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Abstract

A graph is 2-cycled if each edge is contained in exactly two of its chordless
cycles. The 2-cycled graphs arise in connection with the study of balanced
signing of graphs and matrices. The concept of balance of a {0,+1, —1}-
matrix or a signed bipartite graph has been studied by Truemper and by
Conforti et al. The concept of a-balance is a generalization introduced by
Truemper. Truemper exhibits a family F of planar graphs such that a graph
G can be signed to be a-balanced if and only if each induced subgraph of G
in F can. We show here that the graphs in F are exactly the 2-connected
2-cycled graphs.



1 Introduction

A graph is said to be 2-cycled if each of its edges is contained in exactly two
chordless cycles. The 2-cycled graphs arise in connection with the study of
balanced signing of graphs and matrices by Truemper [3] and by Conforti et
al. [2], as indicated in the next three paragraphs.

A signed graph is a graph G = (V| F) together with a mapping f : ' —
{+1,—1}. Consider a mapping o : C — {0, 1,2, 3}, where C is the set of
chordless cycles of G. If Y.cof(e) = a(C) (mod 4) for all C' € C, we say
that the signed graph is a-balanced. A trivial necessary condition, which we
assume throughout, is that |C| = a(C) (mod 2) for all C' € C. When o = 0,
this condition means that G is bipartite, in which case it can be specified by
its adjacency matrix A, and A is balanced in the usual sense if and only if the
signed graph consisting of G and the constant mapping f = 1 is 0-balanced.
Similarly, a {0,+1, —1}-matrix A specifies a signed bipartite graph, and A
is said to be balanced when the signed bipartite graph is 0-balanced.

It is easy to check that each graph of the following types is 2-cycled (See
Figure 1):

Star-subdivision of K,: The result of subdividing zero or more of the three
edges incident to a single vertex of Ky;

Rim-subdivision of a wheel: The result of subdividing zero or more rim
edges of the wheel Wy, k > 3;

Subdivision of K3 3: The result of subdividing zero or more edges of Ks33.;

Triangles-joining: Two vertex-disjoint triangles with three vertex-disjoint
paths joining them.

Note that if two nonadjacent edges of K, and possibly other edges are sub-
divided, the resulting graph is not 2-cycled. It is called a bad subdivision
of K4 Truemper [3] showed that a graph G possesses a mapping f that
makes it a-balanced if and only if each induced subgraph of G that is a star-
subdivision of K,, a rim-subdivision of a wheel, a subdivision of K53 or a
triangles-joining enjoys the same property. Our main result is that these are
all the 2-connected 2-cycled graphs (Clearly, a graph s 2-cycled if and only
if all its 2-connected components are, so without loss of generality we may
consider only 2-connected graphs):
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(c) (d)

Figure 1: 2-cycled graphs. (a): Star-subdivision of Ky4; (b): Rim-subdivision of a wheel;
(c): Subdivision of Kj3; (d): Triangles-joining.

Theorem 1 (Main Theorem) A 2-connected graph is 2-cycled if and only
if it is a star-subdivision of Ky, a rim-subdivision of a wheel, a subdivision
of Ko 3 or a triangles-joining.

This paper is organized as follows. In Section 2 we give definitions of
some new concepts. In Section 3 we define and characterize the upper and
lower 2-cycled graphs; these graphs are defined so that a graph is 2-cycled
if and only if it is both upper 2-cycled and lower 2-cycled. In Section 4 we
study the structure of 2-cycled graphs and prove the Main Theorem. Early
on (in Corollary 2) we show that the upper 2-cycled graphs are planar, and
this planarity plays an important part in the proofs.

2 Preliminaries

We discuss only finite simple graphs and use standard terminology and nota-
tion from [1], except as indicated. We denote by Ng(u) or simply N(u) the
set of vertices adjacent to a vertex u in a graph G, and by Ng(S) or N(S)
the set | J,.q Na(u) for a vertex subset S. A chord of a path or a cycle is an
edge joining two non-consecutive vertices of the path or cycle. A chordless
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path or cycle is one having no chord. For a path P = (21, ,...,%%), we
use the notation P[z;,z;] for the subpath (x;,...,z;), where 1 <i < j <n.
If e = ab is an edge of G, the contraction G /e of G with respect to e is the
graph obtained from G by replacing a and b with a new vertex ¢ and joining
¢ to those vertices that are adjacent to a or b. The edge set of G /e may be
regarded as a subset of the edge set of G. A minor of G is a graph that can
be obtained from G by a sequence of vertex-deletions, edge-deletions and
contractions. By subdividing an edge e we mean replacing e by a path P
joining the ends of e, where P has length at least 2 and all of its internal
vertices have degree 2. A subdivision of GG is a graph obtained by subdividing
zero or more of the edges of G. The intersection (union) G1 NGy (G1UG32) of
graphs G7 = (V1, Ey) and Gy = (Vs, Es) is the graph with vertex set V3 N V4
(V1 UV3) and edge set By N Ey (B U Ey). If C) and Cy are cycles of a plane
graph G, we say that C) is within (surrounds) C5 if the area enclosed by C
is contained in (contains) that enclosed by Cs.

