a digraph g on (a finite set) V is complete and transitive if
and only if {o(i,g): i€ V}={0,1,...,|V]—-1}.

The above result allows us to identify transitive tournaments g on [n] with per-
mutations ¢ € S,. Given such an g, define (i) to be the unique j such that
o(j,8) = n—i. Then g = {(c(¢),0(j)) : 1 < i< j < n}. This correspondence
between permutations and digraphs is of great importance here and in [G] and [B].

ALTERNATIVE DESCRIPTION OF g WHEN gT 1S TRANSITIVE

Let g be a digraph in 9, U ¢, whose positive subtournament gt is transitive.
There is a unique permutation ¢ = o(g) € S, such that o(c(i),gt) = n — i for
each 7 € [n]. Observe that ¢ completely determines all arcs in g between two
positive vertices or between two negative vertices. We now introduce some sets
that, together with o, will determine all arcs in g not between two positive or two
negative vertices.

First, we introduce ([g]) (“[n] choose 27) and <[g]> (“[n] repeat-choose 2” or “[n]
choose 2 with repetition”): ([g]) ={(j):1<i<j<n}and <[g]> ={(1,7): 1<
i <j < n}. Then we define

i,j) € () : (c(d), —o(h)) € g},
8) U{(4,4) : (0(i),0) € 9)},

and for g € €,,
wr =wx(g)={i: (c(i),—0o(%)) € g}.

We shall use these sets throughout Sections 6 and 7. For instance, if g is the digraph
in Figure 3.2, then gt is transitive with o(g) = (23), 7(g) = {(1,2), (1,3), (2,2)},
and wo(g) = {2}.

We are going to define a partial order on ([g]) and <[g]>. Recall ([St], Chapter
3) that a partial order is a binary relation < that is reflexive (z < x for any =),
antisymmetric (if < y and y < z, then = y), and transitive (if # < y and y < z,
then x < z). One writes ¢ < y if x <y and z # y; also, if # < y or < y, one may
write y = x or y > x. A set on which a partial order is defined is called a partially
ordered set, or poset for short.

Let P be a poset with partial order <. A subset ) of P is an order ideal with
respect to < if we have x € Q whenever # <y and y € ). A dual order ideal 1s a
subset @ of P such that y € Q whenever ¥ < y and z € ). Evidently @ is a dual
order ideal of P if and only if P\ @ is an order ideal.

Given ordered pairs of integers (¢, j) and (k,!), we say that (4,j) < (k,[) if and
only if ¢ < k and j < [. It i1s easy to see that < is a partial order on ([g]) and
<[g]>. We shall visualize ([g]) and <[g]> as in Figure 4.1, which shows T} = {(1,2),
(2,3)} C ([‘;’]) and T» = {(1,1), (1,2), (2,2)} C <[§]>. Observe that T5 is an order

1deal and 77 is not.
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j=1 2 3 j=1 2 3
=1 i=1
2 2
3 3
FIGURE 4.1

The map b — (a(b),7(b)) is a bijection of {b € B,, : bT transitive} onto 5, x
Pow <[g]>, where Pow X denotes the set of all subsets of X. We also have bijections
¢ — (o(c), 7(c),wx(c)) and ¢ — (o(c), 7(c),wo(c),w(c)) of {c € &, : ¢t transitive}
onto S, x Pow <[g]> x Pow[n] and S,, x Pow ([TZL]) x Pow[n] x Pow[n] respectively. In
Chapter 2 of [9], it is shown that b € 9%, is transitive if and only if bT is transitive
and 7(b) is an order ideal of <[g]>. Similarly, ¢ € €, is transitive if and only if ¢t is
transitive, 7(c) is an order ideal of <[g]>, and wp(c) = wx(c).

The last concept we need in this section is that of interchangeability. Let T" be
a subset of ([g]) or of <[g]> and let ¢ and j be distinct integers in [n]. Suppose
without loss of generality that ¢ < j. We say ¢ and j are interchangeable in T if
the following conditions hold:

For 1 <k <, (k,¢) € T if and only if (k,j) € T.

Fori< k< j, (i,k) € T if and only if (k,j) € T.

For j <k <n, (i,k) € T if and only if (j,k) € T.

(¢,7) € T if and only if (4, j) € T (this is vacuous if T C ([g]))

We are ready to define the sets of digraphs that will index the sum sides of our

three generalizations of Weyl’s formula. These sets are B} C ‘B,, & C &,, and
¢ C €, defined as follows:

b € B if bt is transitive, 7(b) is an order ideal of ([g]), and
o(o(1),6) > o(c(2),6) > --- > o(c(n), b).

¢ € ¢ if ¢t is transitive, 7(c) is an order ideal of <[g]>, and
o(o(l),c) > o(c(2),c) > - > o(c(n), c).

¢ € ¢ if ¢t is transitive, 7(c) is an order ideal of ([g]),
o(o(l),c) > o(c(2),c) > - > o(c(n), c),

and wy(c) C wi(c), with wy (c) \we(c) being a disjoint union of pairs {j, j + 1} such
that the elements of each such pair are interchangeable in 7(c).

Section 6 will be devoted to the proof of
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Lemma 4.1. ([S], Lemma 3.3.1) We have

Z w(b) = Z w(c) = Z w(c) =0

bE DB, \ B, €T\ (€T, \ e
for alln > 1.
In Section 7, we shall prove
Lemma 4.2. ([S], Lemma 3.4.1) We have
S wi(e) = S (=PIl (g g2 )7 g m ),

be By AEP_; 0(n)
gES,

cedy
= Z (= 1)Url+p@D/ 2 A=l gypEiAi=i) (] _ 4220 (_1)7 oA tbe),
XEPy,1(n)
gES,
> )
ceer

— Z (=)l 2Hag(A=IxD/2 () _ g pe@Eix =) () _y2)2 (M) ()7 o (Atn)
XEP_;11(n)
gES,

for alln > 1, where u, v, &, y, z, and q are as defined in Section 2.

Theorems 2.2 and 2.4 follow from these lemmas and from (3.1bd), (3.1bc), and
(3.1cd).

5. Lemmas on Order Ideals and Partitions

Before we begin to prove Lemmas 4.1 and 4.2, we shall need some more results
concerning order ideals; partitions, and interchangeability.
Let T be a subset of <[g]>. For any 7 € [n] and any ¢t > —1, we define

#(T) =R <i, G eTH+ R g >0,60) € THA+ (E+ Dx((2,8) € T).

In other words, #:(é,T) is the number of ordered pairs in T with at least one
component equal to ¢, plus ¢ times the number of ordered pairs in 7" with both
components equal to i. Observe that #; is independent of ¢ whenever T" C ([g]).
We shall write # instead of #; in case T is known to be a subset of ([g]). We
remark that #(¢, TN ([g])) =#0,T) forany T C <[g]>.

The following lemma establishes an important correspondence between partitions

and order ideals of ([g]) and <[g]>.
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Lemma 5.1. ([S], Lemma 2.3.3) (a) If T is an order ideal of ([g]) and A =
(#(,T),...,#(n,T)), then A € P_y(n) and |T| = |A|/2.

(b) If T is an order ideal of<[g]> and A = (#:(1,T), ... ,#4(n,T)), then X € Py(n)
and, if t > 0, then |T| = (JA| + (1 — t)p(X))/2.

Proof. (a) Suppose T is an order ideal of ([g]). Consider the set
D=A{(i,7—1),(5,49):(,j5) €T}

We visualize D as being made of two copies of 7', one copy reflected about the
diagonal of N? and glued to the other as shown in Figure 5.1.

ji=1 2 3 4

FIGURE 5.1

We claim that D is the Ferrers diagram of a partition A € P_j(n). Indeed, if T'
is an order ideal of ([g]), then T is of the form

((1,2),(1,3), - (1,14 1), (2,3), . (2,24 as), o (o + 1)y (0o + )}

for some p < n—1and a1 > oy > --- > «a, > 1, and D is the Ferrers diagram
of A= (a1 —1,...,0p, — 1|y, ..., p). It is clear that |T'| = |A|/2. So we can
complete the proof of (a) by showing that A; = #(¢,T') for each ¢ € [n]. This is not
hard to see. Given (i,j) € D, either j < i and (4, j) corresponds to (j,¢) € T, or
Jj > i and (i,7) corresponds to (é,7 + 1) € T; so each of the A; squares in the ¢th
row of D corresponds to a distinct ordered pair in T with one component equal to
¢, and this is clearly a one-to-one correspondence.

(b) Suppose T is an order ideal of <[g]>. Then T'N ([g]) is an order ideal of ([g]),

and since #_4(4,T) = #(, TN ([g])) for all ¢ € [n], the case t = —1 reduces to the
case considered in (a).
Now suppose t = 0. Consider the set

D ={(4,4),(4,9) : (4,7) € T};

we think of D as being made of two copies of T, one copy being reflected about
the diagonal and glued to the other with overlap along the diagonal. Observe that
D is the Ferrers diagram of a partition A € Py(n). We see that p(A) is the largest
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i such that (¢,7) € T, and that |T| = (A + p(A))/2. To see that A\; = (i, T) for
each i, observe that for any given (¢,j) € D, either j < ¢ and (j,4) € T, or j > ¢
and (i,7) € T. Fach of the A; squares in the ith row of D corresponds to a distinct
ordered pair in 7' with at least one component equal to ¢. This takes care of the
case t = 0.

If ¢t > 1, then let

D={(j+0),,0): (6,5)eTru{@Ei+1),...,(6i+t—-1):1<i<p},

where p is the largest ¢ such that (¢,7) € T. In this case, D is made of two copies of
T, with one copy reflected about the diagonal as before, but the copies are separated
by a diagonal strip of width £ —1 and length p. Figure 5.2 shows an example in the
case t = 2.

ji=1 2 3

FIGURE 5.2

We find that D is the Ferrers diagram of a partition A € Py(n), that p(A) = p,
and that |T| = (JA| + (1 — ¢)p(A))/2. To see that A; = #:(i,T) for each 4, observe
that if (7,7) € D, then either: j < i and (j,79) € T,ori < j<i+tand (i,i) €T,
orj>i+tand (¢,j —t) € T. So the ith row of D contains one square for each
ordered pair in 7" having just one component equal to ¢, and ¢ + 1 squares for the
ordered pair (¢,¢) ifitisin 7. O

The correspondence described by Lemma 5.1(a) is one-to-one, as is that described
by Lemma 5.1(b) for ¢ > 0. Given A € P_j(n), then T = ([g]) N{Ej+1):(,)) €
D(A)} is the unique order ideal of ([TZL]) for which #(é,T) = A; for all ¢; if A € Py(n)
and ¢t > 0, then T' = <[g]> N{(i,j—1):(i,4) € D(A)} is the unique order ideal of
<[g]> such that #:(i,7) = A; for all ¢.

The next lemma we shall prove concerns interchangeability. Consider the sub-
set 7 of ([g]) shown in Figure 5.3. The arrows indicate which pairs of elements of
([g]) must be examined for membership in 7 to decide whether 2 and 4 are inter-

changeable in 7. For each arrow, the element of ([g]) at one end belongs to 7 if
and only if the element at the other end belongs to 7; this shows that 2 and 4 are
interchangeable.
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j=1 2 3 4 5 6

=1 4>

FIGURE 5.3

It is easy to see that if ¢ and j are interchangeable in T' C <[g]>, then #.(¢,T) =

#:(j,T) for any t > —1, and if ¢ and j are interchangeable in T" C ([g]), then
#(,T) = #(4,T). For instance, we have #(2,7) = #(4, 7) when 7 is as in Figure
5.3. We also have #(5,7) = #(6,7) in this case, although 5 and 6 are not inter-

changeable in 7. The following lemma tells us that this cannot happen when T is
an order ideal:

Lemma 5.2. ([S], Lemma 3.2.1) (a) If T' is an order ideal of ([g]) and #(4,T) =
#(4,T), then i and j are interchangeable in T'.
(b) If T is an order ideal of <[g]> and #.(¢,T) = #4(4,T) for some t > 0, then i

and j are interchangeable in T

Proof. Assuming the hypothesis of (a), with i < j, let r be the common value of
#(i,T) and #(4,T). Tt is easy to see that r <i—1if (¢,j) ¢ T and r > j — 1 if
(7,J) € T. In the former case, we find that (k,7) € T if and only if (k, j) € T if and
only if 1 < k < r, while any other (k,{) with & or [ equal to ¢ or j is not in 7. The
latter case is similar, except that we have: (k,i),(k,j) € T whenever 1 < k <
(i, k), (k,j) € T whenever i < k < j; for k > j, (¢, k) € T if and only if (j,k) € T if
and only if j + 1 < k < r 4 1. This proves (a); the proof of (b) is almost identical.
We mention that the condition ¢ > 0 in (b) is necessary to ensure that (4,4) and
(J, §) are counted by #.:(4,T) and #:(j,T) whenever they belong to 7. O

Suppose T is a subset of <[g]> and T =TnN ([g]). Clearly, T is an order ideal
of ([g]) if T is an order ideal of <[g]>, but the converse does not hold. For T to

be an order ideal of <[g]>, it is necessary that 7' be an order ideal of ([g]), but not
sufficient. The last lemma of this section gives the additional conditions we need
in order for T to be an order ideal. To state it, we need to introduce what we shall
call extreme points of an order ideal of a poset.
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Let P be a poset and 7' an order ideal of P. We say that p € T is an inner
extreme point of T if T'\ {p} is an order ideal of P. Meanwhile, p is an outer
extreme point of T if p ¢ T and T'U{p} is an order ideal of P. We denote by I(T)
and O(T) the sets of all inner and outer extreme points of 7. Evidently I(T) is
the smallest set S such that 7= {p : p < s for some s € S}, while O(T) is the
smallest S for which P\T = {q : ¢ = s for some s € S}. Figure 5.4 portrays order
ideals T' C ([g]) and T" C <[g]>; we see that I(T) = {(3,4),(1,5)}, O(T) ={(2,5)},
1T = {(2,3),(1,5)}, and O(T") = {(3,3), (2, 4)}.

