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Abstract

A graph is 2-cycled if each edge is contained in exactly two of its chordless
cycles. The 2-cycled graphs arise in connection with the study of balanced
signing of graphs and matrices. The concept of balance of a {0,+1,−1}-
matrix or a signed bipartite graph has been studied by Truemper and by
Conforti et al. The concept of α-balance is a generalization introduced by
Truemper. Truemper exhibits a family F of planar graphs such that a graph
G can be signed to be α-balanced if and only if each induced subgraph of G
in F can. We show here that the graphs in F are exactly the 2-connected
2-cycled graphs.



1 Introduction

A graph is said to be 2-cycled if each of its edges is contained in exactly two
chordless cycles. The 2-cycled graphs arise in connection with the study of
balanced signing of graphs and matrices by Truemper [3] and by Conforti et
al. [2], as indicated in the next three paragraphs.

A signed graph is a graph G = (V,E) together with a mapping f : E −→
{+1,−1}. Consider a mapping α : C −→ {0, 1, 2, 3}, where C is the set of
chordless cycles of G. If Σe∈Cf (e) ≡ α(C) (mod 4) for all C ∈ C, we say
that the signed graph is α-balanced. A trivial necessary condition, which we
assume throughout, is that |C| ≡ α(C) (mod 2) for all C ∈ C. When α = 0,
this condition means that G is bipartite, in which case it can be specified by
its adjacency matrix A, and A is balanced in the usual sense if and only if the
signed graph consisting of G and the constant mapping f = 1 is 0-balanced.
Similarly, a {0,+1,−1}-matrix A specifies a signed bipartite graph, and A
is said to be balanced when the signed bipartite graph is 0-balanced.

It is easy to check that each graph of the following types is 2-cycled (See
Figure 1):

Star-subdivision of K4: The result of subdividing zero or more of the three
edges incident to a single vertex of K4;

Rim-subdivision of a wheel: The result of subdividing zero or more rim
edges of the wheel Wk, k ≥ 3;

Subdivision of K2,3: The result of subdividing zero or more edges of K2,3.;

Triangles-joining: Two vertex-disjoint triangles with three vertex-disjoint
paths joining them.

Note that if two nonadjacent edges of K4 and possibly other edges are sub-
divided, the resulting graph is not 2-cycled. It is called a bad subdivision
of K4. Truemper [3] showed that a graph G possesses a mapping f that
makes it α-balanced if and only if each induced subgraph of G that is a star-
subdivision of K4, a rim-subdivision of a wheel, a subdivision of K2,3 or a
triangles-joining enjoys the same property. Our main result is that these are
all the 2-connected 2-cycled graphs (Clearly, a graph s 2-cycled if and only
if all its 2-connected components are, so without loss of generality we may
consider only 2-connected graphs):
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Figure 1: 2-cycled graphs. (a): Star-subdivision of K4; (b): Rim-subdivision of a wheel;
(c): Subdivision of K2,3; (d): Triangles-joining.

Theorem 1 (Main Theorem) A 2-connected graph is 2-cycled if and only
if it is a star-subdivision of K4, a rim-subdivision of a wheel, a subdivision
of K2,3 or a triangles-joining.

This paper is organized as follows. In Section 2 we give definitions of
some new concepts. In Section 3 we define and characterize the upper and
lower 2-cycled graphs; these graphs are defined so that a graph is 2-cycled
if and only if it is both upper 2-cycled and lower 2-cycled. In Section 4 we
study the structure of 2-cycled graphs and prove the Main Theorem. Early
on (in Corollary 2) we show that the upper 2-cycled graphs are planar, and
this planarity plays an important part in the proofs.