Two cycles C' and C" are said to be harmonic if C' N C" is a path, as
illustrated in Figure 2. If C' and C” are harmonic cycles of a plane graph, we
can find an appropriate plane drawing of the graph such that C’ is within C,
if it is not already the case, by selecting a face within C' and making it the
outer face.

C

Cl

Figure 2: Harmonic cycles.

Let C' and C’ be two cycles with a common edge e, and u a vertex of
C" — C'. Let P’ be the maximal subpath of C’ that contains u and does not
have internal vertices on C, and let P be the subpath of C' joining the two
ends of P’ and containing e. Then P’ U P is a cycle C”, as illustrated in
Figure 3. The operation transforming C” into C” is called grafting C" with
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respect to C', e and u. An important property of this operation is that the
new cycle C” is harmonic with C'. Furthermore, if the graph is a plane graph
and u is within C' (or C” surrounds C'), then C” is within (surrounds) C.

O/

Figure 3: Grafting.

Let P = (x1,2,...,2;) be a path in G. If P has a chord z;x; for some
i < j—1, we can obtain another path P’ = (z1,...,2;,z;,...,x;) by deleting
the vertices between z; and z; and adding the edge z;z; to P. If P’ still has
chords, we can apply the same operation to P’, and so on until we obtain a
chordless path P* connecting x; to x,. For a cycle C' of G and an edge e of
C, we can apply the above operation to C' — e to obtain a chordless cycle C*
containing e. We call the operation transforming C' into C* chord-cutting C'
with respect to e. We note that if the graph is a plane graph and C' surrounds
(is within, is harmonic with) a chordless cycle C' and e is a common edge of
Cand C , then the cycle obtained by chord-cutting C' with respect to e again
surrounds (is within, is harmonic with) C.

Let C' and C” be cycles of G, where C' is chordless, e a common edge of
C and ', and u a vertex of C' — C. By grafting C’ with respect to C, e
and u, and then chord-cutting the resulting cycle with respect to C' and e,
we obtain a chordless cycle C*. We call the operation transforming C’ into
C* harmonizing C' to C' with respect to e and u. Note that the new cycle
C* still contains e and is harmonic with C' and chordless. Furthermore, if
G is a plane graph and wu is within C' (C" surrounds C'), then C* is within
(surrounds) C'. After the harmonization operation we forget ¢’ and rename
C* as C'.



THE ELECTRONIC JOURNAL OF COMBINATORICS 3 (1996), #R14 5

3 Upper and lower 2-cycled graphs

We say that a graph is upper (lower) 2-cycled if each of its edges is contained
in at most (at least) two of its chordless cycles. Clearly, a graph possesses
this property if and only if each 2-connected component does, but in the
rest of this section we do not assume 2-connectivity. The following lemma is
crucial in characterizing upper 2-cycled graphs.

Lemma 1 If G = (V, E) is upper 2-cycled, so are its minors.

Proof. It suffices to show that if G’ results from G by deleting or contracting
an edge uv and G’ is not upper 2-cycled, neither is G. Let e = ab be an edge
of G’ that is contained in distinct chordless cycles C7, C) and C% of G'.
Case 1: G' = G — uv. Note that if uv is not a chord of Cj, then C] is also
a chordless cycle of G; in this case, we put C; = C!. If uv is a chord of C/,
then C] Uww is split into two chordless cycles of G, each consisting of uv and
a subpath of C' connecting u to v; we call the one containing e C; and the
other one C;. If C}, C5 and C5 are distinct, then they are distinct chordless
cycles of G containing e. If they are not, we may assume C; = Cy. Then C]
and C4 must have uv as a chord, and Cf, 6’1 and 62 are distinct chordless
cycles of G containing uv.

