For which graphs does every edge belong to exactly two chordless cycles?

Uri N. Peled¹ and Julin Wu² Dept. of Mathematics, Statistics, and Computer Science (M/C 249)The University of Illinois at Chicago 851 S. Morgan Street Chicago, IL 60607-7045

Submitted: December 2, 1995; Accepted: April 15, 1996.

Key Words: Chordless cycles, balanced graphs, balanced matrices

Mathematical Reviews Subject Numbers: Primary 05C75; Secondary 05C3B, 05C50, 90C35

 1 uripeled@uic.edu 2 jwu2@uic.edu

Abstract

A graph is 2-cycled if each edge is contained in exactly two of its chordless cycles. The 2-cycled graphs arise in connection with the study of balanced signing of graphs and matrices. The concept of balance of a $\{0, +1, -1\}$ matrix or a signed bipartite graph has been studied by Truemper and by Conforti *et al.* The concept of α -balance is a generalization introduced by Truemper. Truemper exhibits a family \mathcal{F} of planar graphs such that a graph G can be signed to be α -balanced if and only if each induced subgraph of Gin \mathcal{F} can. We show here that the graphs in \mathcal{F} are exactly the 2-connected 2-cycled graphs.

1 Introduction

A graph is said to be 2-cycled if each of its edges is contained in exactly two chordless cycles. The 2-cycled graphs arise in connection with the study of balanced signing of graphs and matrices by Truemper [3] and by Conforti *et al.* [2], as indicated in the next three paragraphs.

A signed graph is a graph G = (V, E) together with a mapping $f : E \longrightarrow \{+1, -1\}$. Consider a mapping $\alpha : \mathcal{C} \longrightarrow \{0, 1, 2, 3\}$, where \mathcal{C} is the set of chordless cycles of G. If $\sum_{e \in C} f(e) \equiv \alpha(C) \pmod{4}$ for all $C \in \mathcal{C}$, we say that the signed graph is α -balanced. A trivial necessary condition, which we assume throughout, is that $|C| \equiv \alpha(C) \pmod{2}$ for all $C \in \mathcal{C}$. When $\alpha = 0$, this condition means that G is bipartite, in which case it can be specified by its adjacency matrix A, and A is balanced in the usual sense if and only if the signed graph consisting of G and the constant mapping f = 1 is 0-balanced. Similarly, a $\{0, +1, -1\}$ -matrix A specifies a signed bipartite graph, and A is said to be balanced when the signed bipartite graph is 0-balanced.

It is easy to check that each graph of the following types is 2-cycled (See Figure 1):

- **Star-subdivision of** K_4 : The result of subdividing zero or more of the three edges incident to a single vertex of K_4 ;
- **Rim-subdivision of a wheel:** The result of subdividing zero or more rim edges of the wheel W_k , $k \ge 3$;
- Subdivision of $K_{2,3}$: The result of subdividing zero or more edges of $K_{2,3}$.
- **Triangles-joining:** Two vertex-disjoint triangles with three vertex-disjoint paths joining them.

Note that if two nonadjacent edges of K_4 and possibly other edges are subdivided, the resulting graph is not 2-cycled. It is called a *bad subdivision* of K_4 . Truemper [3] showed that a graph G possesses a mapping f that makes it α -balanced if and only if each induced subgraph of G that is a starsubdivision of K_4 , a rim-subdivision of a wheel, a subdivision of $K_{2,3}$ or a triangles-joining enjoys the same property. Our main result is that these are all the 2-connected 2-cycled graphs (Clearly, a graph s 2-cycled if and only if all its 2-connected components are, so without loss of generality we may consider only 2-connected graphs):

Figure 1: 2-cycled graphs. (a): Star-subdivision of K_4 ; (b): Rim-subdivision of a wheel; (c): Subdivision of $K_{2,3}$; (d): Triangles-joining.

Theorem 1 (Main Theorem) A 2-connected graph is 2-cycled if and only if it is a star-subdivision of K_4 , a rim-subdivision of a wheel, a subdivision of $K_{2,3}$ or a triangles-joining.

This paper is organized as follows. In Section 2 we give definitions of some new concepts. In Section 3 we define and characterize the upper and lower 2-cycled graphs; these graphs are defined so that a graph is 2-cycled if and only if it is both upper 2-cycled and lower 2-cycled. In Section 4 we study the structure of 2-cycled graphs and prove the Main Theorem. Early on (in Corollary 2) we show that the upper 2-cycled graphs are planar, and this planarity plays an important part in the proofs.