2 Preliminaries

We discuss only finite simple graphs and use standard terminology and nota-
tion from [1], except as indicated. We denote by NG(u) or simply N(u) the
set of vertices adjacent to a vertex u in a graph G, and by NG(S) or N(S)
the set

⋃
u∈S NG(u) for a vertex subset S. A chord of a path or a cycle is an

edge joining two non-consecutive vertices of the path or cycle. A chordless
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path or cycle is one having no chord. For a path P = (x1, x2, . . . , xk), we
use the notation P [xi, xj] for the subpath (xi, . . . , xj), where 1 ≤ i < j ≤ n.
If e = ab is an edge of G, the contraction G/e of G with respect to e is the
graph obtained from G by replacing a and b with a new vertex c and joining
c to those vertices that are adjacent to a or b. The edge set of G/e may be
regarded as a subset of the edge set of G. A minor of G is a graph that can
be obtained from G by a sequence of vertex-deletions, edge-deletions and
contractions. By subdividing an edge e we mean replacing e by a path P
joining the ends of e, where P has length at least 2 and all of its internal
vertices have degree 2. A subdivision of G is a graph obtained by subdividing
zero or more of the edges of G. The intersection (union) G1∩G2 (G1∪G2) of
graphs G1 = (V1,E1) and G2 = (V2,E2) is the graph with vertex set V1 ∩ V2

(V1 ∪ V2) and edge set E1 ∩E2 (E1 ∪E2). If C1 and C2 are cycles of a plane
graph G, we say that C1 is within (surrounds) C2 if the area enclosed by C1

is contained in (contains) that enclosed by C2.
Two cycles C and C ′ are said to be harmonic if C ∩ C ′ is a path, as

illustrated in Figure 2. If C and C ′ are harmonic cycles of a plane graph, we
can find an appropriate plane drawing of the graph such that C ′ is within C,
if it is not already the case, by selecting a face within C and making it the
outer face.
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Figure 2: Harmonic cycles.

Let C and C ′ be two cycles with a common edge e, and u a vertex of
C ′ − C. Let P ′ be the maximal subpath of C ′ that contains u and does not
have internal vertices on C, and let P be the subpath of C joining the two
ends of P ′ and containing e. Then P ′ ∪ P is a cycle C ′′, as illustrated in
Figure 3. The operation transforming C ′ into C ′′ is called grafting C ′ with
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respect to C, e and u. An important property of this operation is that the
new cycle C ′′ is harmonic with C. Furthermore, if the graph is a plane graph
and u is within C (or C ′ surrounds C), then C ′′ is within (surrounds) C.
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Figure 3: Grafting.

Let P = (x1, x2, . . . , xk) be a path in G. If P has a chord xixj for some
i < j−1, we can obtain another path P ′ = (x1, . . . , xi, xj, . . . , xk) by deleting
the vertices between xi and xj and adding the edge xixj to P . If P ′ still has
chords, we can apply the same operation to P ′, and so on until we obtain a
chordless path P ∗ connecting x1 to xk. For a cycle C of G and an edge e of
C, we can apply the above operation to C − e to obtain a chordless cycle C∗

containing e. We call the operation transforming C into C∗ chord-cutting C
with respect to e. We note that if the graph is a plane graph and C surrounds
(is within, is harmonic with) a chordless cycle Ĉ and e is a common edge of

C and Ĉ, then the cycle obtained by chord-cutting C with respect to e again
surrounds (is within, is harmonic with) Ĉ.

Let C and C ′ be cycles of G, where C is chordless, e a common edge of
C and C ′, and u a vertex of C ′ − C. By grafting C ′ with respect to C, e
and u, and then chord-cutting the resulting cycle with respect to C and e,
we obtain a chordless cycle C∗. We call the operation transforming C ′ into
C∗ harmonizing C ′ to C with respect to e and u. Note that the new cycle
C∗ still contains e and is harmonic with C and chordless. Furthermore, if
G is a plane graph and u is within C (C ′ surrounds C), then C∗ is within
(surrounds) C. After the harmonization operation we forget C ′ and rename
C∗ as C ′.
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3 Upper and lower 2-cycled graphs

We say that a graph is upper (lower) 2-cycled if each of its edges is contained
in at most (at least) two of its chordless cycles. Clearly, a graph possesses
this property if and only if each 2-connected component does, but in the
rest of this section we do not assume 2-connectivity. The following lemma is
crucial in characterizing upper 2-cycled graphs.