Case 2: G' = G/uv. The edge uv of G is contracted to a vertex w of G'.
Because uv # ab, {a,b} N{u, v} is empty or has one vertex. If it is nonempty,
we assume u = a without loss of generality.

If E(C) forms a cycle of G, it must be a chordless cycle, and we let C;
be that cycle. If not, w must be a vertex of C}, and E(C}) forms a path P,
in G connecting u to v. Let u}, v} be the neighbors of u, v on P;, respectively.
Then P, Uuv forms a cycle Cf of G, and its only possible chords are wv,
and uiv. By chord-cutting C} with respect to e, we find a chordless cycle C;
containing e.

Note that if e and uv are not adjacent, or if the chord u,v does not exist,
then E(C;) is contracted to E(C!) when we contract the edge uv.

Now we have three chordless cycles C, Cs and C'3 containing e. If they are
not all distinct, say Cy = Cy, then C) is the triangle {u = a,v,b = u} = uj},
C7 and C5 both have bv as a chord, and bv is contained in three distinct
chordless cycles of G, namely {a,v,b}, bu U P —e, bv U P) — e. [

We note that K33 — e and K, @ 3K, (the graph obtained by joining
every vertex of Ky to every vertex of 3K7) are not upper 2-cycled. These
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graphs are illustrated in Figure 4. Therefore we have the following corollary
of Lemma 1.

Kzs—e Ky ® 3K,

Figure 4: Forbidden minors of upper 2-cycled graphs.

Corollary 1 An upper 2-cycled graph contains no Ko @ 3K, or K33 —e as
a minor.

Note that K, @ 3K; is a minor of K5 and K33 — e is a minor of K33. By
Kuratowski’s Theorem, we have the following consequence of Corollary 1.

Corollary 2 An upper 2-cycled graph must be planar.

The next theorem characterizes the upper 2-cycled graphs. Although we
only use its necessity part to prove the Main Theorem, it has an independent
interest.

Theorem 2 A graph is upper 2-cycled if and only if it contains no K, ® 3K,
or K33 —e as a minor.

Proof. The necessity is Corollary 1 above. Now we prove the sufficiency.
By the argument leading to Corollary 2, G must be planar. Assume that,
if possible, GG is not upper 2-cycled. We assert that G' has three cycles (',
C; and C5 and an edge e such that the following properties hold for an
appropriate plane drawing of G:

1. ', (5 and C} are distinct chordless cycles containing e;

2. (5 is within C] and C} is within Cy;
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3. (1, Cy and (5 are harmonic with each other.

In proving the assertion, we make use of a weaker version of Property 3,
namely,

4. (9 is harmonic with C; and Cs.

By the assumption that G is not upper 2-cycled, it has three cycles C;, Cy
and C5 and an edge e satisfying Property 1. If two of the cycles are harmonic,
we rename them as C] and C5. If not, we harmonize C3 to C; with respect
to e, and the new Cj is still different from C and C5. In any case, we may
assume (3 is within C. For the new C, C5 and Cj3, Property 1 still holds,
but now (5 is within and harmonic with C}.

Next, let us consider three cases about Cs.

Case 1: Cy has a vertex u inside C5. We harmonize C5 to C3 with respect to
u and e, and switch the names of C'3 and C5. The cycles Cy, C5 and C3 now
satisfy Properties 1, 2 and 4.

Case 2: Cy has a vertex u outside C. We select a face within C5, make it the
outer face, and switch the names of C; and (5, and we are back to Case 1.
Case 3: Cy is between ('] and (5. We harmonize '} to Cy and C5 to Cy with
respect to e. The cycles C7, C5 and C5 now satisfy Properties 1, 2 and 4.

Thus in all cases, Properties 1, 2 and 4 hold for 4, (3, C3 and e. By
planarity and Property 2 we have C; NC3 C Cy, hence C1NC5 = (C1NCy) N
(Cy N C3). Since each of C; N Cy and Cy N Cy is a subpath of Cy, C7 N C
must be a path or the union of two disjoint paths. In the former case, C;
is harmonic with C, as required. In the latter case, illustrated in Figure 5,
the symmetric difference of E(Cy) and E(Cs) forms a cycle €, and we can
find an edge €' in C7 N Cy such that €’ is also on C'. Renaming C’ as (s
and €’ as e and chord-cutting C3 with respect to the new edge e, we achieve
Property 3 for the new C, (5, C'5 and e while Properties 1 and 2 remain
valid. This completes the proof of the assertion.