=1 2 3 4 5 i=1 2 3 4 5
=1 i=1
2 2
3 3
4 4
5 5
FIGURE 5.4

We are ready to state and prove:

Lemma 5.3. ([S], Lemma 3.2.2) Let T C <[g]> and T = TN ([g]). Then T is an
order ideal of <[g]> if and only if all the following conditions hold:

) 7 is an order ideal of ([g]).

i) For all (i,5) € I(7), (i,7) €T or (j,j) €T.

ii) For all (i,7) € O(r), (i,7) € T or (j,j) ¢ T.

v) {i:(i,i) € T} is of the form {1,2,... r} for somer, 0 <r < n.
Furthermore, if (1)-(iii) hold and (iv) does not, there exists i € [n] such that

(4,9 ¢ 7, (i +1,i+ 1) €T, and i and i + 1 are interchangeable in 7.

(i
(i
(i
(1

Proof. “Only if”: Suppose T is an order ideal of <[g]>. If (i,5) € T and (k, 1) < (4,)),
then (k,0) € 7, if (k1) € ([g]), then (k,!) € 7. Therefore (i) holds. If (¢, 5) € I(7),
then (4,7) € 7, which implies (¢,7) € 7, so (ii) holds. Similarly, for (¢, j) € O(7) we
have (¢, 7) ¢ 7, which means (j,j) ¢ 7, and (iii) holds. If (¢,4) € 7, then (j,j) € 7
for any j < ¢, so (iv) holds.

“If”: Suppose T is not an order ideal of <[g]>. Then there exist ,j € [n] with
i <jand either (i,7) ¢7, (,j+1)eTor (i—1,4) ¢7,(4,j) €T. If i < j, then 1
is not an order ideal of ([g]). If 7 is an order ideal of ([TZL]) but (i,9) € 7, (i,i+1) €T
for some ¢, then there exist j, k with k¥ > j > ¢ and (j,k) € I(r). If either (j,J)
or (k, k) is in 7, then (iv) is violated; otherwise (ii) does not hold. If 7 is an order
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ideal of ([g]) and (i —1,¢) ¢ 7, (i,4) € T, then we have (4, k) € O(r) for some j, k
with ¢ > k > j. If (j,j4) € T or (k, k) ¢ 7, then (iv) does not hold; otherwise (iii)
fails.

“Furthermore”: Suppose T C <[g]> is such that (i)—(iii) hold and (iv) does not.
Choose i such that (¢,7) ¢ 7, (i + 1,¢4+ 1) € 7. If i and ¢ 4+ 1 are interchangeable
in 7, we are done. If not, then either (¢,5) € 7, (i 4+ 1,4) ¢ 7 for some j > i+ 2 or
(k,9) e, (k,i+ 1) ¢ 7 for some k < ¢— 1. In the former case, choose the smallest
J with this property. Then (i 4+ 1,7) € O(r); since (iii) holds and (i + 1,7+ 1) € T,
we must have (j,j) ¢ 7. There is some [ > j such that (¢,1) € I(7), and since (ii)
holds and (i,i) ¢ T, we must have ({,{) € 7, which tells us [ > j. We find that
#(q,7) = ¢ for each ¢ with j < ¢ < [; Lemma 5.2(a) tells us that j, j+ 1, ..., !
are pairwise interchangeable in 7, and for some ¢ with j < ¢ < [, we must have
(¢,9) ¢ T, (¢+1,¢+ 1) €T. A similar argument applies in the latter case. O

Figure 5.5 shows a subset 7 of <[;]> for which only condition (iv) fails. The bold
line separates ([;]) from pairs of the form (¢,i). We have (6,6) ¢ 7, (7,7) € T, but
6 and 7 are not interchangeable in 7. We see that (2,7) € O(r) and (4,6) € I(7);
3 and 4 are interchangeable in 7 and (3,3) ¢ 7, (4,4) € 7.

j=1 2 3 4 5 6 7

i=1

FIGURE 5.5

6. Cancellation

Before beginning the proof of Lemma 4.1, we need to introduce some operations
on digraphs. We shall use these operations to “pair off” the digraphs in B,, \ B,
¢\ €, and €, \ €*. Each such digraph will be paired with another, whose weight
is —1 times that of the first.
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ARC REVERSAL AND VERTEX INTERCHANGE

Given a digraph g on V', we can obtain other digraphs on V by reversing some
of the arcs in g. Specifically, we reverse the arcs in a subset R of g by replacing R
with R’ = {(j,4) : (¢,4) € R}. This gives us the digraph ¢’ = RFUg\ R. If Ris a
disjoint union of cycles, then we have o(¢, g') = o(4, g) for every i € V. In this case,
R’ is also a disjoint union of cycles. Whatever R may be, we recover g from g’ by
reversing the arcs in R'.

Another way of obtaining a new digraph on V from an existing one is by in-
terchanging vertices. Let g be a digraph on V and let p,¢ € V. Let ¢,, be the
bijection on V that interchanges p and ¢ while fixing everything else in V. Then
Opg = 1(0pg(i), dpq(s)) : (4,7) € g} is another digraph on V; we say that g,,
is obtained from g by interchanging p and ¢. Observe that o(p,g,4) = o(q,9),
o(q, @pq) = o(p, 9), and o(r, gpq) = o(r, g) for any r other than p or ¢. Evidently g
is obtained from g,, by interchanging p and ¢.

Suppose that g, p, and ¢ satisfy the following condition: for each r € V'\ {p, ¢},
the digraph g has an arc between p and r if and only if it has an arc between ¢
and r. (This condition holds for all p,¢ € V if g is complete.) Then the digraph
obtained from g by interchanging p and ¢ can also be obtained from g by reversing
arcs. Let R consist of all pairs of arcs {(p,r), (r,¢)} or {(¢,r), (v,p)} such that
both arcs are in g, plus the arc between p and ¢ if there is one in g. Then g,,
is obtained from g by reversing the arcs in RE. Recall the digraphs of Figure 3.1.
We find that reversing the arcs (2,3), (3,4), and (4,2) has the same effect on g,
as interchanging 2 and 3. On the other hand, there is no set of arcs in g; whose
reversal gives us the digraph we obtain from g; by interchanging b and c.

ProoF or LEMMA 4.1

Given a set X, on whose elements a weight function w is defined, one way
to prove that )y w(xz) = 0 is by defining a function ¢ : X — X such that
w(g(z)) = —w(z) and ¢(¢(x)) = « for all # € X. We say that ¢ is a weight-
preserving and sign-reversing involution on X if it has these properties. In effect,
¢ “pairs oft” each x with ¢(z).

We shall prove Lemma 4.1 by constructing weight-preserving and sign-reversing
involutions ¢, ¢, and @ on the sets B, \ B, €, \ €, and €, \ € respectively.
The construction will involve arc reversal and will proceed in several phases. In the
first two phases, the arcs to be reversed will all be of the form (¢, j) and (—j, —i),
where |i] and |j| are distinct and nonzero. This will allow ¢, ¢, and ¢ to be defined
simultaneously, because w(¢,j) = @(i,§) = (i, j) whenever j is not 0 or —i. In
later phases, the functions will be defined separately. In Phases 1 and 3, we shall
assume a total order has been defined on the set ([g]).
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PHASE 1

This phase takes care of all those g € B,, U ¢, for which gt is not transitive.

If g* is not transitive, then we have o(i, g*) = o(j, g¥) for some (7, j) € ([g]). Let
(40, jo) be the smallest (4, j) (relative to the total order on ([g])) with this property.
Let g~ be the negative subtournament of g, i.e., g~ = {(—j,—1%) : (1,7) € g7 }. We
obtain ¢(g), ¢(g), or ¢(g) by interchanging iop and jo in g™ and interchanging —i
and —jg in g~. This corresponds to reversing the arc between ¢y and jg, the arc
between —iy and —jg, and all the arcs that belong to subsets of g of the forms

(a) {(io’k)’(k’jo)’(_jo’_k)’(_k’_io)}’ k>0
and
(b) {(jOak)’(k’io)’(_io’_k)’(_k’_jo)}’ k>0.

Let g’ denote the result of interchanging iy and jo in g™ and —¢y and —jp in g~.
We find that (g’)™ is not transitive and that o(k, (¢')*) = o(k,g*) for all k € [n],
so we interchange the same vertices when applying ¢, ¢, or ¢ to g’ as we had
interchanged to obtain g’ from g. This means that we recover g from g’ by applying
the same function that gave us g’ when applied to g.

We must now show that the weight of g’ is —1 times the weight of g. Let a and
b be the number of subsets of g of types (a) and (b) respectively. We have

o oy L if (do, jo) € 8,
0= olio,g") = oljo,g") = a—b+ { —1 if (jo.io) € g
Observe that reversing the arcs in a subset of type (a) multiplies the weight of g
by z;,/x;,, while reversing the arcs in a subset of type (b) multiplies the weight
by zi,/j,. If (in,jo) € @, then there is one more subset of type (b) than of type
(a), so reversing the arcs in all subsets of both types multiplies the weight by
Zi,/xj,. Reversing (—jo, —ip) has no effect on the weight, whereas reversing (o, jo)
multiplies the weight by —z;,/®;,. So the weight of g’ is —1 times the weight of g
as required. Similarly if (jo, %) € g.

This completes Phase 1. From now on, we shall work only with digraphs whose
positive subtournaments are transitive. Recall the definitions of o(g), 7(g), 7(g),
wo(g), and w4 (g) for digraphs g with g* transitive.

PHASE 2

In this phase, we define ¢, ¢, and ¢ for all g such that g* is transitive but 7(g)
is not an order ideal of ([g]). We begin with a discussion of how reversing a certain
set of arcs in g affects 7(g) and 7(g).

Suppose T and 7" are subsets of a set A. If there exist disjoint subsets of A of
the form {a; : 7 € I} and {a} : i € I} such that for each i € I, we have a; € T
if and only if af € T" and af € T if and only if a¢; € T”, then we say that 7" is
obtained from T' by exchanging the pairs a; and a} for each ¢ € I. For example, we
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obtain {1,4,5,6,10} from {2,3,5,6,9} by exchanging 1 and 2, 3 and 4, 5 and 6, 7
and 8, and 9 and 10. If g is a digraph on the set V' and g,, is obtained from g by
interchanging the vertices p and ¢, then g,, is also obtained from g by exchanging
(p,r) and (¢, r) for all » € V\ {p, ¢}; exchanging (r, p) and (r, ¢) for all r € V\{p, ¢};
and exchanging (p, ¢) and (¢, p). Evidently if 7" is obtained from T by exchanging
a; and a} for each 7 € I, then T is obtained from T" by the same process.