Lemma 1 If G = (V,E) is upper 2-cycled, so are its minors.

Proof. It suffices to show that if G′ results from G by deleting or contracting
an edge uv and G′ is not upper 2-cycled, neither is G. Let e = ab be an edge
of G′ that is contained in distinct chordless cycles C ′1, C ′2 and C ′3 of G′.
Case 1: G′ = G − uv. Note that if uv is not a chord of C ′i, then C ′i is also
a chordless cycle of G; in this case, we put Ci = C ′i. If uv is a chord of C ′i,
then C ′i ∪uv is split into two chordless cycles of G, each consisting of uv and
a subpath of C ′ connecting u to v; we call the one containing e Ci and the
other one C̃i. If C1, C2 and C3 are distinct, then they are distinct chordless
cycles of G containing e. If they are not, we may assume C1 = C2. Then C ′1
and C ′2 must have uv as a chord, and C1, C̃1 and C̃2 are distinct chordless
cycles of G containing uv.
Case 2: G′ = G/uv. The edge uv of G is contracted to a vertex w of G′.
Because uv 6= ab, {a, b}∩{u, v} is empty or has one vertex. If it is nonempty,
we assume u = a without loss of generality.

If E(C ′i) forms a cycle of G, it must be a chordless cycle, and we let Ci
be that cycle. If not, w must be a vertex of C ′i, and E(C ′i) forms a path Pi
in G connecting u to v. Let u′i, v

′
i be the neighbors of u, v on Pi, respectively.

Then Pi ∪ uv forms a cycle C∗i of G, and its only possible chords are uv′i
and u′iv. By chord-cutting C∗i with respect to e, we find a chordless cycle Ci
containing e.

Note that if e and uv are not adjacent, or if the chord u′iv does not exist,
then E(Ci) is contracted to E(C ′i) when we contract the edge uv.

Now we have three chordless cycles C1, C2 and C3 containing e. If they are
not all distinct, say C1 = C2, then C1 is the triangle {u = a, v, b = u′1 = u′2},
C∗1 and C∗2 both have bv as a chord, and bv is contained in three distinct
chordless cycles of G, namely {a, v, b}, bv ∪ P ′1 − e, bv ∪ P ′2 − e. �

We note that K3,3 − e and K2 ⊕ 3K1 (the graph obtained by joining
every vertex of K2 to every vertex of 3K1) are not upper 2-cycled. These
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graphs are illustrated in Figure 4. Therefore we have the following corollary
of Lemma 1.

s

s s

s

s

K3,3 − e

s s s

s

s

s

K2 ⊕ 3K1

Figure 4: Forbidden minors of upper 2-cycled graphs.

Corollary 1 An upper 2-cycled graph contains no K2 ⊕ 3K1 or K3,3 − e as
a minor.

Note that K2⊕ 3K1 is a minor of K5 and K3,3− e is a minor of K3,3. By
Kuratowski’s Theorem, we have the following consequence of Corollary 1.

Corollary 2 An upper 2-cycled graph must be planar.

The next theorem characterizes the upper 2-cycled graphs. Although we
only use its necessity part to prove the Main Theorem, it has an independent
interest.

Theorem 2 A graph is upper 2-cycled if and only if it contains no K2⊕3K1

or K3,3 − e as a minor.

Proof. The necessity is Corollary 1 above. Now we prove the sufficiency.
By the argument leading to Corollary 2, G must be planar. Assume that,
if possible, G is not upper 2-cycled. We assert that G has three cycles C1,
C2 and C3 and an edge e such that the following properties hold for an
appropriate plane drawing of G:

1. C1, C2 and C3 are distinct chordless cycles containing e;

2. C2 is within C1 and C3 is within C2;



the electronic journal of combinatorics 3 (1996), #R14 7

3. C1, C2 and C3 are harmonic with each other.

In proving the assertion, we make use of a weaker version of Property 3,
namely,

4. C2 is harmonic with C1 and C3.

By the assumption that G is not upper 2-cycled, it has three cycles C1, C2

and C3 and an edge e satisfying Property 1. If two of the cycles are harmonic,
we rename them as C1 and C3. If not, we harmonize C3 to C1 with respect
to e, and the new C3 is still different from C1 and C2. In any case, we may
assume C3 is within C1. For the new C1, C2 and C3, Property 1 still holds,
but now C3 is within and harmonic with C1.

