For which graphs does every edge belong to exactly two chordless cycles?

Uri N. Peled ${ }^{1}$ and Julin Wu ${ }^{2}$
Dept. of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago
851 S. Morgan Street
Chicago, IL 60607-7045

Submitted: December 2, 1995; Accepted: April 15, 1996.
Key Words: Chordless cycles, balanced graphs, balanced matrices

Mathematical Reviews Subject Numbers: Primary 05C75;
Secondary 05C3B, 05C50, 90C35

[^0]
Abstract

A graph is 2-cycled if each edge is contained in exactly two of its chordless cycles. The 2-cycled graphs arise in connection with the study of balanced signing of graphs and matrices. The concept of balance of a $\{0,+1,-1\}$ matrix or a signed bipartite graph has been studied by Truemper and by Conforti et al. The concept of α-balance is a generalization introduced by Truemper. Truemper exhibits a family \mathcal{F} of planar graphs such that a graph G can be signed to be α-balanced if and only if each induced subgraph of G in \mathcal{F} can. We show here that the graphs in \mathcal{F} are exactly the 2 -connected 2-cycled graphs.

1 Introduction

A graph is said to be 2-cycled if each of its edges is contained in exactly two chordless cycles. The 2-cycled graphs arise in connection with the study of balanced signing of graphs and matrices by Truemper [3] and by Conforti et al. [2], as indicated in the next three paragraphs.

A signed graph is a graph $G=(V, E)$ together with a mapping $f: E \longrightarrow$ $\{+1,-1\}$. Consider a mapping $\alpha: \mathcal{C} \longrightarrow\{0,1,2,3\}$, where \mathcal{C} is the set of chordless cycles of G. If $\Sigma_{e \in C} f(e) \equiv \alpha(C)(\bmod 4)$ for all $C \in \mathcal{C}$, we say that the signed graph is α-balanced. A trivial necessary condition, which we assume throughout, is that $|C| \equiv \alpha(C)(\bmod 2)$ for all $C \in \mathcal{C}$. When $\alpha=0$, this condition means that G is bipartite, in which case it can be specified by its adjacency matrix A, and A is balanced in the usual sense if and only if the signed graph consisting of G and the constant mapping $f=1$ is 0 -balanced. Similarly, a $\{0,+1,-1\}$-matrix A specifies a signed bipartite graph, and A is said to be balanced when the signed bipartite graph is 0 -balanced.

It is easy to check that each graph of the following types is 2-cycled (See Figure 1):

Star-subdivision of K_{4} : The result of subdividing zero or more of the three edges incident to a single vertex of K_{4};

Rim-subdivision of a wheel: The result of subdividing zero or more rim edges of the wheel $W_{k}, k \geq 3$;

Subdivision of $K_{2,3}$: The result of subdividing zero or more edges of $K_{2,3}$;
Triangles-joining: Two vertex-disjoint triangles with three vertex-disjoint paths joining them.

Note that if two nonadjacent edges of K_{4} and possibly other edges are subdivided, the resulting graph is not 2-cycled. It is called a bad subdivision of K_{4}. Truemper [3] showed that a graph G possesses a mapping f that makes it α-balanced if and only if each induced subgraph of G that is a starsubdivision of K_{4}, a rim-subdivision of a wheel, a subdivision of $K_{2,3}$ or a triangles-joining enjoys the same property. Our main result is that these are all the 2-connected 2-cycled graphs (Clearly, a graph s 2-cycled if and only if all its 2-connected components are, so without loss of generality we may consider only 2-connected graphs):

Figure 1: 2-cycled graphs. (a): Star-subdivision of K_{4}; (b): Rim-subdivision of a wheel; (c): Subdivision of $K_{2,3}$; (d): Triangles-joining.

Theorem 1 (Main Theorem) A 2-connected graph is 2-cycled if and only if it is a star-subdivision of K_{4}, a rim-subdivision of a wheel, a subdivision of $K_{2,3}$ or a triangles-joining.