It follows from the assertion that P35 = C'y N Cj is a path contained in Cy
and containing e. Let P[5 (P4;) be the subpath of C; —e (C5 — e) between
the ends a and b of Pis.

Suppose no internal vertex of Py, ison Cy. Let P/y = (a = zg, 21, ..., 7, =
b), and let ¢ (j) be the largest (smallest) index such that xg, ..., 2; (x;,..., x)
are on Cy, as illustrated in Figure 6. Since C} and Cj are chordless, P;; and
Pls]x;, x;] are not single edges, i.e., each has an internal vertex. For the
same reason, the subpath of Cy from x; to x; that does not contain e has
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Ch

Cs

Figure 5: An illustration for the proof of the assertion.

an internal vertex. We contract xy, ..., z; into one vertex and z;, ...,z into
another vertex, and now C} U Cy U (5 is a subdivision of Ky @ 3K, which
has K, @ 3K, as a minor, contrary to the hypothesis. A similar argument
holds if no internal vertex of Pj5 is on Cs.

Figure 6: An illustration for the proof of Theorem 2.

If both P/, and Pj; have an internal vertex on Cy, there is a subpath P of
(5 connecting an internal vertex d of PJ; to an internal vertex c of Py, such
that P has no internal vertex on C} or C5. Without loss of generality, we
assume that the cycle C5 passes through the vertices a, b, c,d in this order.
Then, since Cy is harmonic with both C} and C3, Cy must be Pi3[a,b] U
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P}, [b, cJUP[ec, d]|UP}5[d, a], as illustrated in Figure 7. Because Cs is a chordless
cycle, each of P/4[b, d] and P}, [a, ¢] has an internal vertex. Hence C;UC,UC}
is a bad subdivision of K,, which can always be contracted to K33 — e,
contrary to the hypothesis. [ |

02 Ol

Cs

Figure 7: An illustration for the proof of Theorem 2.

The next theorem characterizes the lower 2-cycled graphs. The proof is
simple and is omitted.

Theorem 3 A graph G is lower 2-cycled if and only if G has no bridges and
every chordless cycle C of G satisfies at least one of the following conditions:

1. For each edge e = uwv of C, G — V(C') has a connected component H
such that N(H) NV (C) = {u,v};

2. G —V(C) has a connected component H such that N(H) contains a
pair of non-consecutive vertices of C';

3. Cis a triangle, and G —V (C') has a connected component H such that
V(C)C N(H).

4 Proof of the Main Theorem

We only need to prove the “only if” part of the Main Theorem. We do so by
establishing a series of properties that a 2-connected 2-cycled graph G must
possess.
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By Corollary 2, we have the following:

Property 1 G is planar.

Property 2 For each edge ab of G, G — {a,b} has at most two connected
components.

Indeed, otherwise there would be three chordless cycles containing ab.

We call an edge ab critical if G — {a, b} has exactly two connected com-
ponents.

Let F be any face of a plane drawing of G. The boundary of F'is a cycle
C by 2-connectivity, and we call it a face-cycle. If F'is the outer face of a
plane drawing D of G, we call C' the outer cycle of D. Suppose the outer
cycle C' has a critical edge ab. We denote by H the connected component of
G — {a, b} not containing the other vertices of C'. By 2-connectivity we have
N(H)NV(C) = {a,b}. We can find another plane drawing D’ of G' by moving
H outside of C. If C" denotes the new outer cycle, then V(C’) D V(C), and ab
is a chord of C’, rather than an edge of it. We call the operation transforming
D into D’ flipping. If C" still has critical edges, we repeat this operation. In
a finite number of steps, we obtain a plane drawing of G whose outer cycle
C™* has no critical edges. We now assert that C* is chordless. If not, a chord
ab would spilt the cycle C* into two cycles C” and C”, and we may assume
that C” is chordless. There must be a vertex u within C’, for otherwise there
would be no other chordless cycles containing an edge from C' —ab. Let H be
the connected component of G — V(C") containing u. The set N(H)NV (C")
cannot be the two ends of an edge from C” — ab, because by Property 2 such
an edge would be a critical edge on the outer cycle C*. Thus C” does not
satisfy Condition 1 of Theorem 3, and it must satisfy Condition 2 or 3. We
can therefore find a chordless path P connecting two non-consecutive vertices
of the path C” — ab such that all the internal vertices of P are from H, as
illustrated in Figure 8. It is easy to see that C*U{ab} U P can be contracted
to Ky ® 3K, contradicting Corollary 1. This proves the assertion.