Next, let us consider three cases about C2.
Case 1: C2 has a vertex u inside C3. We harmonize C2 to C3 with respect to
u and e, and switch the names of C3 and C2. The cycles C1, C2 and C3 now
satisfy Properties 1, 2 and 4.
Case 2: C2 has a vertex u outside C1. We select a face within C3, make it the
outer face, and switch the names of C1 and C3, and we are back to Case 1.
Case 3: C2 is between C1 and C3. We harmonize C1 to C2 and C3 to C2 with
respect to e. The cycles C1, C2 and C3 now satisfy Properties 1, 2 and 4.

Thus in all cases, Properties 1, 2 and 4 hold for C1, C2, C3 and e. By
planarity and Property 2 we have C1∩C3 ⊂ C2, hence C1∩C3 = (C1∩C2)∩
(C2 ∩ C3). Since each of C1 ∩ C2 and C2 ∩ C3 is a subpath of C2, C1 ∩ C3

must be a path or the union of two disjoint paths. In the former case, C1

is harmonic with C3, as required. In the latter case, illustrated in Figure 5,
the symmetric difference of E(C2) and E(C3) forms a cycle C ′, and we can
find an edge e′ in C1 ∩ C2 such that e′ is also on C ′. Renaming C ′ as C3

and e′ as e and chord-cutting C3 with respect to the new edge e, we achieve
Property 3 for the new C1, C2, C3 and e while Properties 1 and 2 remain
valid. This completes the proof of the assertion.

It follows from the assertion that P13 = C1∩C3 is a path contained in C2

and containing e. Let P ′13 (P ′31) be the subpath of C1 − e (C3 − e) between
the ends a and b of P13.

Suppose no internal vertex of P ′31 is on C2. Let P ′13 = (a = x0, x1, . . . , xk =
b), and let i (j) be the largest (smallest) index such that x0, . . . , xi (xj , . . . , xk)
are on C2, as illustrated in Figure 6. Since C1 and C2 are chordless, P ′31 and
P ′13[xi, xj] are not single edges, i.e., each has an internal vertex. For the
same reason, the subpath of C2 from xi to xj that does not contain e has
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Figure 5: An illustration for the proof of the assertion.

an internal vertex. We contract x0, . . . , xi into one vertex and xj, . . . , xk into
another vertex, and now C1 ∪ C2 ∪ C3 is a subdivision of K2 ⊕ 3K1, which
has K2 ⊕ 3K1 as a minor, contrary to the hypothesis. A similar argument
holds if no internal vertex of P ′13 is on C2.
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Figure 6: An illustration for the proof of Theorem 2.

If both P ′13 and P ′31 have an internal vertex on C2, there is a subpath P of
C2 connecting an internal vertex d of P ′13 to an internal vertex c of P ′31 such
that P has no internal vertex on C1 or C3. Without loss of generality, we
assume that the cycle C2 passes through the vertices a, b, c, d in this order.
Then, since C2 is harmonic with both C1 and C3, C2 must be P13[a, b] ∪
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P ′31[b, c]∪P [c, d]∪P ′13[d, a], as illustrated in Figure 7. Because C2 is a chordless
cycle, each of P ′13[b, d] and P ′31[a, c] has an internal vertex. Hence C1∪C2∪C3

is a bad subdivision of K4, which can always be contracted to K3,3 − e,
contrary to the hypothesis. �
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Figure 7: An illustration for the proof of Theorem 2.