Now let g € B,, U ¢, with gt transitive and ¢ = o(g). Given ¢,j € [n] with
i < j, we create a new digraph g’ by reversing the arcs

(a(2), a(k)), (o (k), (1)), (o (k), =o(2)),(=a(j), —o(k)), i<k <],

and reversing (o(i), (7)) and (—o(j), —o(7)). It is easy to see that (g’)T is transi-
tive, with o(g’) = o - ({j). We find that r(g’) and 7(g’) are generally not the same
as 7(g) and 7(g). This is because 7 and 7 depend upon . Indeed, 7(g') and 7(g’)
are obtained from 7(g) and 7(g) by exchanging (k,4) and (k,j), 1 < k < ¢; (¢, k)
and (k,7), 1 < k< j; (¢, k) and (4, k), j < k <n;and (4,4) and (j,7). For instance,
if g € Be U &s is such that 7(g) is the set shown in Figure 5.3, with ¢ = 2 and
j = 4, then the pairs of elements of ([g]) to be exchanged to obtain 7(g’) are those
connected by arrows in the figure. Observe that r(g’) = 7(g) exactly when ¢ and j
are interchangeable in 7(g), and similarly for 7.

We now begin the second phase of the description of ¢, ¢, and ¢. Given g €
B, U, with 7 = 7(g) not an order ideal of ([g]), we either have (¢,p) ¢ T,
(g,p+ 1) € 7 for some ¢ < por (p,q) ¢ r,(p+1,q) €7 forsomeqg>p+1. In
either case, g contains a pair of cycles of the form

{(a(p),a(p+1)), (e(p+ 1), —a(q)), (=o(q), o(p))}

W and ((co).0). (o).~ + D). (=l -+ 1. ~o()).

We shall reverse some such pair of cycles (i.e., reverse all the arcs in the cycles) to
obtain ¢(g), ¢(g), or ¢(g). Let g’ denote the result of this cycle reversal. Tt is easy
to see that (g’)™ is transitive, with corresponding permutation o(g’) = o - (pp+1),
and that w(g') = —w(g), w(g') = —w(g), and w(g') = —w(g). To ensure that we
recover g by applying ¢, ¢, or ¢ to g’, we must have some way of choosing which
cycles to reverse. This is the purpose of the following discussion.

We say there is a violation in the ith row of 7 if there is some [ such that (¢,/) & 7
and (i,{ + 1) € 7. We say the kth row of 7 extends farther than the ith row if
max{j : (k,j) € 7} > max{j : (¢,j) € 7}. Find the smallest ¢ such that either
there is a violation in the ith row of 7, or there is a k > ¢ such that the kth row
of 7 extends farther than the éth row. (Since 7 is not an order ideal, there is an
i satisfying one of these two conditions.) Find the smallest j such that (k,{) &
whenever k > ¢ and [ > j. Then we have (k,!) € 7 whenever k < ¢ and { < j, since
there are no violations in the first i — 1 rows and no row below the (i — 1)st extends
farther than any of the first ¢ — 1 rows. For example, with 7 as in Figure 6.1, we
find that ¢ = 2 and 5 = 6.
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FIGURE 6.1

Now either (¢, j) isin 7, or it is not. If (¢, 5) ¢ 7, as is the case for 7 as in Figure
6.1, then there must be a row below the ¢th that extends farther than the ith row,
since we found the smallest j such that (k,!) ¢ 7 whenever £ > i and [ > j. So
there must be an [ with i+ 1 <1< j—1, ({—1,4)¢ 7, and ({,j) € 7. Choose the
smallest such [; then let p = —1 and ¢ = j and reverse the cycles shown in (7). If
g’ is the digraph that results from these cycle reversals, then o(g’) = - ({—11{) and
" = 7(g’) is obtained from 7 by exchanging (k,{ — 1) and (k,[) for 1 < k <[—2
and exchanging ({ — 1,k) and ([, k) for [+ 1 < k < n,k # j. In the situation of
Figure 6.1, we have [ = 4, and the arrows in the figure indicate the exchanges by
which 7/ is obtained from 7. Observe that the jth column of 7/ is the same as that
of 7; (k,l) ¢ " whenever k > i and [ > j; and (k,!) € 7/ whenever k < i and [ < j.
This means that when we examine 7’ to choose which cycles in g’ to reverse, we
shall find the same ¢ and j and the same [ as we had found for 7. So we recover g
by applying ¢, @, or @ to g’, as required.

If (i,7) € 7, then no row below the ith extends farther than the ith row, so there
must be a violation in the ith row of 7; we must have some k with i+1 <k <j—1
such that (i, k) ¢ 7 and (¢, k + 1) € 7. Choose the largest such k. Let p = &k and
q = ¢ and reverse the cycles shown in (f). If g’ is the digraph that results from
these reversals, then we have o(g') = o - (kk + 1) and 7" = 7(g’) is obtained from
7 by exchanging ({, k) and ({,k+ 1) for 1 <! <k —1,1# i, and exchanging (k, ()
and (k+ 1,1) for k+2 <! < n. We find that the ith row of 7/ is the same as that
of 7, and that (k,{) is in 7 whenever k£ < ¢ and { < j and not in 7 whenever k > ¢
and | > j. So when we look at 7/ to decide which cycles in g’ to reverse, we shall
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find the same 7, 7, and k as we had found for 7. Again, we recover g from g’ by
applying ¢, ¢, or ¢. We are finished with Phase 2.

PHASE 3

From now on, we assume g* is transitive and 7 = 7(g) is an order ideal of ([g]).

Lemma 5.1(a) implies that #(1,7) > #(2,7) > --- > #(n, 7). If g € By, then we
have
o(o(i),g) =n—1i+ #(,7)+ x(i € wp)

for all i € [n]; if g € &,, then

o(o(i),g)=n—i+#E 7)+ x(i €Ewo) +x(i € wy)
:n—i—l—#o(i,?)—I—X(iEwi)

for all i € [n].

Construction of ¢. Given g € B,,, with g transitive and 7 an order ideal of
([g]), we have g € B, unless o(c(i),g) < o(o(i + 1), g) for some 4. Since #(1,7) >
#(2,7) > -+ > #(n, 1), the only way we can have o(c(i),g9) < o(c(i + 1),9) is if
#,m)=F#(+1,7), i € wy, and i+ 1 € wp; this gives us o(c(i),g9) = o(c(i+1), g).
Let g be the smallest ¢ with these properties. We obtain ¢(g) from g by reversing
the pair of cycles

{(a(i0), o(io + 1)), (o(io +1),0), (0,0 (io))}
and {(—a(io),0), (0, —a(io + 1)), (—a(io + 1), —a(in))}.

We find that ¢(g)* is transitive, with o(¢(g)) = o - (d0 i + 1), and that w(¢(g)) =
—w(g). Lemma 5.2(a) tells us that ¢y and ¢y + 1 are interchangeable in 7; there-
fore 7(¢(g)) = 7. Finally, we observe that wo(¢(g)) = wo(g). We conclude that
&(¢(g)) = g, as required. This completes the proof that de%n\%; w(g) = 0.

Construction of ¢. Suppose g is in ¢,, with gt transitive, 7 an order ideal of
([g]), but 7 not an order ideal_of <[g]>. For any T' C <[721]> such that 7'=1T1n ([g]) is
an order ideal of ([g]), let X(T') be the set of all (¢,§) € ([TZL]) such that either

(i) € I(T) and (i.i), () ¢ T

or

(4,7) € O(T) and (i,4),(j,5) € T.

In Figure 6.2, for example, we have a subset T of <[g]> for which X(7) = {(2,5)}.
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j=1 2 3 4 5 6

FIGURE 6.2

If X(7) # 0, then let (4o, jo) be the smallest element of X (7) relative to our total
[g]). If (0, jo) € I(7), then we obtain ¢(g) from g by reversing the cycles

{(e(é0), =o(jo)), (=0 (jo), 0),(0,0(i0)) }
and {(=a(iv),0), (0,0(jo)), (e (jo), —o(i0))}-

Otherwise, (ig, jo) € O(7), in which case we obtain $(g) by reversing

{(e(é0),0), (0, = (jo)), (=a(jo), o (i0)) }
and {(=a(iv), 0(jo)); (0(jo), 0), (0, —a(i0))}-

It is easy to see that w(p(g)) = —w(g). Observe that ¢(g)t = g*, so ¢(g)T is
transitive. We also have wy (4(g)) = w(g).

Let 7 = 7(¢(g)) and 7 = 7($(g)). We see that if (ig, jo) € I(7) (respectively,
O(1)), then (ip, jo) € O(7") (respectively, I(r")). If k is not iy or jo, then (k, k) € 7
if and only if (k, k) € 7, whereas (g, ig) and (jo, jo) are in 7' if and only if they are
not in 7. This tells us that (ig, jo) € X(7'); we shall now prove that X (7') = X(7),
which implies that (ig,jo) is the smallest element in X (7). This in turn means
that ¢(&(g)) = g if X(T) is nonempty.

Suppose (i,7) € X(7)\ X(7). Either (¢,5) € I(7) or (4,7) € O(r'). Assuming
the former, we have (4,7),(j,7) € 7. If i # iy and j # jo, then (3,7),(j, ) ¢ 7.
In this case, we must have (¢,5) ¢ I(7) in order to have (4,j) ¢ X(7). For this
to happen with (¢, j) in I(r), one of (i + 1,5), (¢, + 1) must be in 7 and must
be removed from 7 to yield 7. Since 7’ is either 7 U {(ig, jo)} or 7\ {(40,Jo)}, it
must be that (4p, jo) equals (i +1,7) or (¢, 4+ 1). This contradicts our assumption
that ¢ # iy and j # jo. So assume that ¢ = iy or j = jy. Then either (ig,ip) ¢ 7
or (jo,jo) € 7', by our assumption that (¢,7) € I(r'). But (ig,jo) € X(7), so
(i0,40) € 7 if and only if (jo, jo) ¢ 7 if and only if (ig, jo) € I(7'). Since no row or

order on (
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column of ([g]) can contain two distinct inner extreme points of 7/, our assumption
that ¢ = dp or j = jo now tells us that (4,5) = (io,jo), which contradicts our
assumption that (¢,7) ¢ X (7). The argument is similar if we begin by assuming
(i,7) € O(7"). We conclude that X (7') C X(7); similarly, X(7) C X (7).

There is another possibility to be considered if 7 is an order ideal of ([g]) but 7
is not an order ideal of <[g]>: that X(7) is empty (this is the case for 7 as in Figure
5.5). In this case, Lemma 5.3 tells us that there is some ¢ € [n] such that (¢,) ¢ T,
(i+1,i+1) €7, and ¢ and i + 1 are interchangeable in 7. Let iy be the smallest
such i. Then we obtain &(g) from g by reversing the cycles

{(a(i0), o(io + 1)), (o(io +1),0), (0, 0(io)) }
and {(—a(io),0), (0, —a(ip + 1)), (—o(io + 1), —o(io))}.

We see that ¢(g)* is transitive, with o(4(g)) = o+ (ig io+1), and that w(p(g)) =
—w(g). We obtain w (¢(g)) from wy (g) by exchanging g and ig+1, but wo(@(g)) =
wo(g). Meanwhile, 7(¢(g)) = 7, due to the interchangeability of ég and ip + 1 in 7.
So T(¢(g)) = 7, and this ensures that we shall obtain g by applying ¢ to ¢(g).

Construction of ¢. Let g € ¢, with gt transitive, 7 an order ideal of ([g]),
and o(o(%),g) = o(c(j),g) for some ¢,j € [n] with i < j. Let 4y be the smallest
¢ for which this occurs. Then j must be either iy + 1 or ig + 2, since we have
olo(k),g) <#k,T)+n—k+2<#k,m)+n—iy <H#(o,7)+n—ig <o(c(in),g)
whenever k > ig + 2.

Suppose o(c(ig),g) = o(c(ip + 1),g). There are several ways in which this can
occur:

(1) #(ig,7) = #(io+ 1,7), ip & wo, to + 1 € wg, and ip € wy if and only if
i0—|—16w:|:.

(2) #(ig,7) = #Go+ 1,7), 40 & wi, o+ 1 € wy, and iy € wy if and only if
o+ 1€wg.

(3) #(io,T)I#(i0+1,T)+1, 10 %WO, 10 ¢Wi, w+lEwy, tg+1Ews.

For (1), we obtain ¢(g) from g by reversing the cycles

{(a(i0), o(io + 1)), (o(io +1),0), (0, 0(io)) }
and {(—a(io),0), (0, —a(ip + 1)), (—o(io + 1), —o(io))}.