This paper is organized as follows. In Section 2 we give definitions of some new concepts. In Section 3 we define and characterize the upper and lower 2-cycled graphs; these graphs are defined so that a graph is 2-cycled if and only if it is both upper 2-cycled and lower 2-cycled. In Section 4 we study the structure of 2-cycled graphs and prove the Main Theorem. Early on (in Corollary 2) we show that the upper 2-cycled graphs are planar, and this planarity plays an important part in the proofs.

2 Preliminaries

We discuss only finite simple graphs and use standard terminology and notation from [1], except as indicated. We denote by $N_{G}(u)$ or simply $N(u)$ the set of vertices adjacent to a vertex u in a graph G, and by $N_{G}(S)$ or $N(S)$ the set $\bigcup_{u \in S} N_{G}(u)$ for a vertex subset S. A chord of a path or a cycle is an edge joining two non-consecutive vertices of the path or cycle. A chordless
path or cycle is one having no chord. For a path $P=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, we use the notation $P\left[x_{i}, x_{j}\right]$ for the subpath $\left(x_{i}, \ldots, x_{j}\right)$, where $1 \leq i<j \leq n$. If $e=a b$ is an edge of G, the contraction G / e of G with respect to e is the graph obtained from G by replacing a and b with a new vertex c and joining c to those vertices that are adjacent to a or b. The edge set of G / e may be regarded as a subset of the edge set of G. A minor of G is a graph that can be obtained from G by a sequence of vertex-deletions, edge-deletions and contractions. By subdividing an edge e we mean replacing e by a path P joining the ends of e, where P has length at least 2 and all of its internal vertices have degree 2. A subdivision of G is a graph obtained by subdividing zero or more of the edges of G. The intersection (union) $G_{1} \cap G_{2}\left(G_{1} \cup G_{2}\right)$ of graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph with vertex set $V_{1} \cap V_{2}$ $\left(V_{1} \cup V_{2}\right)$ and edge set $E_{1} \cap E_{2}\left(E_{1} \cup E_{2}\right)$. If C_{1} and C_{2} are cycles of a plane graph G, we say that C_{1} is within (surrounds) C_{2} if the area enclosed by C_{1} is contained in (contains) that enclosed by C_{2}.

Two cycles C and C^{\prime} are said to be harmonic if $C \cap C^{\prime}$ is a path, as illustrated in Figure 2. If C and C^{\prime} are harmonic cycles of a plane graph, we can find an appropriate plane drawing of the graph such that C^{\prime} is within C, if it is not already the case, by selecting a face within C and making it the outer face.

Figure 2: Harmonic cycles.
Let C and C^{\prime} be two cycles with a common edge e, and u a vertex of $C^{\prime}-C$. Let P^{\prime} be the maximal subpath of C^{\prime} that contains u and does not have internal vertices on C, and let P be the subpath of C joining the two ends of P^{\prime} and containing e. Then $P^{\prime} \cup P$ is a cycle $C^{\prime \prime}$, as illustrated in Figure 3. The operation transforming C^{\prime} into $C^{\prime \prime}$ is called grafting C^{\prime} with
respect to C, e and u. An important property of this operation is that the new cycle $C^{\prime \prime}$ is harmonic with C. Furthermore, if the graph is a plane graph and u is within C (or C^{\prime} surrounds C), then $C^{\prime \prime}$ is within (surrounds) C.

Figure 3: Grafting.
Let $P=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a path in G. If P has a chord $x_{i} x_{j}$ for some $i<j-1$, we can obtain another path $P^{\prime}=\left(x_{1}, \ldots, x_{i}, x_{j}, \ldots, x_{k}\right)$ by deleting the vertices between x_{i} and x_{j} and adding the edge $x_{i} x_{j}$ to P. If P^{\prime} still has chords, we can apply the same operation to P^{\prime}, and so on until we obtain a chordless path P^{*} connecting x_{1} to x_{k}. For a cycle C of G and an edge e of C, we can apply the above operation to $C-e$ to obtain a chordless cycle C^{*} containing e. We call the operation transforming C into C^{*} chord-cutting C with respect to e. We note that if the graph is a plane graph and C surrounds (is within, is harmonic with) a chordless cycle \widehat{C} and e is a common edge of C and \widehat{C}, then the cycle obtained by chord-cutting C with respect to e again surrounds (is within, is harmonic with) \widehat{C}.