2 Preliminaries

We discuss only finite simple graphs and use standard terminology and notation from [1], except as indicated. We denote by $N_G(u)$ or simply N(u) the set of vertices adjacent to a vertex u in a graph G, and by $N_G(S)$ or N(S)the set $\bigcup_{u \in S} N_G(u)$ for a vertex subset S. A *chord* of a path or a cycle is an edge joining two non-consecutive vertices of the path or cycle. A *chordless* path or cycle is one having no chord. For a path $P = (x_1, x_2, \ldots, x_k)$, we use the notation $P[x_i, x_j]$ for the subpath (x_i, \ldots, x_j) , where $1 \leq i < j \leq n$. If e = ab is an edge of G, the contraction G/e of G with respect to e is the graph obtained from G by replacing a and b with a new vertex c and joining c to those vertices that are adjacent to a or b. The edge set of G/e may be regarded as a subset of the edge set of G. A minor of G is a graph that can be obtained from G by a sequence of vertex-deletions, edge-deletions and contractions. By subdividing an edge e we mean replacing e by a path Pjoining the ends of e, where P has length at least 2 and all of its internal vertices have degree 2. A subdivision of G is a graph obtained by subdividing zero or more of the edges of G. The intersection $(union) G_1 \cap G_2 (G_1 \cup G_2)$ of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph with vertex set $V_1 \cap V_2$ $(V_1 \cup V_2)$ and edge set $E_1 \cap E_2 (E_1 \cup E_2)$. If C_1 and C_2 are cycles of a plane graph G, we say that C_1 is within (surrounds) C_2 if the area enclosed by C_1 is contained in (contains) that enclosed by C_2 .

Two cycles C and C' are said to be *harmonic* if $C \cap C'$ is a path, as illustrated in Figure 2. If C and C' are harmonic cycles of a plane graph, we can find an appropriate plane drawing of the graph such that C' is within C, if it is not already the case, by selecting a face within C and making it the outer face.

Figure 2: Harmonic cycles.

Let C and C' be two cycles with a common edge e, and u a vertex of C' - C. Let P' be the maximal subpath of C' that contains u and does not have internal vertices on C, and let P be the subpath of C joining the two ends of P' and containing e. Then $P' \cup P$ is a cycle C'', as illustrated in Figure 3. The operation transforming C' into C'' is called grafting C' with

respect to C, e and u. An important property of this operation is that the new cycle C'' is harmonic with C. Furthermore, if the graph is a plane graph and u is within C (or C' surrounds C), then C'' is within (surrounds) C.

Figure 3: Grafting.

Let $P = (x_1, x_2, \ldots, x_k)$ be a path in G. If P has a chord $x_i x_j$ for some i < j-1, we can obtain another path $P' = (x_1, \ldots, x_i, x_j, \ldots, x_k)$ by deleting the vertices between x_i and x_j and adding the edge $x_i x_j$ to P. If P' still has chords, we can apply the same operation to P', and so on until we obtain a chordless path P^* connecting x_1 to x_k . For a cycle C of G and an edge e of C, we can apply the above operation to C - e to obtain a chordless cycle C^* containing e. We call the operation transforming C into C^* chord-cutting C with respect to e. We note that if the graph is a plane graph and C surrounds (is within, is harmonic with) a chordless cycle \widehat{C} and e is a common edge of C and \widehat{C} , then the cycle obtained by chord-cutting C with respect to e again surrounds (is within, is harmonic with) \widehat{C} .

Let C and C' be cycles of G, where C is chordless, e a common edge of C and C', and u a vertex of C' - C. By grafting C' with respect to C, e and u, and then chord-cutting the resulting cycle with respect to C and e, we obtain a chordless cycle C^* . We call the operation transforming C' into C^* harmonizing C' to C with respect to e and u. Note that the new cycle C^* still contains e and is harmonic with C and chordless. Furthermore, if G is a plane graph and u is within C (C' surrounds C), then C^* is within (surrounds) C. After the harmonization operation we forget C' and rename C^* as C'.