We observe that ¢(g)™ is transitive, with corresponding permutation o -(ig ig+1).
Meanwhile, wq(p(g)) = wo and wi(P(g)) = wi. Since #(ip, 7) = #(ip + 1, 7) in
this case, ¢y and ig + 1 are interchangeable in 7 and we have 7($(g)) = 7. From
these observations, we conclude that ¢(¢(g)) = g. And it is easy to see that
w(p(g)) = —u(g).

(2) is very similar to (1). We obtain ¢(g) by reversing the cycle

{(e(io), o(io + 1)), (a(io + 1), —a(io + 1)), (=0 (io + 1), —a (o)), (=o(iv), o(i0)) }-
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The observations in (1) apply in this case, and we have ¢(@(g)) = g and W(@(g)) =
—u(g).

(3) is a little more difficult. Suppose that #(ip, 7) = #(ig+1, 7)+1 = r. Observe
that » # ig: it is not hard to see that if 7 is an order ideal of ([g]) and #(¢,7) = ¢
for some 4, then #(i+ 1,7) = ¢ as well. If r < 4y, then we have

(1,i0),(2,i0),... ,(7“— 1,i0),(7°, ZQ) €T,
(Liio+1),(2,00+1),...,(r=Ldig+1)er, (rig+1)é&r,

and
(kyio), (kyio+ 1) & rforr<k<i, (i,k),Go+1k)&rforig+1<k<n.

The only thing preventing iy and ¢y + 1 from being interchangeable in 7 is that
(ryig) € 7 but (r,ig + 1) ¢ 7. So if we reverse the arcs (o(ig),c(ip + 1)) and
(—o(ipg + 1),—0(ip)), we must also reverse the arcs connecting +o(r) to Fo(ip)
and to Fo(ip + 1) in order to preserve 7. This is part of what we do to obtain
#(g). In addition, we reverse the arcs connecting 0, o(ig), and —o(ép) and the arcs
connecting 0, o(ig + 1), and —o(ig + 1). The set of all these arcs may be written
as a disjoint union of cycles:

{(olio), alio + 1)), (olio + 1), 0), (0, —(is + 1))},
{(=olio + 1), —r(io), (—(in), 0), (0, (i)},
and
{(e(iv), =o(r)), (=o(r), a(io + 1)), (e(io + 1), —o(io + 1)),
(=o(io +1),0(r)), (o(r), —a(io)), (=c(in), o(io))}-

If » > ¢, then the only thing preventing g and ig 4+ 1 from being interchangeable
in 7 is that (ip,r 4+ 1) € 7 but (ip + 1,7+ 1) ¢ 7. The cycles we reverse to obtain
&(g) are those shown above, except that r is replaced with r + 1.

The digraph g € &3 portrayed in Figure 6.3 gives an example of the situation in
case (3). We have 0(2) =1, ¢(3) = 3, and o(1, g) = o(3, g) = 2. We obtain ¢(g) by

reversing the bold arcs, which contribute tzfz,23 to w(g).
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We find that ¢(g)* is transitive, corresponding to o - (ig g + 1); meanwhile,

®
7($(9)) = 7, wo(P(g)) = wo, and wi (P(g)) = wi. So once again, we have ¢(@(g)) =
g and @(@(g)) = —w(g). This completes the description of ¢ in case o(o(ip), g) =
o(o(ip +1),9).

Now suppose o(c(ig), ) = o(c(ig+2),g). There is only one way this can happen:
#(io,7) = F#(io+1,7) = #(i0+2,7) and i ¢ wo, G0 & Wi, G0 +2 € wo, o +2 € wt.
To obtain ¢(g), we reverse the arcs between 0 and +o(ig), between 0 and +o (i +2),
between o(ip), o(ip + 1), and o(ip + 2), and between —o(ip), —o(ip + 1), and
—o(ip + 2). This set of arcs may be written as a disjoint union of cycles:

{(a(io), o(io + 1)), (a(io + 1), 0(io + 2)), (o (é0 + 2),0), (0, 0(é0))},
{(=0(@0),0),(0, —a(io + 2)), (=o(io + 2), —o(io + 1)), (=0 (io + 1), —o(i0))},

and

{(e(io), o(io +2)), (a(io + 2), —a(io + 2)), (=0 (io + 2), —a (o)), (=0 (i0), o(i0)) }-

Now ¢(g)*t is transitive, with ¢(3(g)) = o - (inio + 2), and we have wo(p(g)) =
wo and wi(p(g)) = wx. Meanwhile, ¢y and iy + 2 are interchangeable in 7, so
7(4(g)) = 7. These observations tell us that ¢(4(g)) = g, and it is easy to see that
w($(g)) = —u(g).

We are now done with Phase 3.

PHASE 4

This will be the last phase of our construction of ¢ and ¢; we are already finished
with ¢.
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Construction of ¢. Given g € €, \ €, with g* transitive and 7 = 7(g) an order
ideal of <[g]>, we must have o(o(7),g) < o(o(i + 1),g) for some i. Let iy be the
smallest ¢ with this property. Then we have #¢(ig, 7) = #o(é0 + 1, 7), ip ¢ w4, and
ip + 1 € wy. We obtain ¢(g) from g by reversing the cycle

{(e(io), o(io + 1)), (a(io + 1), —a(io + 1)), (=0 (io + 1), —a (o)), (=o(iv), o(i0)) }-

Evidently w(¢(g)) = —w(g). Meanwhile, ¢(g)" is transitive, with corresponding
permutation o - (igig + 1), and wi($(g)) = wy. Finally, Lemma 5.2(b) tells us that
ip and ip + 1 are interchangeable in 7; this means that 7($(g)) = 7. We conclude
that ¢(#(g)) = g. This completes the proof that det‘n\@’; w(g) = 0.

Construction of ¢. The only g € €, \ €7 that remain after Phases 1-3 are those
for which gt is transitive and 7 is an order ideal of ([g]), but at least one of the
following conditions holds:

(i) o(o(i),9) < o(c(i 4+ 1), g) for some ;

(i) wo € wx;

(iil) wy \ wp cannot be written as a disjoint union of pairs {j,j + 1} with the
elements of each pair being interchangeable in 7.

For such g, we shall obtain ¢(g) by reversing a cycle of one of the following forms:

{(e(8),0), (0, = (8)), (—o (i), o ()},
{(e(8), —a(8), (=0(4),0), (0,0 ()},

or

{(e(@),0(i+1)),(a(i + 1), =0 (i + 1)), (= (i + 1), =0 (7)), (=0 (7), o(2))}.

It is easy to see that for any g’ obtained from g by reversing such a cycle, we have
w(g') = —w(g). To ensure that ¢(g) € €, \ € and ¢(p(g)) = g, we need some
way of deciding which cycle to reverse. The following discussion explains how this
decision 1s made.

Let e ={i € [n—1] : 0o(c(d),g) < o(c(i +1),8)} and let e3 = wp \ wx. These
sets correspond to conditions (i) and (ii) above. To describe a set corresponding
to (iil) takes a little more effort. We begin by writing wy \ wg as a disjoint union
of sets R; = {4;,7; + 1,...,i; + r; — 1} such that (a), the elements of R; are
pairwise interchangeable in 7; and (b), no subset of wy \ wy with elements pairwise
interchangeable in 7 contains I; as a proper subset. Observe that g € €* only if
every r; is even.

Figure 6.4 shows a triple (7,wg, w4 ) of sets corresponding to some digraphs in
Cs. In this and several later figures, the sets wg and wy are described by the squares
on the diagonal: the square (¢,7) is vertically lined if ¢ € wy and horizontally lined
if i € wy. Here, we see that wi \wog = {2,3,4,5} and the sets R; are {2,3,4} and

{51,
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j=1 2 3 4 5 6

FIGURE 6.4

Having written wt \ wo as a digjoint union of sets R; in the manner described
above, let c3 be the set containing the largest element of each set R; of odd cardi-
nality. This is the set corresponding to condition (iii). For a digraph corresponding
to the sets shown in Figure 6.4, we would have e¢3 = {4,5}. Observe that the sets
¢1, ¢o, and ¢z are pairwise disjoint: ¢y = wo\w4 and ¢3 C wy \wg, whereas if ¢ € ¢,
then we must have i ¢ wg and i ¢ w4.

Now we are ready to define ¢(g). If g survived Phases 1-3 and the sets ¢y,
¢a, and ¢z described above are all empty, then g is in €*. Otherwise, let iy =
min(c; U s Ueg). Exactly one of the following conditions holds:

(1) ig € c1: in this case, ig € wg, 49 ¢ wi, i0+ 1 € wy, ip+ 1 € wy, and ip and
2o + 1 are interchangeable in 7.

(2a) ig € ca, with ip < n; iy and 45+ 1 interchangeable in 7; and ig+1 € wy \wg.

(2b) 4y € co, with iy = n, or ¢y and g+ 1 not interchangeable in 7, or ig+1 € wy,
orig+1¢wy.

(3) 49 € c3: in this case, iy = n, or iy and iy + 1 are not interchangeable in 7, or
io+1€Ewp,orig+1¢ws.

Suppose (1) holds. Then we obtain ¢(g) by reversing the cycle

{(e(io), o(io + 1)), (a(io + 1), —a(io + 1)), (=0 (io + 1), —a (o)), (=o(iv), o(i0)) }-

We find that o(@(g)) = o - (igég + 1) and that 7(&(g)) = 7, since ég and i + 1 are
interchangeable in 7. Furthermore, wo(¥(g)) = {io} Uwo \ {io+ 1} and wi(@(g)) =
wx . These observations imply that when we apply ¢ to ¢(g), we shall find the same
ip as before, but condition (2a) will hold.

If (2a) holds, then we obtain @(g) by reversing the same cycle described in
the previous paragraph, and we find that (1) holds for ¢(g). Combined with the
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previous paragraph, this shows that ¢(¢(g)) = g for all g such that (1) or (2a) is
satisfied.
If (2b) holds, then we obtain ¢(g) by reversing the cycle

{(e(é0),0), (0, =o(i0)), (=o(io), o(i0))}-

Evidently this reversal does not change ¢ or 7; it simply removes ¢y from wy and
adds it to wy. So when we apply ¢ to $(g), we shall find the same iy as before,
and (3) will hold. Finally, if (3) holds, then to obtain ¢(g), we reverse the cycle

{(e(éo), —o(in)), (=0 (i), 0),(0,0(0))};

condition (2b) will hold for the digraph we obtain from this cycle reversal. We
conclude that ¢(@(g)) = g whenever g is such that (2b) or (3) is satisfied.
With this, we have completed the proof of Lemma 4.1.

7. Correspondence

We shall prove Lemma 4.2 by showing that the weight of each digraph in B}, is
a term on the sum side of (BD), and similarly for € and (BC) and for & and
(CD).

FroM DIGRAPHS TO PARTITIONS

For any g € B, U, with g* transitive, let A = A(g) € N? be such that
Ai+n—i=o(c(i),g) for each i € [n]. In other words, A; = #(4,7) + x(¢ € wy) if
g€ By and Ay = #o(1,T) + x(i Ews) = #(, 7))+ x({ Ewp) + x(i Ewg) if g €T,
We can express the weight(s) of g in terms of A. Namely,

(7.1) w(g) )7 (=)l lwelglwolyoiton) - for g € B,
(7.2) i (g) )7 (=)l prAtdan) - for g € @,
(7.3) w(g) = (—1)7 (=)l HlwelyllwolHlwx /2 000400)  for g € @,,.

Now if g € B U € U T, then o(o(l),g) > o(c(2),9) > -+ > o(c(n),g). This
implies that A(g) is a partition with at most n parts. For g € B: U €, let
C=F#,7),...,#(n, 1)) for ge € let p = (F#o(1,7),...,#0(n,7T)). Lemmab.1
implies that { € P_;(n) and n € Py(n). We observe that:

Ifge B, then 0 < A — ¢ = x(i €wp) <1 forall i €[n].

Ifged, then 0< A — i = x(i €Ewy) < 1foralli€[n].

Ifge & then 0 < A —¢ = x(7 € wo) +x(f € wy) <2 forall i €[n].
Furthermore, we have {i : A; — {; = 1} = w1 \ wp, which is a disjoint union of pairs
{j,7 + 1} such that j and j + 1 are interchangeable in 7, or equivalently, such that
Cj = Cj+1~

The latter observation tells us that A(g) € P_; 1(n) whenever g € €;*. We see
also that if g € B (respectively, €}), then there exists a partition & € P_j(n)
(respectively, Py(n)) such that the skew diagram A(g) — & is a vertical strip. We
claim that A(g) € Py o(n) if g € B}, and A(g) € Po1(n) if g € €. These are
consequences of:

= (-1
= (-1
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Lemma 7.1. ([S], Lemma 3.4.2) (a) Let A= (a1, ..., ap|B1,...,0p). Then there
exists £ € P_y such that A — ¢ is a vertical strip if and only if 31 > a1 > B9 > ag >
> B, >

(b) Let A = (an,...,ap|B1,...,05p). Then there exists & € Py such that A — ¢
is a vertical strip if and only if 1 + 12> a1 > fo+ 12> a2 > - > B+ 1> ap.