The next theorem characterizes the lower 2-cycled graphs. The proof is
simple and is omitted.

Theorem 3 A graph G is lower 2-cycled if and only if G has no bridges and
every chordless cycle C of G satisfies at least one of the following conditions:

1. For each edge e = uv of C, G − V (C) has a connected component H
such that N (H) ∩ V (C) = {u, v};

2. G − V (C) has a connected component H such that N (H) contains a
pair of non-consecutive vertices of C;

3. C is a triangle, and G−V (C) has a connected component H such that
V (C) ⊆ N(H).

4 Proof of the Main Theorem

We only need to prove the “only if” part of the Main Theorem. We do so by
establishing a series of properties that a 2-connected 2-cycled graph G must
possess.
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By Corollary 2, we have the following:

Property 1 G is planar.

Property 2 For each edge ab of G, G − {a, b} has at most two connected
components.

Indeed, otherwise there would be three chordless cycles containing ab.
We call an edge ab critical if G− {a, b} has exactly two connected com-

ponents.
Let F be any face of a plane drawing of G. The boundary of F is a cycle

C by 2-connectivity, and we call it a face-cycle. If F is the outer face of a
plane drawing D of G, we call C the outer cycle of D. Suppose the outer
cycle C has a critical edge ab. We denote by H the connected component of
G−{a, b} not containing the other vertices of C. By 2-connectivity we have
N(H)∩V (C) = {a, b}. We can find another plane drawing D′ of G by moving
H outside ofC. If C ′ denotes the new outer cycle, then V (C ′) ⊃ V (C), and ab
is a chord of C ′, rather than an edge of it. We call the operation transforming
D into D′ flipping. If C ′ still has critical edges, we repeat this operation. In
a finite number of steps, we obtain a plane drawing of G whose outer cycle
C∗ has no critical edges. We now assert that C∗ is chordless. If not, a chord
ab would spilt the cycle C∗ into two cycles C ′ and C ′′, and we may assume
that C ′ is chordless. There must be a vertex u within C ′, for otherwise there
would be no other chordless cycles containing an edge from C ′−ab. Let H be
the connected component of G−V (C ′) containing u. The set N(H)∩V (C ′)
cannot be the two ends of an edge from C ′− ab, because by Property 2 such
an edge would be a critical edge on the outer cycle C∗. Thus C ′ does not
satisfy Condition 1 of Theorem 3, and it must satisfy Condition 2 or 3. We
can therefore find a chordless path P connecting two non-consecutive vertices
of the path C ′ − ab such that all the internal vertices of P are from H, as
illustrated in Figure 8. It is easy to see that C∗∪{ab}∪P can be contracted
to K2 ⊕ 3K1, contradicting Corollary 1. This proves the assertion.

Recall that the flipping operation adds a new chord of the new outer
cycle. Hence by the assertion, no flipping ever takes place, and the outer
cycle C of the arbitrary drawing D is chordless. Since each face of a plane
drawing can be drawn as the outer face, we have established the following
two properties:

Property 3 G has no critical edge.
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• •

a

b

C′ C′′

H

Figure 8: An illustration for the proof of the assertion.

Property 4 In each plane drawing of G, each face-cycle is chordless.

In each plane drawing, each edge e belongs to two face-cycles by 2-
connectivity. The latter are chordless by Property 4, and must be the only
chordless cycles containing e since G is 2-cycled. We therefore conclude the
following:

Property 5 In each plane drawing of G, each chordless cycle is a face-cycle.

Another property of G is given below.

Property 6 At least one of the face-cycles is not a triangle if G 6= K4.

Suppose to the contrary that every face-cycle of G is a triangle. Let C be
the outer cycle with vertices a, b and c. Without loss of generality, let k ≥ 3
be the degree of a, and let ax1, ax2, . . . , axk be the edges incident with a in
counterclockwise order, where b = x1 and c = xk. Then by our assumption,
x1x2, x2x3, . . . , xk−1xk must be edges of G, as illustrated in Figure 9.