Recall that the flipping operation adds a new chord of the new outer
cycle. Hence by the assertion, no flipping ever takes place, and the outer
cycle C' of the arbitrary drawing D is chordless. Since each face of a plane
drawing can be drawn as the outer face, we have established the following
two properties:

Property 3 G has no critical edge.
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C/ C/I

Figure 8: An illustration for the proof of the assertion.

Property 4 In each plane drawing of G, each face-cycle is chordless.

In each plane drawing, each edge e belongs to two face-cycles by 2-
connectivity. The latter are chordless by Property 4, and must be the only
chordless cycles containing e since G is 2-cycled. We therefore conclude the
following:

Property 5 In each plane drawing of G, each chordless cycle is a face-cycle.
Another property of G is given below.
Property 6 At least one of the face-cycles is not a triangle if G # Kjy.

Suppose to the contrary that every face-cycle of G is a triangle. Let C be
the outer cycle with vertices a,b and c¢. Without loss of generality, let k > 3
be the degree of a, and let axq, ax,,...,ax; be the edges incident with a in
counterclockwise order, where b = z; and ¢ = x;. Then by our assumption,
T1T9, TaX3, . .., Tp_12, Must be edges of G, as illustrated in Figure 9.

If £ > 4, there is an edge e = x;x;, j —1 > 1, e # x12, for otherwise
{z1,...,x} is a chordless cycle, hence a face-cycle by Property 5, but it is not
a triangle. But then the triangle {a,z;, z;} is not a face-cycle, contradicting
Property 5. Therefore £ must be 3, and for each {p,q,r} C {a,z, z9, 23},
the triangle {p, ¢, 7} is a face-cycle by Property 5. Therefore G has no other
vertices, and so G = Kj.

By Property 6, we may assume that we have chosen a plane drawing
of G whose outer cycle C has length at least 4. We make this assumption
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b=x T =2¢C

Figure 9: An illustration for the proof of Property 6.

for the rest of the proof, and use the notations Ng(u) = N(u) NV(C) and
Ne(S) = N(S)NV(C) for a vertex u and a vertex-subset S.

Property 7 For each connected component H of G—V (C), No(H) contains
a pair of non-consecutive vertices along C'.

In fact, N¢(H) cannot be empty or a single vertex by 2-connectivity.
Neither can it be the two ends of an edge e of C', since otherwise e would
be a critical edge by Property 2, contrary to Property 3. Therefore No(H)
contains a pair of non-consecutive vertices along C'.

Property 8 G — V(C) is connected.

If not, G — V(C') would have at least two connected components H; and
H,. For i = 1,2, No(H;) contains a pair of non-consecutive vertices a;, b;
on C' by Property 7. we can find a path P, connecting a; to b; all of whose
internal vertices are from H;. By planarity, P, and P, do not intersect except
possibly at the ends. Therefore the minor C'U P; U P, can be contracted to
K, ® 3K, contrary to Corollary 1.

Property 9 G — V(C) contains no cycle.

If G —V(C) contains a cycle, it must contain a chordless cycle C’. There
exists vertex-disjoint paths P, and P, between C' and C” (this can be seen by
adding a new vertex s adjacent to every vertex of C' and another new vertex
t adjacent to every vertex of C' without destroying 2-connectivity, and then
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applying Menger’s Theorem to s and t). Let z; and y; be the ends of P, on
C and C', respectively.

If 1 and x5 are not consecutive along C, let ¢ be a third vertex on C’,
and let e be any edge of the subpath of C” from y; to y» that avoids 1/, as
illustrated in Figure 10. Then e belongs to three chordless cycles of the minor
CuUC"U P, UP,, contrary to Lemma 1.

T

T2

Figure 10: An illustration for the proof of Property 9.

Therefore we may assume that x; and x5 are consecutive along C', and
similarly 3, and gy, are consecutive along C’. Then since the edge x1x5 of C'
is not critical by Property 3, G — {1, x5} has a shortest path P3 from C' to
C’. Let x3 and y3 be the ends of P; on C' and C’, respectively. If P; and
P, U P, are disjoint, then since C' has at least four vertices, we can forget
P, or P, and then we are back to the previous case. Otherwise, let z be the
first vertex of P3; that belongs to P, U P,. We may assume without loss of
generality that z is on Py, as illustrated in Figure 11.