Statement (b) is due to Okada. The “if” part follows from Lemma 3.7 of [O],
and the “only if” part is contained in Lemma 3.8 of the same work. Okada does
not state Lemma 7.1(a), but it is implicit in the identity equivalent to (BD) that
he states without proof in [O].

Proof of Lemma 7.1(a). “Only if”: Suppose A = (a1,...,a,|51,...,0) with
either oy < 41 for some ¢ (1 <i<p—1)or f < a; for some i (1 <i < p). Let
EecPybesuchthat ECA Ifé=(n—1,...,vg—1]|7,...,7), then ¢ <pand
we have v; —1 < «a; and y; < B foreach j, 1 <j <q. If oy < B;41 and 7 < ¢, then
we have {{ = v; +1 < Bip1+i+1=A},,. Let k= Biy14+i+1. Then Ax > i+1, but
& <t If ap < Biy1 and 7 > ¢, then a; > a;4q implies a; > 1; we have A; > 041
but & < q < i. In either case, A; — & > 2. And if 5; < «y, we must have v; < oy,
so that A\; —& = a; — (5 — 1) > 2. We have shown that A — £ is not a vertical strip.

“U”: Given A = (a1, ...,0p | f1,...,.Bp) With 51 > a1 > o > an > - > 8, >
ap,let g =p—x(Bp =0). For 1 <i<ygq,lety; = a; +x(F > a;). It is not hard
to show that 4 > v2 > -+ > v, > 0 (assuming otherwise, we would conclude that
Bi < Bit1 for some 7). Soit makessense to define & = (y1—1,...,vg—1]71,...,7%),
and we have £ € P_; and £ C A. For example, if A = (2,1,0]4,1,0), as in the
diagram on the left in Figure 7.1, then £ = (2,0(3,1);if A = (4,1,0]4,3,1), then
£ =1(3,1,0]4,2,1), as we see in the diagram on the right.

FIGURE 7.1

Now if 1 <4 <gq,then \; =& =1—x(8 > o). If ¢ =p—1, then 5, = 0,
which implies that o, = 0 and A, = p; meanwhile, we have y,_1 > ap,_1 > 1, so
& = p— 1. We have shown that 0 < A; — & < 1 whenever 1 < ¢ < p. Suppose
t>pand Ay —& > 2. Let k = & + 1, sothat & < kandp > A > b+ 1.
Then k + v, = &, < iand k+ 14 Ber1 = Ajyy > 4, so we have Fry1 + 1 > 7.
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If v = ar + 1, then ap < Fr41; otherwise, v, = ap = G and G < FBry1. We
conclude from this contradiction that 0 < A; — & < 1forall¢>p. O

The proof of Lemma 7.1(b) is very similar. One way to define £ in this case is
toput v =y — x(a; > G;) for 1 <i<p, thenlet E=(y1,...,% |7, %)

Recall that in Section 2, we defined P_; 1(n) in terms of dominos: A € P_; 1(n)
if and only if A — & is a disjoint union of dominos, with no more than one domino
per row of D(}), for some k € P_j(n). If we call any single-element subset of N? a
“monomino,” then Lemma 7.1 tells us that A € Py g(n) (respectively, A € Py 1(n))
if and only if D(A)\ D(¢) is a disjoint union of monominos, with no more than one
such in any one row of D(A), for some £ € P_j(n) (respectively, Py(n)).

By virtue of Lemma 7.1 and formulas (7.1)—(7.3), we have the following:

(7.4bd)
ST = S0 (—1)7ar ) 7 (el el
beB* XEP_1 o(n) T,Wo
cES,
where A; = #(4,7) + x(i € wy) for all ¢ € [n];
(7.4bc)
Z ii(c) = Z (—1)7 27 FEn) Z(—1)|?|t|wi|’
ECH AEP 1(n) T, Wi
cES,
where A; = #0(¢,7) + x(7 € wy) for all ¢ € [n];
(7.4cd)
Z w(c) = Z (—1)7 g7 Atn) Z (—1)l7IHlwolylwolHlw /2.
CECE* Aeféléi(n) T,Wo,W+

where A; = #(4,7) + x({ € wp) + x(7 € wy) for all ¢ € [n].

In these formulas, 7 and 7 are order ideals of ([g]) and <[g]> respectively, and

wo and wy are subsets of [n]. We can now complete the proof of Lemma 4.2 by
proving:

Lemma 7.2. (bd) Foreach A € P_; y(n), the inner sum on the right side of (7.4bd)

15
(=)A= lul/2glAl=lul g2y (N

(bc) For each A € Py 1(n), the inner sum on the right side of (7.4bc) is
(=1)IPIFpN/ 2= pxEFEAe=i) (] _y2)z(0),
(cd) For each A € P_; 1(n), the inner sum on the right side of (7.4cd) is

(_1)|H|/2+q(/\)t(|/\|—IHI)/Z(l _ t)x(Eiw\in)(l _ t2)2(/\).
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ProoOFs oF LEMMAS 2.1 AND 2.3

We require Lemma 2.1 in our proofs of (bd) and (bc) and Lemma 2.3 in our
proof of (¢d). Since we have not yet proved these lemmas, we do so now. It should
be mentioned that the proof in [S] of Lemma 3.1.3, which is the same as Lemma
2.3 here, 1s mnvalid.

Proof of Lemma 2.1. (a) Let A € P4 o(n) with Frobenius representation (a1, ...,
ap | P, .., Bp). We claim that g(A) € A. Suppose 4, j are such that ¢ < j and
(1,j—1) ¢ D(X). We have j—1 > X;; 80 Aj +A; < Aj+j—1. If i > p, then we have
j>pand \; <p<i Ifi<p thenj>N+1l=a;+i+1> G +i+1=2A,,,
which means that A; < i+ 1. In either case, A;+X; <i+j—1,s0 (4,7—1) ¢ D(u).
If i < jand (j,7) € D(A), then A; +X; < A; +4, and we shall show that A; < j—1.
Ifi>p,then Ay <i<j—1;ifi <p,then Ay =y +i < G +i= X, and X, < j—1
since (j,4) ¢ D(X). Again we have A; + A; < i+ j — 1, and (j,7) ¢ D(p). This
proves our claim. It remains to show that if ¢ C A and £ € Py, then ¢ C u. This
is fairly easy. If £ € P and & € p, then (4,5 — 1), (4,9) € D(&) \ D(p) for some
i,j with i < j. For such ¢, j we have A; + A; < i+ j — 1, but if both (4, — 1) and
(7,7) are in D(X), then A; > j— 1 and A; > 4, meaning that A\, + A; > i+j—1. So
(7,7 — 1) and (4, 7) are not both in D(}X), and we conclude & € A.

(b) The proof is much like that of (a). Let A = (a1, ..., ap|f1, ..., Bp) €
Pya(n). If (4,7) ¢ D(X), then j > A;. We shall show that ¢ > A;, from which it will
follow that (¢,7) € D(v). If i < p, then j > Ay =a; +i> i1 +i4+ 1= A, from
which we conclude A; <4 1. If ¢ > p, then if j > p, then A; < p <. Otherwise,
J<pywrite Ao +1=8; +j+12>a;+j = A;, and observe that since (¢, j) € D(}),
we have ¢ > /\} + 1. We have shown that v C A, and the proof that & C v for any
other & € Py such that £ C A is easy. O

Proof of Lemma 2.3. Let A € P_; 1(n). To prove that there is a partition x € K ()
such that n C & for all € K(A), we shall show that if x,n € K(A) with n € &,
then there exists & € K(A) such that D(k) is strictly smaller than D(%). We shall
describe ¥ in two ways: by giving its Frobenius representation and by identifying
the dominos that are removed from A — & to give A — %.

Writek = (an —1, ..., ap—1]an, ..., ap)and n= (5 —1, ..., B, — 1| f, ...,
B;). There are two ways in which we can have n € x: (1) a; > §; for all i € [p],
but p < ¢; and (2) a; < G; for some ¢ < min{p,q}. We consider these two cases
separately.

In case (1), we must have o, > 2, meaning &, > Kpy1 = Kpyz = p. Since
0 <X —#k <2foralli e [n], we have p+1 < npy1 < App1 < p+ 2 and
p+ 1< 42 < Apya < p+ 2. We consider three subcases:
(1) Apt1 = p+ 1: We have A\,1o = p+ 1, since k would not be in K(X)
otherwise. Let R = (an — 1,... ;0 — 1,0] 01, ... , p, 1).
Dominos: Remove {(p+ 1,p+ 1), (p+2,p+ 1)}.
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(i) gpy1 = p+ 1, Apg1 = p+ 2: We have 8oy = 1,50 fjpyo = p+ 1. If
Apt2 = p+ 1, then we must have 1, = p+ 1 (otherwise 5 could not be in K(X))
and A, = p+2. Meanwhile, Ap 11 —kp41 = 2and Ayj2—FKp42 = 1, so we must have
Apys = p+ 1 and kp43 = Kpgo = p. This tells us that o, > 3 (in fact, o, = 3,
since otherwise £, > p+2=2XAy). Let E=(an — 1,... ,ap, — 1, 1]1,...,p,2).
FAio=p+2 thenlet®=(a1—1,...,0p—1,0|c1,...,0p,1).

Dominos: If Apys = p+ 1, remove {(p+ 1,p+1),(p+ 1,p+ 2)} and {(p +
2p+1),(p+3,p+ 1)} I Apys =p+2, replace {(p+ Lip+1),(p+ 1,p+ 2)}
and {(p+2,p+1),(p+2,p+2)} with {(p+1,p+2),(p+2,p+2)}.

(iil) 9p41 = p+2: We have 10 = np43 = p+1. Since Ap41 = 1p41 in this case,
we must have p+1 < Apy2 = Apys < p+2in order that n be in K (). We must
also have o, > 3, since G011 =2. Let R = (a1 —1,... ,ap — L, 1|1, .., 0p, 2).

Dominos: Remove {(p+ 1,p+1),(p+ L,p+2)}; if A\py2 = p+ 1, remove
{p+2,p+1),(p+3,p+ 1)}, otherwise, replace {(p+2,p+ 1), (p+ 2,0+ 2)}
and {(p+3,p+1),(p+3,p+2)} with {(p+2,p+2),(p+3,p+2)}.

We are now done with (1).

In case (2), choose the smallest i for which o; < ;. We have o; > 3; for all j < 4,
meaning that «; > n; whenever j < ior j >4 8; and that x;_1 > n,21 > 0 > &5
if > 1.

Given a subset X of N? and a domino D, we shall say that D crosses the border
of X if one of the two elements of D is in X and the other is not. Observe that
whenever ( € K(A), the cardinality of X N (A — () is congruent modulo 2 to the
number of dominos in A — ¢ that cross the border of X. If X is a subset of N? such
that X N D(¢) has even cardinality whenever ¢ € P_;, then we have

7.5

( -ﬂ?%(dominos in A — ¢ that cross the border of X) = |X N (A= )]
= [X N D) = X n D)
= | X N D)

for each ¢ € K(A), where = stands for congruence modulo 2. We observe that if X
can be written as a (possibly infinite) union of sets of the form {(k,{ —1),(l, k) :
k <[}, then | X N D({)] is even for all ¢ € P;.
We now begin the description of & in case (2). Let » = i + «; in what follows.
There are two subcases to consider:
(i) oy = B —2: We have Ay = 0 = & + 2, K > Kpp1 = Kpg2 = 1 — 1,
Mgl 2> Mgz > Gand i+ 12> Aoy > Apya > 4.
Let X = {(k,1) € N? : k,1 > i}; then | X N D(¢)] is even for all { € P_;. Since
Ai — ki # 1, there is no “vertical” domino in A — & that crosses the border of X.
Similarly, no vertical domino in A — 5 crosses the border of X. Any “horizontal”
domino in A — n that crosses the border of X is of the form {(k,?),(k,i4+ 1)}
for some k > r + 2 such that ny =i —1and Ay =i+ 1. Since r+2 = ¢+ 3;,
we see that i — 1 = n; < Kk < Kpy2 = ¢ — 1. This means that the domino
{(k,4),(k,i4+ 1)} is also in A — k. Now (7.5) implies that the number of dominos
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in A —k that cross the border of X is congruent modulo 2 to the number of such
dominos in A — 7. So we must have an even number of horizontal dominos in
A — & that cross the border of X and are not in A—7. The only possible dominos
with these properties are {(r + 1,7), (r+ 1,i+ 1)} and {(r+2,4),(r + 2,1+ 1)};
either A — k contains both of these (in which case A,41 = ¢ + 1), or it contains
neither (in which case A.4; = @). In each case, we obtain & by replacing «; with
B; = a; 4+ 2. In terms of dominos, we remove {(¢, &; + 1), (¢, ki +2) } from A —&; if
Arg1 = ¢+1, then we replace {(r+1,%), (r+1,¢+ 1)} and {(r+2,¢), (r+2,i+1)}
with {(r+1,i+ 1), (r + 2,7+ 1)}, otherwise, we remove {(r + 1,4), (v + 2,4)}.