3 Upper and lower 2-cycled graphs

We say that a graph is *upper (lower) 2-cycled* if each of its edges is contained in at most (at least) two of its chordless cycles. Clearly, a graph possesses this property if and only if each 2-connected component does, but in the rest of this section we do not assume 2-connectivity. The following lemma is crucial in characterizing upper 2-cycled graphs.

Lemma 1 If G = (V, E) is upper 2-cycled, so are its minors.

Proof. It suffices to show that if G' results from G by deleting or contracting an edge uv and G' is not upper 2-cycled, neither is G. Let e = ab be an edge of G' that is contained in distinct chordless cycles C'_1 , C'_2 and C'_3 of G'.

Case 1: G' = G - uv. Note that if uv is not a chord of C'_i , then C'_i is also a chordless cycle of G; in this case, we put $C_i = C'_i$. If uv is a chord of C'_i , then $C'_i \cup uv$ is split into two chordless cycles of G, each consisting of uv and a subpath of C' connecting u to v; we call the one containing $e C_i$ and the other one \widetilde{C}_i . If C_1 , C_2 and C_3 are distinct, then they are distinct chordless cycles of G containing e. If they are not, we may assume $C_1 = C_2$. Then C'_1 and C'_2 must have uv as a chord, and C_1 , \widetilde{C}_1 and \widetilde{C}_2 are distinct chordless cycles of G containing uv.

Case 2: G' = G/uv. The edge uv of G is contracted to a vertex w of G'. Because $uv \neq ab$, $\{a, b\} \cap \{u, v\}$ is empty or has one vertex. If it is nonempty, we assume u = a without loss of generality.

If $E(C'_i)$ forms a cycle of G, it must be a chordless cycle, and we let C_i be that cycle. If not, w must be a vertex of C'_i , and $E(C'_i)$ forms a path P_i in G connecting u to v. Let u'_i, v'_i be the neighbors of u, v on P_i , respectively. Then $P_i \cup uv$ forms a cycle C^*_i of G, and its only possible chords are uv'_i and $u'_i v$. By chord-cutting C^*_i with respect to e, we find a chordless cycle C_i containing e.

Note that if e and uv are not adjacent, or if the chord $u'_i v$ does not exist, then $E(C_i)$ is contracted to $E(C'_i)$ when we contract the edge uv.

Now we have three chordless cycles C_1 , C_2 and C_3 containing e. If they are not all distinct, say $C_1 = C_2$, then C_1 is the triangle $\{u = a, v, b = u'_1 = u'_2\}$, C_1^* and C_2^* both have bv as a chord, and bv is contained in three distinct chordless cycles of G, namely $\{a, v, b\}$, $bv \cup P'_1 - e$, $bv \cup P'_2 - e$.

We note that $K_{3,3} - e$ and $K_2 \oplus 3K_1$ (the graph obtained by joining every vertex of K_2 to every vertex of $3K_1$) are not upper 2-cycled. These graphs are illustrated in Figure 4. Therefore we have the following corollary of Lemma 1.

Figure 4: Forbidden minors of upper 2-cycled graphs.

Corollary 1 An upper 2-cycled graph contains no $K_2 \oplus 3K_1$ or $K_{3,3} - e$ as a minor.

Note that $K_2 \oplus 3K_1$ is a minor of K_5 and $K_{3,3} - e$ is a minor of $K_{3,3}$. By Kuratowski's Theorem, we have the following consequence of Corollary 1.

Corollary 2 An upper 2-cycled graph must be planar.

The next theorem characterizes the upper 2-cycled graphs. Although we only use its necessity part to prove the Main Theorem, it has an independent interest.

Theorem 2 A graph is upper 2-cycled if and only if it contains no $K_2 \oplus 3K_1$ or $K_{3,3} - e$ as a minor.

Proof. The necessity is Corollary 1 above. Now we prove the sufficiency. By the argument leading to Corollary 2, G must be planar. Assume that, if possible, G is not upper 2-cycled. We assert that G has three cycles C_1 , C_2 and C_3 and an edge e such that the following properties hold for an appropriate plane drawing of G:

- 1. C_1 , C_2 and C_3 are distinct chordless cycles containing e;
- 2. C_2 is within C_1 and C_3 is within C_2 ;

3. C_1, C_2 and C_3 are harmonic with each other.

In proving the assertion, we make use of a weaker version of Property 3, namely,

4. C_2 is harmonic with C_1 and C_3 .

By the assumption that G is not upper 2-cycled, it has three cycles C_1 , C_2 and C_3 and an edge e satisfying Property 1. If two of the cycles are harmonic, we rename them as C_1 and C_3 . If not, we harmonize C_3 to C_1 with respect to e, and the new C_3 is still different from C_1 and C_2 . In any case, we may assume C_3 is within C_1 . For the new C_1 , C_2 and C_3 , Property 1 still holds, but now C_3 is within and harmonic with C_1 .