If k ≥ 4, there is an edge e = xixj , j − i > 1, e 6= x1xk, for otherwise
{x1, . . . , xk} is a chordless cycle, hence a face-cycle by Property 5, but it is not
a triangle. But then the triangle {a, xi, xj} is not a face-cycle, contradicting
Property 5. Therefore k must be 3, and for each {p, q, r} ⊆ {a, x1, x2, x3},
the triangle {p, q, r} is a face-cycle by Property 5. Therefore G has no other
vertices, and so G = K4.

By Property 6, we may assume that we have chosen a plane drawing
of G whose outer cycle C has length at least 4. We make this assumption



the electronic journal of combinatorics 3 (1996), #R14 12

x2 x3

b = x1

xk−1xk−2

xk = c

. . .

a

t

t t

t

tt

t

Figure 9: An illustration for the proof of Property 6.

for the rest of the proof, and use the notations NC(u) = N (u) ∩ V (C) and
NC(S) = N(S) ∩ V (C) for a vertex u and a vertex-subset S.

Property 7 For each connected component H of G−V (C), NC(H) contains
a pair of non-consecutive vertices along C.

In fact, NC(H) cannot be empty or a single vertex by 2-connectivity.
Neither can it be the two ends of an edge e of C, since otherwise e would
be a critical edge by Property 2, contrary to Property 3. Therefore NC(H)
contains a pair of non-consecutive vertices along C.

Property 8 G− V (C) is connected.

If not, G− V (C) would have at least two connected components H1 and
H2. For i = 1, 2, NC(Hi) contains a pair of non-consecutive vertices ai, bi
on C by Property 7. we can find a path Pi connecting ai to bi all of whose
internal vertices are from Hi. By planarity, P1 and P2 do not intersect except
possibly at the ends. Therefore the minor C ∪ P1 ∪ P2 can be contracted to
K2 ⊕ 3K1, contrary to Corollary 1.

Property 9 G− V (C) contains no cycle.

If G−V (C) contains a cycle, it must contain a chordless cycle C ′. There
exists vertex-disjoint paths P1 and P2 between C and C ′ (this can be seen by
adding a new vertex s adjacent to every vertex of C and another new vertex
t adjacent to every vertex of C ′ without destroying 2-connectivity, and then
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applying Menger’s Theorem to s and t). Let xi and yi be the ends of Pi on
C and C ′, respectively.

If x1 and x2 are not consecutive along C, let y′ be a third vertex on C ′,
and let e be any edge of the subpath of C ′ from y1 to y2 that avoids y′, as
illustrated in Figure 10. Then e belongs to three chordless cycles of the minor
C ∪ C ′ ∪ P1 ∪ P2, contrary to Lemma 1.

s

s

s

s

s s s

x1

y1

y2

x2

P1

P2

y′ e

C

C′

Figure 10: An illustration for the proof of Property 9.

Therefore we may assume that x1 and x2 are consecutive along C, and
similarly y1 and y2 are consecutive along C ′. Then since the edge x1x2 of C
is not critical by Property 3, G− {x1, x2} has a shortest path P3 from C to
C ′. Let x3 and y3 be the ends of P3 on C and C ′, respectively. If P3 and
P1 ∪ P2 are disjoint, then since C has at least four vertices, we can forget
P1 or P2 and then we are back to the previous case. Otherwise, let z be the
first vertex of P3 that belongs to P1 ∪ P2. We may assume without loss of
generality that z is on P1, as illustrated in Figure 11.
Consider the minor M = C ∪ C ′ ∪ P1 ∪ P2 ∪ P3[x3, z] of G. The edge y1y2

is on three chordless cycles of M , namely C ′, P1 ∪ P2 ∪ {x1x2, y1y2}, and
P3[x3, z]∪ P1[z, y1]∪ {y1y2} ∪ P2 ∪ P ′, where P ′ is the subpath of C from x2

to x3 that avoids x1. This contradicts Lemma 1, thereby proving Property 9.
By Property 8 and Property 9, G− V (C) is a tree T .