(ii) oy = B; — 1: We have &, > krqy1 = i— 1 and 941 > @ > 5,42. Either
Arg1 =2+ 1or Arp1 = 2. We consider these subsubcases separately.

If Appp =i+ 1, let X = {(k,l) € N? : k,I > i}. The horizontal domino
{(r+1,9),(r+1,i4+ 1)} crosses the border of X; it is in A — & but not in A — 5.
Any horizontal domino in A — 7 that crosses the border of X must be of the form
{(k,%),(k,i+ 1)} for some k > r+ 1 such that gy =¢— 1 and Ay = ¢+ 1. Such
a domino must also be in A — k. So the number of horizontal dominos in A — &
that cross the border of X is one greater than the number of such dominos in
A—n. Now (7.5) implies that the number of vertical dominos in A — & that cross
the border of X must differ from the number of such dominos in A — 7 by an
odd integer. Since at most one vertical domino in either A — k or A — 7 can cross
the border of X, we either have the domino {(¢,%; + 1), (i + ks + D)} in A — &
(in which case A; = ; = &; + 1) or the domino {(¢,7; + 1), (¢ + 1,7, + 1)} in
A —n (in which case A\; = n; + 1 = &; + 2). In each case, we obtain % from by
replacing «; with a; + 1 and oy 41 with a1 + 1. (If § = p, then instead of the
latter replacement, we add to the rank of £ by appending (0]1) to its Frobenius
representation.) To obtain A —% from A — &, we remove {(r+1,4),(r+1,i+ 1)},
and we either remove {(¢,x;+1), (i+ 1, k; + 1)} or replace {(¢,k; +1), (1, £, +2)}
and {(i+ 1, ki +1),(i 4+ 1,4 +2)} with {(¢,5; + 2), (i + 1,k + 2)} according as
A —kK;1s 1or 2.

If Ary1 = 4, then let X = [r + 1] x [r]. Observe that » = x; + 1. Since
Kr > Krg1 = Arp1— 1, A— K must contain the vertical domino {(r+1,4), (r+2,4)},
which crosses the border of X. There is no vertical domino in A — 5 that crosses
the border of X. Suppose {(k,r),(k,r+ 1)} is a horizontal domino in A — p
that crosses the border of X. Then k& > ¢ since ; = k; +1 = r. We have
K < k; = r—1; since Ay = r + 1, we conclude x; = r — 1. This means
that {(k,r), (k,7+ 1)} is also a domino in A — k. Now (7.5) tells us we must
have an odd number of horizontal dominos in A — & that cross the border of
X and are not in A — 5. The only possible domino with these properties is
{(¢,7), ({,r + 1)}, since kK > r whenever k < i. We obtain A — & from A — & by
removing {(r+1,%), (r+2,¢)} and {(¢,r), (¢, 7+1)}; the Frobenius representation
of % is obtained from that of x by replacing «; with «a; + 2.

This completes subcase (ii) of case (2); we have finished the proof of Lemma

2.3. 0O
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Proor oF LEMMa 7.2(bd)

For each A € P_; o(n), we must identify which partitions & € P_;(n) are such
that A — & 1s a vertical strip. For example, Figure 7.2 shows that there are four
such partitions ¢ corresponding to A = (4,2,2,2,1) € P_; o(5).

FIGURE 7.2

Let A € Py g(n). Suppose §,&* € P_;(n) are such that A — ¢ and A — £* are
vertical strips and £&* C & C A. Let 7 and 7* be the order ideals of ([g]) that

correspond to & and £ in the sense of Lemma 5.1(a), and let wy = {i € [n] :
Ai—& =1 and wl = {i € [n] : Ay — & = 1}. We have 7* C 7 and w{ D wy; if
the elements of wj \ wy are 41 < 49 < -+ < iy, then 7\ 7 = {(i1, t2,), (i2,%2,—1),

.+, (ir,ir41)}. This means that if g, g* € B} are such that g* = (g*)*, 7 = 7(g),
™ = 7(g%), wo = wo(g), and w} = wo(g*), then w(g*) = (—t*)I"\" " lw(g). Also, if
(¢,J) € 7\ 7*, then there is no other ordered pair in 7\ 7* having ¢ or j as one of
its components. So we see that if (¢, j) € 7\ 7°, then (¢,j) € I(r): otherwise, 7\ 7*
would contain (i, j41) or (41, j), or 7 would not be an order ideal of ([g]). These
observations imply that 7\ 7* is a subset of Y (r,wq) = {(4,4) € I(7) : ¢,j ¢ wo}.
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Fix 0 € 5, and A € P_; o(n), and let ¢ be the largest partition in P_;(n) such
that A —¢& is a vertical strip. Let 7 be the order ideal of ([g]) corresponding to & and
let wog ={¢ € [n] : Ay — & = 1}. Observe that [A| = 2|7| + |wo| and [£] = 2|7]. We
conclude from the discussion in the previous paragraph that > «w(g), where g ranges
over all digraphs in B such that o(c(i),g*) = n —i and o(c(i),8) = A +n — 1, is

(_1)‘7xU(A‘Mn)(_1)|T|+|w0|t|w0| Z (—t2)|A|
ACY (7,wo)
_ (_1)0x0(>\+5n)(_1)|>\|—|§|/2t|>\|—|§|(1 _ t2)|Y(Tywo)|.

For example, if A is as in Figure 7.2, then & = (4,2,2,1,1) and Y(r,wp) =
{(1,5),(2,3)}. We shall now prove that £ = u(A) and that |Y(r,wo)| = y(A);
this will complete the proof of Lemma 7.2(bd).

Lemma 2.1(a) tells us that p(X) is the largest partition in P_j(n) whose Ferrers
diagram is contained in D(A). To conclude that £ = p(A), we need only show that
A — p is a vertical strip. Write A = (a1, ..., ap |1, ..., Bp) and suppose that
Ai — g > 1 for some ¢ € [n]. Then (¢, A; — 1) & D(p). If ¢ < Ay, then we have
Ai + Ay, < i+ A —1; otherwise, ¢ > A; — 1 and we have Ay, 1 + A <14+ X — 2.
In the first case, Ay, < ¢ — 1, which means A{_; < A;. Since ¢ < A;, we must have
1< p, 80

/\;»_122'—1—1—62'_1 <14+ a; = A

This implies «;_1 > B;_1, meaning A ¢ P_; o(n). In the second case, Ay,_1 < i—2,
meaning Aj_, < A; —1. We have \; <iand X,_, <A\ —2<i—2, 50 A; = max{j €
pl:j+08; >itand Al_, =max{j € [p] : j+a; >1—2}. Let k=X — 1. Then
k < p, since A; < ¢ implies A; < p; we have

k4+ar<i—2<i<k+14Brs1,

50 a < Bp41 and A € Py o(n). We have shown that if A € Py o(n), then A; —p; <1
for all i € [n], as required.

Let 7 be the order ideal of ([g]) corresponding to p(A) and let wo = {ié: Ay —p; =
1}. We shall show that |Y(r,wg)| = y(A). For any (¢,5) € ([g]), we have (i,j) € T
if and only if (i,j — 1) € D(p) if and only if A; + X; > i+ 7 — 1. If (4,5) € I(7),
then #(i,7) = j—1and #(j,7) =1, s0 pi + ; = i+ j — 1; if in addition ¢, j & wo,
then A\; +A; = ¢+ 7 — 1. Conversely, suppose 1 < j and A\; + A; =i+ j — 1. Then
(4, — 1) € D(p) and (¢,5) € 7, implying that #(i,7) > j — 1 and #(j,7) > 4, so
we must have i, j ¢ wy. Furthermore, A1 + A; and A; 4+ Aj 41 are both at most
i+j—1,80(i,j+ 1) and (i 4+ 1,j) are not in 7; we conclude that (7, j) € I(r). We
have shown

Y(rwo)={(,j) i< j Mi+A=i+j—1}

and y(X) is defined to be the cardinality of this set.
With this, we have completed the proof of Lemma 7.2(bd) and of (BD).
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ProoFr oF LEMMA 7.2(bc)

This proof is much like the preceding one. We must identify, for each A € Py 1(n),
those ¢ € Py(n) for which A — & is a vertical strip. Given such a A, suppose
£,&" € Py(n) are such that A — & and A — £* are vertical strips and &* C £ C A
Let 7 and 7" be the order ideals of <[g]> corresponding to & and &* in the sense of
Lemma 5.1(b). Let wg = {i€[n]: Ay —& =1} and w}i = {i € [n]: X —& =1}
We find that 7\ 7 is a subset of Z(T,w+) = {(i,j) € [(T) 1 4,j ¢ w+}.

Observe that it is possible to have (i,¢) € I(T) for some i. If 7 =7N ([g]) and

™=7N ([g]), then we have
0 () = (427 GO g

whenever g, g* € € are such that g* = (g*)*, 7 = 7(g), T = 7(g%), ws = wx(g),
and wi = wi(g*). Now if (¢,4) € I(T), then #(i,7) = ¢; if in addition ¢ ¢ wy,
then A; = i. Conversely, if A; = ¢ and £ € Py(n) is such that A — & is a vertical
strip, and if 7 is the order 1deal of <[g]> corresponding to &, then either & = ¢ and
(¢,9) € I(T), or & = i — 1 and (7,7) € O(T). This means that the case (4,7) € I(T),
i ¢ wy can occur if and only if A; = ¢ for some i € [n], and otherwise the exponent
of t on the right side of () must be even.

Let Z(T,ws) = Z(F,wx)N ([g]). Fix 0 € S, and A € Py 1(n); let & be the largest
partition in Py(n) such that A — £ is a vertical strip. Let 7 denote the order ideal
of <[g]> corresponding to £ and wy the set {i: A; — & = 1}. The sum of w(g), as g
ranges over all digraphs in € such that o(co(7), ") = n—i and o(o (i), g) = Ai+n—i,
is

(=1)7 27O ) ()Tl — x@FiA=i (22wl

Evidently 7| = (|&] + p(€))/2 and |wx| = |A] — |€], so we need only show that
& =v(A) and |Z(T,wy)| = z(X) to finish the proof of Lemma 7.2(bc).

By Lemma 2.1(b), v(}) is the largest partition in Py(n) with Ferrers diagram
contained in D(A). So we need only show that A — v is a vertical strip. Write
A= (a1, ..., ap| B, ..., Bp) and suppose A; —v; > 1. We have (4, A; — 1) ¢ D(v),
which means that A; + Ay, _1 < ¢+ A; — 1. Subtracting A; from both sides, we have
Axn—1 < i —1; equivalently, Al_; < Ay, — 1. If ¢ < p, then Al_, = 31 +i—1 and
Ai = a; + 1. Therefore a; > 5;_1, and we conclude that o;_1 > a; +1 > ;1 + 1,
which contradicts the assumption that A € Py 1(n). Suppose instead that 7 > p.
Then A; < p, so Ax,—1 = ax,—1 + Ay — 1. Meanwhile, A}, > i for any A, and since
t>p > A, we can write ’\/A, = O, + A;. We see that

B, F12i—=X+1>i—X >, — M+ 1=ax_1,

which again implies A ¢ Py 1(n). We have proved that A; —v; < 1 for all 7 € [n]
whenever A € Py 1(n).