Next, let us consider three cases about C_2 .

Case 1: C_2 has a vertex u inside C_3 . We harmonize C_2 to C_3 with respect to u and e, and switch the names of C_3 and C_2 . The cycles C_1 , C_2 and C_3 now satisfy Properties 1, 2 and 4.

Case 2: C_2 has a vertex u outside C_1 . We select a face within C_3 , make it the outer face, and switch the names of C_1 and C_3 , and we are back to Case 1. Case 3: C_2 is between C_1 and C_3 . We harmonize C_1 to C_2 and C_3 to C_2 with respect to e. The cycles C_1 , C_2 and C_3 now satisfy Properties 1, 2 and 4.

Thus in all cases, Properties 1, 2 and 4 hold for C_1 , C_2 , C_3 and e. By planarity and Property 2 we have $C_1 \cap C_3 \subset C_2$, hence $C_1 \cap C_3 = (C_1 \cap C_2) \cap$ $(C_2 \cap C_3)$. Since each of $C_1 \cap C_2$ and $C_2 \cap C_3$ is a subpath of C_2 , $C_1 \cap C_3$ must be a path or the union of two disjoint paths. In the former case, C_1 is harmonic with C_3 , as required. In the latter case, illustrated in Figure 5, the symmetric difference of $E(C_2)$ and $E(C_3)$ forms a cycle C', and we can find an edge e' in $C_1 \cap C_2$ such that e' is also on C'. Renaming C' as C_3 and e' as e and chord-cutting C_3 with respect to the new edge e, we achieve Property 3 for the new C_1 , C_2 , C_3 and e while Properties 1 and 2 remain valid. This completes the proof of the assertion.

It follows from the assertion that $P_{13} = C_1 \cap C_3$ is a path contained in C_2 and containing e. Let P'_{13} (P'_{31}) be the subpath of $C_1 - e$ $(C_3 - e)$ between the ends a and b of P_{13} .

Suppose no internal vertex of P'_{31} is on C_2 . Let $P'_{13} = (a = x_0, x_1, \ldots, x_k = b)$, and let i(j) be the largest (smallest) index such that $x_0, \ldots, x_i(x_j, \ldots, x_k)$ are on C_2 , as illustrated in Figure 6. Since C_1 and C_2 are chordless, P'_{31} and $P'_{13}[x_i, x_j]$ are not single edges, i.e., each has an internal vertex. For the same reason, the subpath of C_2 from x_i to x_j that does not contain e has

Figure 5: An illustration for the proof of the assertion.

an internal vertex. We contract x_0, \ldots, x_i into one vertex and x_j, \ldots, x_k into another vertex, and now $C_1 \cup C_2 \cup C_3$ is a subdivision of $K_2 \oplus 3K_1$, which has $K_2 \oplus 3K_1$ as a minor, contrary to the hypothesis. A similar argument holds if no internal vertex of P'_{13} is on C_2 .

Figure 6: An illustration for the proof of Theorem 2.

If both P'_{13} and P'_{31} have an internal vertex on C_2 , there is a subpath P of C_2 connecting an internal vertex d of P'_{13} to an internal vertex c of P'_{31} such that P has no internal vertex on C_1 or C_3 . Without loss of generality, we assume that the cycle C_2 passes through the vertices a, b, c, d in this order. Then, since C_2 is harmonic with both C_1 and C_3 , C_2 must be $P_{13}[a, b] \cup$

 $P'_{31}[b,c] \cup P[c,d] \cup P'_{13}[d,a]$, as illustrated in Figure 7. Because C_2 is a chordless cycle, each of $P'_{13}[b,d]$ and $P'_{31}[a,c]$ has an internal vertex. Hence $C_1 \cup C_2 \cup C_3$ is a bad subdivision of K_4 , which can always be contracted to $K_{3,3} - e$, contrary to the hypothesis.