Let C and C^{\prime} be cycles of G, where C is chordless, e a common edge of C and C^{\prime}, and u a vertex of $C^{\prime}-C$. By grafting C^{\prime} with respect to C, e and u, and then chord-cutting the resulting cycle with respect to C and e, we obtain a chordless cycle C^{*}. We call the operation transforming C^{\prime} into C^{*} harmonizing C^{\prime} to C with respect to e and u. Note that the new cycle C^{*} still contains e and is harmonic with C and chordless. Furthermore, if G is a plane graph and u is within $C\left(C^{\prime}\right.$ surrounds $\left.C\right)$, then C^{*} is within (surrounds) C. After the harmonization operation we forget C^{\prime} and rename C^{*} as C^{\prime}.

3 Upper and lower 2-cycled graphs

We say that a graph is upper (lower) 2-cycled if each of its edges is contained in at most (at least) two of its chordless cycles. Clearly, a graph possesses this property if and only if each 2-connected component does, but in the rest of this section we do not assume 2-connectivity. The following lemma is crucial in characterizing upper 2-cycled graphs.

Lemma 1 If $G=(V, E)$ is upper 2-cycled, so are its minors.
Proof. It suffices to show that if G^{\prime} results from G by deleting or contracting an edge $u v$ and G^{\prime} is not upper 2-cycled, neither is G. Let $e=a b$ be an edge of G^{\prime} that is contained in distinct chordless cycles $C_{1}^{\prime}, C_{2}^{\prime}$ and C_{3}^{\prime} of G^{\prime}.
Case 1: $G^{\prime}=G-u v$. Note that if $u v$ is not a chord of C_{i}^{\prime}, then C_{i}^{\prime} is also a chordless cycle of G; in this case, we put $C_{i}=C_{i}^{\prime}$. If $u v$ is a chord of C_{i}^{\prime}, then $C_{i}^{\prime} \cup u v$ is split into two chordless cycles of G, each consisting of $u v$ and a subpath of C^{\prime} connecting u to v; we call the one containing $e C_{i}$ and the other one \widetilde{C}_{i}. If C_{1}, C_{2} and C_{3} are distinct, then they are distinct chordless cycles of G containing e. If they are not, we may assume $C_{1}=C_{2}$. Then C_{1}^{\prime} and C_{2}^{\prime} must have $u v$ as a chord, and C_{1}, \widetilde{C}_{1} and \widetilde{C}_{2} are distinct chordless cycles of G containing $u v$.
Case 2: $G^{\prime}=G / u v$. The edge $u v$ of G is contracted to a vertex w of G^{\prime}. Because $u v \neq a b,\{a, b\} \cap\{u, v\}$ is empty or has one vertex. If it is nonempty, we assume $u=a$ without loss of generality.

If $E\left(C_{i}^{\prime}\right)$ forms a cycle of G, it must be a chordless cycle, and we let C_{i} be that cycle. If not, w must be a vertex of C_{i}^{\prime}, and $E\left(C_{i}^{\prime}\right)$ forms a path P_{i} in G connecting u to v. Let $u_{i}^{\prime}, v_{i}^{\prime}$ be the neighbors of u, v on P_{i}, respectively. Then $P_{i} \cup u v$ forms a cycle C_{i}^{*} of G, and its only possible chords are $u v_{i}^{\prime}$ and $u_{i}^{\prime} v$. By chord-cutting C_{i}^{*} with respect to e, we find a chordless cycle C_{i} containing e.

Note that if e and $u v$ are not adjacent, or if the chord $u_{i}^{\prime} v$ does not exist, then $E\left(C_{i}\right)$ is contracted to $E\left(C_{i}^{\prime}\right)$ when we contract the edge $u v$.