Observe that 7, the order ideal of <[721]> corresponding to v, is {(¢,j) € D(v) :
i < j}. I (i) € Z(T,ws), then i < j and we have v; = #4({,7) = j and
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v; = #0(J,7T) = ¢. And since 4,j ¢ wx, we have A; = v; and A; = v;; therefore
Ai+A; =i+ j. Meanwhile, if ¢ < j and A\; +XA; =i+, then (4, j) € 7. This implies
that v; > j and v; > ¢, so we must have v; = j (which implies (¢, j+1) ¢ 7); v; = ¢
(meaning (i 4+ 1,7) ¢ T); and ¢, j ¢ wy. We conclude (¢, j) € Z(T,w4), and we have
shown that |Z(T,wx)| = z(A).

PRrROOF oF LEMMA 7.2(cd)

This proof differs somewhat from the previous two. Lemma 2.3 tells us that
for any A € P_; 1(n), there is a unique largest partition x = x(A) among those
partitions n € P_j(n) for which A — 5 is a disjoint union of dominos with no
more than one domino per row of D(A). Now given A € P_; 1(n), let 7 be the
order ideal of ([g]) corresponding to x(A). Let wg = {i € [n] : Ay — k; = 2} and
wy ={i €[n]: A —k; = 1 or 2}. Observe that ¢(A) = |wg|. For each ¢ € S, there
exists g € €* such that: o(o(i),g*) = n — i and o(c(i),g) = A; + n — 7 for each
i €[n]; 7 =17(9); wo = wo(g); and wy = wy(g). For example, if A = (3,3,2), then
k=10(2,2,2), 7 = {(1,2),(1,3),(2,3)}, wo is empty, and wy = {1,2}. Figure 7.3
shows g € €3 corresponding to this A and to the identity permutation.

1, ?\;,
s
_3'

[ ]
-2
FIGURE 7.3

When g is defined as in the preceding paragraph, we have

w(g) = (_1)%0(A+6n)(_1)|H|/2+q(k)t(lkl—|n|)/2.

Fix A € P 1(n) and ¢ € S, and let g € €;* be as in the preceding paragraph.
If g* is any digraph in €* with (g*)* = g* and o(o(i),g*) = o(c(i),g) for each
i € [n], then 7(g*) C 7, wo(g*) D wo, and wi(g*) D wx. Let Z(A) = {(4,)) : i <
Jy Ai+A; =i+ j}, so that |Z(A)| = z(A). Now it suffices to prove the following:
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(i) For every subset A of Z(}), there is a digraph ga € €4* such that: g} = g*;
o(a(i),g4) = o(o(i), g) for each i € [n]; and w(ga) = ()4l (g).

(i) If A; = i for some ¢ € [n], then for each g4 there is a g/, € €* with the same
positive subtournament and out-degrees as g4 and with w(g/,) = —tw(ga).

(iii) Every g* € €* having the same positive subtournament and out-degrees as
g is of the form g4 or g’y for some A C Z(}).

To prove (i), suppose first of all that A = {(¢,)}. Since 0 < Ay — & < 2 for
all k € [n], we must have 1 4+ j — 4 < k; + k; < i+ j. Observe that x; + «; is at
most i + j — 3 if (¢,j) ¢ 7 and at least i + j — 1 if (¢,5) € 7, so we can rule out
k; + £; = i 4+ j — 2. The remaining possibilities are as follows:

ki + k5 =14 j. We have (¢,j) € 7, and there is exactly one k such that either
k>jand (i,k)€rork>iand (k,j) € 7. Either k =i+ 1 and (¢ + 1,j) € I(7),
or k = j+ 1 and (¢,j+1) € I(r). We have ¢ ¢ wy, { ¢ wy, j € wy, and
J & wy. Suppose (i + 1,7) € I(r). We find that ¢ and ¢ + 1 are interchangeable
In T, 80 Kiy1 = Ki = A; > Ajy1; this means that ¢ + 1 cannot be in wqy or wx.
We define g4 by putting 7(ga) = 7\ {(¢,4), (i + 1,5)}; wo(ga) = wo U {j}; and
wi(ga) =wx U{i,i+1,7}. A similar argument applies if (¢, 74 1) € I(7): we have
m(ga) = 7\ {(4,)), (6,7 + 1)}, wo(ga) = wo U {i}, and wi(ga) = ws U{d, 5,5+ 1}
Figure 7.4 gives an example of this construction in the situation A = (6,3,2,2, 1),
with A = {(2,3)}. On the left are 7, wg, and wy for g, and on the right, the
corresponding sets for g4. As in Figure 6.4, each square (k, k) is vertically lined if
k € wg and horizontally lined if k € w4.

1 2 3 4 5 1 2 3 4 5
1 1
2 2
3 3
4 4
5 5
FI1GURE 7.4

Ki + k5 =i+ j— 1. We have (¢,j) € I(7); neither ¢ nor j is in wy and exactly
one of them 1s in wy. If j < n, then j and j + 1 are not interchangeable in 7; if
j > t+ 1, then 7 and ¢ + 1 are not interchangeable in 7. Suppose j € wy. Then
J and j — 1 must be interchangeable in 7, j — 1 € wy, and j — 1 ¢ wq: otherwise,
A — k would not be a disjoint union of dominos with at most one domino per row.
If j —1 =4, then we would have A; + A; = ¢+ j+ 1, so we must have j > ¢ 4 1.
Alternatively, suppose ¢ € w4. Then ¢ — 1 or ¢ + 1 must be in w4 and not in wp;
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i and i + 1 are not interchangeable in 7 unless i + 1 = j, but j ¢ wy; we conclude
that ¢ and 7— 1 are interchangeable in 7, i—1 € wy,and i— 1 € wq. If j € wy, then
let 7(ga) = 7\{(4,5—1),(4,5)}; wo(ga) =woU{i,j—1,7}; and wi(ga) = we U{i}.
If i € wy, then 7(ga) is 7\ {(: = 1,4),(4,5)}, wo(ga) = wo U {i — 1,4,5}, and
wi(ga) = we U{j}. In Figure 7.5, we have an example of this construction for
A=1(4,3,3,2,2)and A = {(1,5)}.

1 2 3 4 5 1 2 3 4 5
1 1
2 2
3 3
4 4
5 5
F1GURE 7.5

Ki+ K = i+ j—3. We have (4,j) € O(r) and one of ¢ and j is in both
wo and wy, while the other is in wy only. If j ¢ wp, then we must have j and
J + 1 interchangeable in 7, j + 1 € wy, and j + 1 & wy. This is because j has
to be “paired off” with either 5 — 1 or j + 1 according to the definition of &€*
and assuming it is paired off with j — 1 leads to a contradiction. But in this case,
we can replace 7 with 7 U {(¢, ), (¢, + 1)}, remove 4, j, and j + 1 from w4, and
remove ¢ from wg; this contradicts our assumption that 7 corresponds to k. We
also derive this contradiction if ¢ ¢ wy. We find that if ¢ > 1, then ¢ and i — 1 are
not interchangeable in 7, ¢ is paired off with ¢ 4+ 1, and j > ¢ + 1; we can replace 7

with 7 U {(4, ), (i + 1,5)}.

k; + k; =1+ j — 4. Here too we have a contradiction of the assumption that 7
corresponds to k. We can add either {(¢,5—1),(¢,5)} or {(i = 1,4),(4,7)} to 7 and
change wy and wy accordingly. For instance, one possibility is (¢, j—1) € O(r), with
j — 1 and j interchangeable in 7. We have both ¢ and j in wg and w4; 7 — 1 1s also
in wp and w4, as otherwise we would have A;_; < A;. We can add {(¢, 7 —1), (¢, j)}
to 7.

We have proved (i) whenever |A] = 1. In this case, we obtain 7(ga) by removing
from 7 a set of the form {(¢, ), (i+1,7)} or {(4,7), (¢, j+1)}. Such aset is a domino.
In case |A| > 1, we can find a domino to remove from 7 for each (7,7) € A. If no
two of these dominos intersect, then we can construct g4 “one domino at a time”
by repeating the above construction for one-element sets A. (This is essentially
what we did in proving the first two parts of Lemma 7.2, only with monominos
instead of dominos.) On the other hand, it is possible for two dominos to intersect.



THE ELECTRONIC JOURNAL OF COMBINATORICS 3 (1996), #R12 45

For instance, this happens if A = (3,3,2,2) and A = {(1,4),(2,3)}: the dominos
corresponding to (1,4) and (2, 3) are respectively {(1,4),(2,4)} and {(2,3),(2,4)}.

We claim, however, that given any three dominos that correspond to elements
of Z(X), one of them is disjoint from the other two. This is because ¢ # k and j # !
whenever (7, j) and (k,!) are distinct elements of Z(X). The only way two dominos
can intersect is if they are of the form {(¢,5 — 1), (¢,4)} and {(¢ — 1,4), (¢, )}, with
(4,j—1),(i—1,7) € Z(A). Tt is not hard to see that no third domino corresponding
to an element of Z(A) can intersect either of these. So to complete the proof of (i),
we need only show that if A = {(¢,7 — 1),(¢ — 1,4)}, with corresponding dominos
{(4,—1),(¢,5)} and {(i=1,4), (4, )}, then we can create g4 € €* having the same
positive subtournament and out-degrees as g and with w(gs) = t*w(g). For such
an A, we have: noneof i—1,¢, j—1, jisinwg orw4; i—1 and ¢ are interchangeable
in 7; j — 1 and j are interchangeable in 7; and (¢, j) € I(7). We define

m(ga) =7 \{( -1, -1),(i—=1j),(i,5—1), (2,5}
WO(QA) =woU {Z - 1aiaj - 1a.7}a
wi(ga) =war U{i—1,4,7—1,5}.

We think of 7(ga) as being obtained from 7 by removing two dominos. This
completes the proof of claim (i).

We now begin the proof of (ii). Let g4 € €* be the digraph corresponding
to some A C Z(A), where A is such that A; = ¢ for some i € [n]. Recall that 7
denotes the order ideal of ([g]) corresponding to £ = k() and that wg = {i € [n] :
Ai—ki=2andwy ={i€n]: A —k = 1lor2}. Let 74 = 7(ga). We claim
that either (é,44 1) € I(7a) or (i — 1,i) € I(74). There are three possible values
for ;0 ¢, i — 1, and i — 2. If k; = ¢, then (i,i+ 1) € I(r). If K, = i — 1, then
(i—1,¢) € 7and (,i+ 1) ¢ 7. We have ¢ € wy and ¢ ¢ wy. Assuming that
(i—1,i+1) € 7, we conclude that i — 1 and ¢ are not interchangeable in 7, so ¢ and
i+ 1 must be, and we must have i + 1 € wy and i + 1 € wg. But this contradicts
the maximality of 7, since we can add (é,i+ 1) to it and remove ¢ and ¢ + 1 from
wx. So we must have (i — 1,44 1) ¢ 7, and therefore (i — 1,¢) € I(7). Similarly, if
ki = ¢ — 2, we find that we can add (¢ — 1,4) to 7 and remove ¢ — 1 and ¢ from wy.
We have proved the claim for 74 = 7 (this is the case A = §)). If A is not empty,
then we obtain 74 by removing dominos from 7. If (¢,4 4 1) is in 74, then it is in
I(rq). T ({,44+ 1) is in I(7) but not 74, then it must be contained in a domino
removed from 7; the other member of this domino must be (¢ — 1,i+ 1). Having
removed this domino, we have (i — 1,4) € I(74), unless (i — 1,%) is also in a domino
removed from 7, which it cannot be, since the other member of the domino would
be (i — 2,1); removing both dominos would reduce #(¢, 7) by 3, and we could not
have o(c(i),g4) = o(o(i),g). A similar argument proves that if (i — 1,¢) € I(7),
then we must have (i — 1,4) € I(r4). We have proved that (¢,i+ 1) or (¢ — 1,4) is
in I(74) for any A C Z(A).

Now we know that either (¢,i4+ 1) € I(74), ¢ & wo(ga), and ¢ & wi(ga); or
(i—1,0) € I(ta), i €wy(ga), and ¢ & wo(ga). In the former case, we see that ¢ and
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i+ 1 are interchangeable in 7 and that ¢ 4+ 1 is not in wg(ga) or wi(ga): otherwise
we would have o(o(7),g4) < o(c(i 4+ 1),94). So we create g/, by putting 7(g/y) =
(@) \{(4, 7+ 1) }; wo(gy) =wol(ga); and wx(gy) = wx(ga)U{i,i+1}. In the latter
case, we must have i — 1 € wy(ga) and i — 1 ¢ wo(ga), since ¢ and ¢ + 1 are not
interchangeable in 7(g4). We construct gy by putting 7(g’y) = 7(g4) \ {(: = 1,4)};
wo(ghy) = wolga) U {i — 1,4}; and wi(gy) = wi(ga). This completes the proof
of (ii).