Figure 7: An illustration for the proof of Theorem 2.

The next theorem characterizes the lower 2-cycled graphs. The proof is simple and is omitted.

Theorem 3 A graph G is lower 2-cycled if and only if G has no bridges and every chordless cycle C of G satisfies at least one of the following conditions:

- 1. For each edge e = uv of C, G V(C) has a connected component H such that $N(H) \cap V(C) = \{u, v\};$
- 2. G V(C) has a connected component H such that N(H) contains a pair of non-consecutive vertices of C;
- 3. C is a triangle, and G V(C) has a connected component H such that $V(C) \subseteq N(H)$.

4 Proof of the Main Theorem

We only need to prove the "only if" part of the Main Theorem. We do so by establishing a series of properties that a 2-connected 2-cycled graph G must possess.

By Corollary 2, we have the following:

Property 1 G is planar.

Property 2 For each edge ab of G, $G - \{a, b\}$ has at most two connected components.

Indeed, otherwise there would be three chordless cycles containing *ab*.

We call an edge *ab critical* if $G - \{a, b\}$ has exactly two connected components.

Let F be any face of a plane drawing of G. The boundary of F is a cycle C by 2-connectivity, and we call it a *face-cycle*. If F is the outer face of a plane drawing D of G, we call C the *outer cycle* of D. Suppose the outer cycle C has a critical edge ab. We denote by H the connected component of $G - \{a, b\}$ not containing the other vertices of C. By 2-connectivity we have $N(H) \cap V(C) = \{a, b\}$. We can find another plane drawing D' of G by moving H outside of C. If C' denotes the new outer cycle, then $V(C') \supset V(C)$, and ab is a chord of C', rather than an edge of it. We call the operation transforming D into D' flipping. If C' still has critical edges, we repeat this operation. In a finite number of steps, we obtain a plane drawing of G whose outer cycle C^* has no critical edges. We now assert that C^* is chordless. If not, a chord ab would spilt the cycle C^* into two cycles C' and C'', and we may assume that C' is chordless. There must be a vertex u within C', for otherwise there would be no other chordless cycles containing an edge from C'-ab. Let H be the connected component of G - V(C') containing u. The set $N(H) \cap V(C')$ cannot be the two ends of an edge from C' - ab, because by Property 2 such an edge would be a critical edge on the outer cycle C^* . Thus C' does not satisfy Condition 1 of Theorem 3, and it must satisfy Condition 2 or 3. We can therefore find a chordless path P connecting two non-consecutive vertices of the path C' - ab such that all the internal vertices of P are from H, as illustrated in Figure 8. It is easy to see that $C^* \cup \{ab\} \cup P$ can be contracted to $K_2 \oplus 3K_1$, contradicting Corollary 1. This proves the assertion.

Recall that the flipping operation adds a new chord of the new outer cycle. Hence by the assertion, no flipping ever takes place, and the outer cycle C of the arbitrary drawing D is chordless. Since each face of a plane drawing can be drawn as the outer face, we have established the following two properties:

Property 3 G has no critical edge.

Figure 8: An illustration for the proof of the assertion.

Property 4 In each plane drawing of G, each face-cycle is chordless.

In each plane drawing, each edge e belongs to two face-cycles by 2connectivity. The latter are chordless by Property 4, and must be the only chordless cycles containing e since G is 2-cycled. We therefore conclude the following:

Property 5 In each plane drawing of G, each chordless cycle is a face-cycle.

Another property of G is given below.

Property 6 At least one of the face-cycles is not a triangle if $G \neq K_4$.

Suppose to the contrary that every face-cycle of G is a triangle. Let C be the outer cycle with vertices a, b and c. Without loss of generality, let $k \ge 3$ be the degree of a, and let ax_1, ax_2, \ldots, ax_k be the edges incident with a in counterclockwise order, where $b = x_1$ and $c = x_k$. Then by our assumption, $x_1x_2, x_2x_3, \ldots, x_{k-1}x_k$ must be edges of G, as illustrated in Figure 9.