Property 10 T must be a path.

If T is not a path, it has a vertex v such that degT (v) ≥ 3. By Property 7,
NC(T ) has two non-consecutive vertices a and b along C. The forest T − v
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Figure 11: An illustration for the proof of Property 9.

has connected components T1 and T2 (possibly identical) such that {a} ⊆
NC(T1)∪NC(v) and {b} ⊆ NC(T2)∪NC(v). Let T3 be a connected component
of T − v distinct from T1 and T2. Since v is not a cut vertex of G by 2-
connectivity, there exists a vertex c ∈ NC(T3). Let P be a path from v to c
via T3, as illustrated in Figure 12.

s

s

s ssv c

a

b

T1

T2

T3

Figure 12: An illustration for the proof of Property 10.

We contract T − T3 to a single vertex w, which becomes an end of P .
Consider the minorM = C∪P∪{wa,wb} ofG. If c 6= a, b, then, as illustrated
in Figure 13 (a), M is a bad subdivision of K4, which is not upper 2-cycled.
Otherwise we may assume that c = a, as illustrated in Figure 13 (b), and we
contract the edge wb of M to obtain a subdivision of K2⊕ 3K1, which is not
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upper 2-cycled. In both cases, Lemma 1 is contradicted.
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s

P

(b)(a)

s

Figure 13: Illustrations for the proof of Property 10. (a): c 6= a, b; (b): c = a.

Property 11 If u and v are the two ends of the path T and u 6= v, then
NC(u) and NC(v) are nonempty, and each of NC(T − u) and NC(T − v)
consists of either a single vertex or a pair of consecutive vertices along C.

The sets NC(u) and NC(v) (and hence also NC(T − u) and NC(T −
v)) are nonempty by 2-connectivity. Assume that NC(T − v) contains non-
consecutive vertices a and b along C. We contract T − v to a vertex w,
and let P be a path from w to C via v. Then we argue about the minor
M = C ∪ P ∪ {wa,wb} as in Property 10. Similarly, NC(T − u) has no
non-consecutive vertices along C.

Now we are ready to list all the possible 2-connected 2-cycled graphs, and
thereby prove Theorem 1, by considering all possibilities for T .
Case 1: T is a single vertex v. Then G is a rim-subdivision of a wheel Wk

with k ≥ 3 if degG(v) ≥ 3, and by Property 7 G is a subdivision of K2,3 if
degG(v) = 2.
Case 2: V (T ) = {u, v}. If each of NC(u) and NC(v) has only one vertex,
then the two vertices are distinct and non-consecutive by Property 7, so G is
a subdivision of K2,3. If one of NC(u) and NC(v) has one vertex and the other
has two (necessarily consecutive by Property 11), then NC(u) ∩NC(v) = ∅
by Property 7 and so G is a star-subdivision of K4. If both NC(u) and
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NC(v) (distinct by Property 7) have two vertices (necessarily consecutive by
Property 11), then G is a triangles-joining or a rim-subdivision of the wheel
W4 depending on whether NC(u) ∩NC(v) is empty or not.
Case 3: T is a path of length at least 2, with ends u, v. Neither NC(T−u) nor
NC(T − v) contains a pair of non-consecutive vertices of C by Property 11,
whereas NC(T ) does by Property 7. So NC(u)∪NC(v) must contain a pair a, b
of non-consecutive vertices, with a ∈ NC(u) and b ∈ NC(v). Moreover, NC(x)
does not meet {a, b} for any internal vertex x of T . If y ∈ NC(x) for some
internal vertex x of T , then by the above and Property 11, y must be different
from and adjacent to both a and b. For the same reason, NC(u) ⊆ {y, a} and
NC(v) ⊆ {y, b}, and NC(z) ⊆ {b, y} ∩ {a, y} = {y} for all internal vertices
z of T . Therefore G must be a rim-subdivision of a wheel with center y. If
NC(x) is empty for every internal vertex x of T , then the argument is similar
to the one of Case 2. �
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