We shall prove (iii) by constructing a subset A of Z(X) for each g* € €, having
the same positive subtournament and out-degrees as g. Recall the definitions of 7,
wg, and wg relative to o € S, and A € P_; 1(n); in particular, 7 is the order ideal
of ([g]) corresponding to k(A). Let 7 = 7(g*), w} = wo(g*), and wi = wi(g*).
Observe that if 7% # 7, then there exists (4,5) € I(r) \ 7*. This is because
and 7% are order ideals and we obtain 7* from 7 by removing some elements.
Now to construct A, we begin by setting A = @ and do the following for each
(4, 5) e I(r)\ ™

When j = i+ 1, we distinguish between two cases: (i — 1,i + 1) € 7* and
(i—1,i+ 1) € 7\ 7. In the first case, we find that #(¢,7) = #(i+ 1,7) = ¢ and
that #(i,7°) = #( + 1,7*) = i — 1. We have either 4,74+ 1 € wy \ wg, meaning
Aig1 =i+ 1, ori,i+ 1 ¢ wy, meaning A; = i. We do not add anything to A, but
we see that g* is of the form g/, rather than g4. In the second case, #(i+1,7) =1
and #(¢ 4+ 1,7%) = ¢ — 2; we must have i + 1 ¢ wy and i+ 1 € wf. So A;jy1 = ¢ in
this case. Meanwhile, #£(i — 1, 7*) = #(¢: — 1,7) — 1 and #(¢, 7*) = #(,7) — 1; this
means ¢ — 1 and i are “paired” as members of wy \ wy or of wi \ w§, so they must
be interchangeable in 7. Since #(¢,7) = ¢, we must have #(i — 1,7) =d. Ifi—1
and ¢ are in wy \ wg, then A; = ¢+ 1; we add (¢,i4 1) to A. Otherwise, i — 1 and ¢
are not in wy and A;_; = i; we add (i — 1,4+ 1) to A. In the latter situation, we
may also have g* of the form g;. This happens if ({ — 1,¢) € 7\ 7%, in which case
#(i, ) = ##({,7) — 2, 80 i cannot be in wy.

If j > i+ 1, then it is impossible to remove (4, j) from 7 and not remove either
(i —1,4) or (i, — 1). The removal of only (7,j) would force a violation of the
pairing condition for members of wy \wg. So (i—1,j) e 7\ 7 or (i,j—1) e T\ 7"
If(i—1,j) er\ 7" but (i,j — 1) € 7", then we have j ¢ wx,s0 A; = #(j, 7) = 1.
Meanwhile, i—1 and ¢ are interchangeable in 7: we have #(i—1,7*) = #(i—1,7)—1
and #(i,7") = #(i,7) — 1, so i is paired with either ¢ — 1 or i 4+ 1 as a member
of we \wo or of wi \wf; but ¢ and i + 1 are not interchangeable in 7. We have
#i—-1,1)=#((,1)=j—1. Ifi— 1 and ¢ are in wy, then A;_; = A; = j, and we
add (i,7) to A. Otherwise, A;_1 = A; = j— 1, and we add (i — 1, j) to A. Similarly
if (i,j—1)yer\r*, buti=1or (i—1,j) € 7*: we add either (¢,j — 1) or (¢,5) to
A. Finally, it is possible that both (¢, j— 1) and (i — 1, j) are in 7\ 7*. In this case,
we must also have (i —1,j—1) € 7\ 7", To see this, suppose (i—1,j—1) € 7*. We
find that #(¢, 7*) = #({, 7) =2 but #(i—1,7*) = #(i—1,7)—1; if i = 2, we have a
violation of the pairing condition for wy \ wp; otherwise, i — 1 must be paired with
i — 2. This in turn forces (i — 2,7) € 7\ 7, which gives us #(j, 7*) < #(j,7) — 3,
which means that o(j) couldn’t have the same out-degree in g* as in g. So we have
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(i—1,j— 1) er\r* andnoneof i — 1,4, j— 1, jisin wg or wy. We find that
Aici=X=jand A\j_1 =A; =i—1,and add (i —1,j) and (4,5 — 1) to A. This
concludes our description of the construction of A, and thus completes the proof of
Lemma 7.2(cd).

We conclude this section with an example of the construction described above.
Fix ¢ € Sg and let g € €& be the digraph whose positive subtournament corre-
sponds to ¢ and for which 7, wg, and w4 are as in Figure 7.6.

1 2 3 4 5 6

FIGURE 7.6

Now g corresponds to the partition A = (5,3,3,3,2,2), and 7(g) is the order
ideal of ([g]) corresponding to k(A). Another digraph g* with the same positive
subtournament and out-degrees as g is given by 7%, w{, and w/ as depicted in
Figure 7.7.

1 2 3 4 5 6

FIGURE 7.7
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We see that I(7) \ 7* = {(1,6),(3,4)}. Begin with A = @ and (¢,5) = (1,6);
i=1and j > i+ 1, so we must have (1,5) € 7\ 7*. Observe that 5 and 6 are
interchangeable in 7, and are both in wy. Hence we have Ay = #(1,7) = 5 and
Ae = #(6,7)+ 1 = 2; we add (1,6) to A. Now we set (¢,5) = (3,4). We observe
that (2,4) € 7\ 7*; 2 and 3 are interchangeable in 7, and are both not in wy.
Therefore Ao = #(2,7) = 3 and Ay = #(4,7) = 3; we add (2,4) to A. Finally,
we see that (2,3) € 7\ 7*. Notice that the construction of g4 from g given in
the proof of (i) would give us 7(ga) = 7\ {(1,5),(1,6),(2,4),(3,4)}. Therefore
™ = 7(94) \ {(2,3)}, and we have that g* is of the form g/, rather than g4.

Appendix. Relation between Littlewood’s identities
and Weyl’s formula

The usual way of writing Weyl’s denominator formula does not involve partitions,
such as appear on the sum sides of (2.3b), (2.3¢), and (2.3d). Instead, the terms
on the sum side are indexed by elements of the Weyl group of the corresponding
root system. We shall now show that (2.3¢), which is equivalent to Littlewood’s
identity (2.2¢), implies Weyl’s formula for the root system C),. Similar arguments
may be used to show that (2.3b) and (2.3d) give Weyl’s formula for B,, and D,
respectively. The following lemma is useful in each case.

Lemma A.1. ([S], Lemma 2.1.2) Let t be an integer > —1. Then A € Py(n) if and
only if ¢(A) < n and {|\; —i— 5|0 € [n]} = {H1 &2 2=y

In our proof of Lemma A.1, we shall use the following result, due to Macdonald:

Lemma A.2. ([M], Chapter I, (1.7)) For any partition A and positive integers
[> LX), m > Ay, the sets {A; +1—i:i €[]} and {{ =1+ j— A, :j € [m]} are
disjoint and their union is {0,1,... [+ m—1}. O

Proof of Lemma A.1. “If”: Suppose {(A) < n and {|A; —i— 51| i € [n]} = {42,

%, e %} Let (@1,...,0p|f1,...,0p) be the Frobenius representation of
A. Then A; — 1 — % = oy — % for each ¢ € [p]. Since the «; are nonnegative,
we cannot have «; — % < —%. So we must have «; — % > % for all 7 € [p];

furthermore, if t = —1, then a; — % =a;+1>0= % On the other hand,

No—i— % < —% for p4+ 1 < i < n. We conclude that the positive elements of
{Ni—i— 5t i e n]} are a; — 51, i € [p]. Now choose j € [p] and let b = 3.
Since b+j = /\}, we have A\ppj > J > Apyjq1; hence Ay —b—j— % > —b— % >
Aptj1—b—j—1— L What this means is that b+ L ¢ {|A; —i— 52| p+1<
i < n}. But the condition £(A) < n means that 0 < b <n—1;s0 b+ % € {%,
%, e %} Therefore b + % = a; — % for some ¢; §; = a; + 1t for some
i. Since this holds for each j € [n], and the sequences « and 8 are both strictly
decreasing, we conclude that ¢ = j. Thus A € P;(n) as claimed.

“Only if”: Let A = (o +¢t,...,0p +t|1,...,0p) € Pi(n). Lemma A.2 tells
us that L = {A —i— 5L 27 € [n]} and L/ = {j—/\é»—% 2 J € [n+t]}

are disjoint, with LU L = {-n — %, —n — %—1—1 A %} We have
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/\i—i—%:ai—i—%z%ifiE[p]and/\i—i—%g—%ifp—i—lgign.
Therefore

(i —i= S rie ]} C {5 52, B

Now to complete the proof, we need only show that there are n distinct values in
{|A; —i— 5| i € [n]}, and to do this, it suffices to show that if 2 > 0 and
x € L, then —z € I’. This is immediate: & = a; + 3L for some i € [p], so

—x:—ai—%:i—/\;—%EL/. |

Let ¢; denote the vector in R” (n > ¢) having a 1 as its ith component and 0’s
elsewhere, so that {eq, es, ..., e,} is the standard orthonormal basis of R™. The
usual representation of C), relative to this basis is {£(e;te;) 1 1 < i< j < n, £2¢; :
1 <4 < n}, with positive subsystem CF = {e;%e; : 1 <i< j<n, 2¢:1<i<n}
The Weyl group W = W(C),) acts on Cj, by permuting components and changing
their signs. It is isomorphic to the semidirect product Z5 x.5,,, where 75 is the cyclic
group of order 2; Z% is a normal subgroup of W on which S, acts by automorphisms.

Now recall the usual statement of Weyl’s denominator formula: Given a root sys-
tem @, with positive subsystem ®1, in a Euclidean vector space F with orthonormal
basis {e1, ea, ..., e, }, we have

[T (/2 —amelty = 37 (=1ea®),

aedt weW

where z¢ = z; for each i € [n], W = W(®) is the Weyl group of &, and S =
S@H =} 3 o

acedt
Multiplying both sides of (2.3¢) by

[T== TI (a2 2y 2 2y = (02 T e,
=1 =1

1<i<j<n
we obtain
a —a n(n o Ai—1t
[I @ —amefy= 30 (et iy TLag
agCit A€Pi(n) i=1
gES,
Meanwhile,
S:% Z a=(n,...,2,1),
aECi
and Lemma A.1 tells us that for A € Py(n), the sequence A~ = (A1 —1, ..., Ay —n)
is obtained from S by permutations and sign changes, i.e., that A~ = w(S) for some

w € W. Furthermore, since the sequences A~ are all strictly decreasing, no two of
them are in the same coset of S, in W.
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Given A € Pi(n), let wy be the unique w € W for which A~ = w(S). To prove
that (2.3¢) implies Weyl’s formula for C),, we must show that

W/Sp ={wy: A€ Pi(n)}
is a complete set of coset representatives of S,, in W, and that

(_1)wx — (_1)|>\|/2+n(n+1)/2

for each A € Py(n).

Let ¢ € .5, and s € {1}" be such that wy(e;) = s;jey(;) for each vector e; in the
standard orthonormal basis of R". Then A; —i = (n — ¢7(4) + 1)sg-1(;) for each
i € [n]. So there must be some p € {0,1,...,n} such that

{1 (1<i<p);

5—1i:
O=1 o iz

and such that

7 (1) <oTH2) < <o (p) and ¢ (p+1) > (p+2)> > 97 (n).

We have p = p(A), since A; — ¢ is positive for ¢ < p and negative for ¢ > p.
Observe that s uniquely determines ¢: ¢71(i) is either the ith smallest k& such
that s; = 1 or the (¢ — p)th largest k such that s = —1, according as ¢ < p or
i > p. This means that the cardinality of W/5S,, is the cardinality of {&1}", which
is the number of cosets of S, in W, as required. Meanwhile, the sign of w) is
(~)? Ty s = (L) (=17,

Choose 1,j € [n] with ¢ < j. Then ¢(i) > ¢(j) if and only if ¢(i) > p. The
number of inversions in ¢ is therefore Z?:p_l_l(n —#7(4)), and the sign of w) is —1
to the power

S =)= Y (- M)
t=p+1 t=p+1

Now observe that

n

di=a)= D> i— >N

i=p+1 i=p+1 i=p+1
n(n+1) p(p+1) -
= — — A A
; P2
n(n+1)

P
Ry !
i=1

since |A| is even and ) ¢_,(A; — i) = |A|/2 for any A € Pi(n), we conclude that

(_1)wx — (_1)n(n+1)/2—|>\|/2 — (_1)n(n+1)/2+|>\|/2

as required.
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