If $k \ge 4$, there is an edge $e = x_i x_j$, j - i > 1, $e \ne x_1 x_k$, for otherwise $\{x_1, \ldots, x_k\}$ is a chordless cycle, hence a face-cycle by Property 5, but it is not a triangle. But then the triangle $\{a, x_i, x_j\}$ is not a face-cycle, contradicting Property 5. Therefore k must be 3, and for each $\{p, q, r\} \subseteq \{a, x_1, x_2, x_3\}$, the triangle $\{p, q, r\}$ is a face-cycle by Property 5. Therefore G has no other vertices, and so $G = K_4$.

By Property 6, we may assume that we have chosen a plane drawing of G whose outer cycle C has length at least 4. We make this assumption

Figure 9: An illustration for the proof of Property 6.

for the rest of the proof, and use the notations $N_C(u) = N(u) \cap V(C)$ and $N_C(S) = N(S) \cap V(C)$ for a vertex u and a vertex-subset S.

Property 7 For each connected component H of G-V(C), $N_C(H)$ contains a pair of non-consecutive vertices along C.

In fact, $N_C(H)$ cannot be empty or a single vertex by 2-connectivity. Neither can it be the two ends of an edge e of C, since otherwise e would be a critical edge by Property 2, contrary to Property 3. Therefore $N_C(H)$ contains a pair of non-consecutive vertices along C.

Property 8 G - V(C) is connected.

If not, G - V(C) would have at least two connected components H_1 and H_2 . For i = 1, 2, $N_C(H_i)$ contains a pair of non-consecutive vertices a_i, b_i on C by Property 7. we can find a path P_i connecting a_i to b_i all of whose internal vertices are from H_i . By planarity, P_1 and P_2 do not intersect except possibly at the ends. Therefore the minor $C \cup P_1 \cup P_2$ can be contracted to $K_2 \oplus 3K_1$, contrary to Corollary 1.

Property 9 G - V(C) contains no cycle.

If G - V(C) contains a cycle, it must contain a chordless cycle C'. There exists vertex-disjoint paths P_1 and P_2 between C and C' (this can be seen by adding a new vertex s adjacent to every vertex of C and another new vertex t adjacent to every vertex of C' without destroying 2-connectivity, and then

applying Menger's Theorem to s and t). Let x_i and y_i be the ends of P_i on C and C', respectively.

If x_1 and x_2 are not consecutive along C, let y' be a third vertex on C', and let e be any edge of the subpath of C' from y_1 to y_2 that avoids y', as illustrated in Figure 10. Then e belongs to three chordless cycles of the minor $C \cup C' \cup P_1 \cup P_2$, contrary to Lemma 1.

Figure 10: An illustration for the proof of Property 9.

Therefore we may assume that x_1 and x_2 are consecutive along C, and similarly y_1 and y_2 are consecutive along C'. Then since the edge x_1x_2 of Cis not critical by Property 3, $G - \{x_1, x_2\}$ has a shortest path P_3 from C to C'. Let x_3 and y_3 be the ends of P_3 on C and C', respectively. If P_3 and $P_1 \cup P_2$ are disjoint, then since C has at least four vertices, we can forget P_1 or P_2 and then we are back to the previous case. Otherwise, let z be the first vertex of P_3 that belongs to $P_1 \cup P_2$. We may assume without loss of generality that z is on P_1 , as illustrated in Figure 11. Consider the minor $M = C \cup C' \cup P_1 \cup P_2 \cup P_3[x_3, z]$ of G. The edge y_1y_2

is on three chordless cycles of M, namely C', $P_1 \cup P_2 \cup \{x_1x_2, y_1y_2\}$, and $P_3[x_3, z] \cup P_1[z, y_1] \cup \{y_1y_2\} \cup P_2 \cup P'$, where P' is the subpath of C from x_2 to x_3 that avoids x_1 . This contradicts Lemma 1, thereby proving Property 9.

By Property 8 and Property 9, G - V(C) is a tree T.

Property 10 T must be a path.

If T is not a path, it has a vertex v such that $\deg_T(v) \ge 3$. By Property 7, $N_C(T)$ has two non-consecutive vertices a and b along C. The forest T - v

Figure 11: An illustration for the proof of Property 9.

has connected components T_1 and T_2 (possibly identical) such that $\{a\} \subseteq N_C(T_1) \cup N_C(v)$ and $\{b\} \subseteq N_C(T_2) \cup N_C(v)$. Let T_3 be a connected component of T - v distinct from T_1 and T_2 . Since v is not a cut vertex of G by 2-connectivity, there exists a vertex $c \in N_C(T_3)$. Let P be a path from v to c via T_3 , as illustrated in Figure 12.