Consider the minor M = CUC"U P, U P, U Ps[x3, z] of G. The edge y19»

is on three chordless cycles of M, namely C', P, U P, U {z129, Y192}, and

Ps[zs, 2] U Pz, y1) U {y1y2} U P, U P’, where P’ is the subpath of C' from x5

to x3 that avoids x;. This contradicts Lemma 1, thereby proving Property 9.
By Property 8 and Property 9, G — V(C) is a tree T

Property 10 T must be a path.

If T is not a path, it has a vertex v such that deg,(v) > 3. By Property 7,
N¢(T) has two non-consecutive vertices a and b along C. The forest T — v
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Ty T2
s A

Figure 11: An illustration for the proof of Property 9.

has connected components 77 and T» (possibly identical) such that {a} C
Ne(Th)UNe(v) and {b} € Ne(T2)UNe(v). Let T3 be a connected component
of T"— v distinct from T} and 7T5. Since v is not a cut vertex of G by 2-
connectivity, there exists a vertex ¢ € Ng(713). Let P be a path from v to ¢
via T3, as illustrated in Figure 12.

Figure 12: An illustration for the proof of Property 10.

We contract T' — T3 to a single vertex w, which becomes an end of P.
Consider the minor M = CUPU{wa, wb} of G. If ¢ # a, b, then, as illustrated
in Figure 13 (a), M is a bad subdivision of K}, which is not upper 2-cycled.
Otherwise we may assume that ¢ = a, as illustrated in Figure 13 (b), and we
contract the edge wb of M to obtain a subdivision of K, @ 3K, which is not
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upper 2-cycled. In both cases, Lemma 1 is contradicted.

a c=a

Figure 13: Ilustrations for the proof of Property 10. (a): ¢ # a,b; (b): ¢ = a.

Property 11 If u and v are the two ends of the path T and u # v, then
Ne(u) and Ne(v) are nonempty, and each of No(T — u) and No(T — v)
consists of either a single vertex or a pair of consecutive vertices along C'.

The sets Ng(u) and No(v) (and hence also No(T — w) and Ne(T —
v)) are nonempty by 2-connectivity. Assume that N¢o(T — v) contains non-
consecutive vertices a and b along C'. We contract T'— v to a vertex w,
and let P be a path from w to C' via v. Then we argue about the minor
M = C U P U {wa,wb} as in Property 10. Similarly, No(T — u) has no
non-consecutive vertices along C'.

Now we are ready to list all the possible 2-connected 2-cycled graphs, and
thereby prove Theorem 1, by considering all possibilities for 7.

Case 1: T is a single vertex v. Then G is a rim-subdivision of a wheel W}
with & > 3 if deg,(v) > 3, and by Property 7 G is a subdivision of Kj 3 if
degq(v) = 2.

Case 2: V(T') = {u,v}. If each of Ng(u) and N¢(v) has only one vertex,
then the two vertices are distinct and non-consecutive by Property 7, so G is
a subdivision of Ky 3. If one of N¢(u) and Ne(v) has one vertex and the other
has two (necessarily consecutive by Property 11), then N¢(u) N Ne(v) = ()
by Property 7 and so G is a star-subdivision of Kj. If both Ng(u) and
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Ne(v) (distinet by Property 7) have two vertices (necessarily consecutive by
Property 11), then G is a triangles-joining or a rim-subdivision of the wheel
Wy depending on whether No(u) N Ne(v) is empty or not.

Case 3: T is a path of length at least 2, with ends u, v. Neither N¢(T —u) nor
Ne (T — v) contains a pair of non-consecutive vertices of C' by Property 11,
whereas N¢(T') does by Property 7. So Neo(u)UNe(v) must contain a pair a, b
of non-consecutive vertices, with a € No(u) and b € N (v). Moreover, N¢(x)
does not meet {a,b} for any internal vertex x of T. If y € Ng(z) for some
internal vertex x of T', then by the above and Property 11, y must be different
from and adjacent to both a and b. For the same reason, N¢(u) C {y,a} and
Ne(v) C {y, b}, and Ne(z) C {b,y} N{a,y} = {y} for all internal vertices
z of T'. Therefore G must be a rim-subdivision of a wheel with center y. If
Ne(z) is empty for every internal vertex = of T', then the argument is similar
to the one of Case 2. [
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