Figure 12: An illustration for the proof of Property 10.

We contract $T - T_3$ to a single vertex w, which becomes an end of P. Consider the minor $M = C \cup P \cup \{wa, wb\}$ of G. If $c \neq a, b$, then, as illustrated in Figure 13 (a), M is a bad subdivision of K_4 , which is not upper 2-cycled. Otherwise we may assume that c = a, as illustrated in Figure 13 (b), and we contract the edge wb of M to obtain a subdivision of $K_2 \oplus 3K_1$, which is not

upper 2-cycled. In both cases, Lemma 1 is contradicted.

Figure 13: Illustrations for the proof of Property 10. (a): $c \neq a, b$; (b): c = a.

Property 11 If u and v are the two ends of the path T and $u \neq v$, then $N_C(u)$ and $N_C(v)$ are nonempty, and each of $N_C(T-u)$ and $N_C(T-v)$ consists of either a single vertex or a pair of consecutive vertices along C.

The sets $N_C(u)$ and $N_C(v)$ (and hence also $N_C(T-u)$ and $N_C(T-v)$) are nonempty by 2-connectivity. Assume that $N_C(T-v)$ contains nonconsecutive vertices a and b along C. We contract T-v to a vertex w, and let P be a path from w to C via v. Then we argue about the minor $M = C \cup P \cup \{wa, wb\}$ as in Property 10. Similarly, $N_C(T-u)$ has no non-consecutive vertices along C.

Now we are ready to list all the possible 2-connected 2-cycled graphs, and thereby prove Theorem 1, by considering all possibilities for T.

Case 1: T is a single vertex v. Then G is a rim-subdivision of a wheel W_k with $k \ge 3$ if $\deg_G(v) \ge 3$, and by Property 7 G is a subdivision of $K_{2,3}$ if $\deg_G(v) = 2$.

Case 2: $V(T) = \{u, v\}$. If each of $N_C(u)$ and $N_C(v)$ has only one vertex, then the two vertices are distinct and non-consecutive by Property 7, so G is a subdivision of $K_{2,3}$. If one of $N_C(u)$ and $N_C(v)$ has one vertex and the other has two (necessarily consecutive by Property 11), then $N_C(u) \cap N_C(v) = \emptyset$ by Property 7 and so G is a star-subdivision of K_4 . If both $N_C(u)$ and $N_C(v)$ (distinct by Property 7) have two vertices (necessarily consecutive by Property 11), then G is a triangles-joining or a rim-subdivision of the wheel W_4 depending on whether $N_C(u) \cap N_C(v)$ is empty or not.

Case 3: T is a path of length at least 2, with ends u, v. Neither $N_C(T-u)$ nor $N_C(T-v)$ contains a pair of non-consecutive vertices of C by Property 11, whereas $N_C(T)$ does by Property 7. So $N_C(u) \cup N_C(v)$ must contain a pair a, b of non-consecutive vertices, with $a \in N_C(u)$ and $b \in N_C(v)$. Moreover, $N_C(x)$ does not meet $\{a, b\}$ for any internal vertex x of T. If $y \in N_C(x)$ for some internal vertex x of T, then by the above and Property 11, y must be different from and adjacent to both a and b. For the same reason, $N_C(u) \subseteq \{y, a\}$ and $N_C(v) \subseteq \{y, b\}$, and $N_C(z) \subseteq \{b, y\} \cap \{a, y\} = \{y\}$ for all internal vertices z of T. Therefore G must be a rim-subdivision of a wheel with center y. If $N_C(x)$ is empty for every internal vertex x of T, then the argument is similar to the one of Case 2.

References

- J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. 1976. Macmillan, London, 1976.
- [2] M. Conforti, G. Cornuéjols, A. Kapoor, K. Vušković, and M.R. Rao. Balanced matrices. In J.R. Birge and K.G. Murty, editors, *Mathematical Programming State of the Art 1994*, pages 1–33. The University of Michigan, 1994.
- [3] K. Truemper. Alpha-balanced graphs and matrices and GF(3)-representability of matroids. Journal of Combinatorial Theory B, 32:112–139, 1982.