Now we have three chordless cycles C_{1}, C_{2} and C_{3} containing e. If they are not all distinct, say $C_{1}=C_{2}$, then C_{1} is the triangle $\left\{u=a, v, b=u_{1}^{\prime}=u_{2}^{\prime}\right\}$, C_{1}^{*} and C_{2}^{*} both have $b v$ as a chord, and $b v$ is contained in three distinct chordless cycles of G, namely $\{a, v, b\}, b v \cup P_{1}^{\prime}-e, b v \cup P_{2}^{\prime}-e$.

We note that $K_{3,3}-e$ and $K_{2} \oplus 3 K_{1}$ (the graph obtained by joining every vertex of K_{2} to every vertex of $3 K_{1}$) are not upper 2 -cycled. These
graphs are illustrated in Figure 4. Therefore we have the following corollary of Lemma 1.

$$
K_{2} \oplus 3 K_{1}
$$

Figure 4: Forbidden minors of upper 2-cycled graphs.

Corollary 1 An upper 2-cycled graph contains no $K_{2} \oplus 3 K_{1}$ or $K_{3,3}-e$ as a minor.

Note that $K_{2} \oplus 3 K_{1}$ is a minor of K_{5} and $K_{3,3}-e$ is a minor of $K_{3,3}$. By Kuratowski's Theorem, we have the following consequence of Corollary 1.

Corollary 2 An upper 2-cycled graph must be planar.
The next theorem characterizes the upper 2-cycled graphs. Although we only use its necessity part to prove the Main Theorem, it has an independent interest.

Theorem 2 A graph is upper 2-cycled if and only if it contains no $K_{2} \oplus 3 K_{1}$ or $K_{3,3}-e$ as a minor.

Proof. The necessity is Corollary 1 above. Now we prove the sufficiency. By the argument leading to Corollary 2, G must be planar. Assume that, if possible, G is not upper 2-cycled. We assert that G has three cycles C_{1}, C_{2} and C_{3} and an edge e such that the following properties hold for an appropriate plane drawing of G :

1. C_{1}, C_{2} and C_{3} are distinct chordless cycles containing e;
2. C_{2} is within C_{1} and C_{3} is within C_{2};
3. C_{1}, C_{2} and C_{3} are harmonic with each other.

In proving the assertion, we make use of a weaker version of Property 3, namely,
4. C_{2} is harmonic with C_{1} and C_{3}.

By the assumption that G is not upper 2-cycled, it has three cycles C_{1}, C_{2} and C_{3} and an edge e satisfying Property 1. If two of the cycles are harmonic, we rename them as C_{1} and C_{3}. If not, we harmonize C_{3} to C_{1} with respect to e, and the new C_{3} is still different from C_{1} and C_{2}. In any case, we may assume C_{3} is within C_{1}. For the new C_{1}, C_{2} and C_{3}, Property 1 still holds, but now C_{3} is within and harmonic with C_{1}.

Next, let us consider three cases about C_{2}.
Case 1: C_{2} has a vertex u inside C_{3}. We harmonize C_{2} to C_{3} with respect to u and e, and switch the names of C_{3} and C_{2}. The cycles C_{1}, C_{2} and C_{3} now satisfy Properties 1,2 and 4.
Case 2: C_{2} has a vertex u outside C_{1}. We select a face within C_{3}, make it the outer face, and switch the names of C_{1} and C_{3}, and we are back to Case 1.
Case 3: C_{2} is between C_{1} and C_{3}. We harmonize C_{1} to C_{2} and C_{3} to C_{2} with respect to e. The cycles C_{1}, C_{2} and C_{3} now satisfy Properties 1,2 and 4 .

Thus in all cases, Properties 1, 2 and 4 hold for C_{1}, C_{2}, C_{3} and e. By planarity and Property 2 we have $C_{1} \cap C_{3} \subset C_{2}$, hence $C_{1} \cap C_{3}=\left(C_{1} \cap C_{2}\right) \cap$ $\left(C_{2} \cap C_{3}\right)$. Since each of $C_{1} \cap C_{2}$ and $C_{2} \cap C_{3}$ is a subpath of $C_{2}, C_{1} \cap C_{3}$ must be a path or the union of two disjoint paths. In the former case, C_{1} is harmonic with C_{3}, as required. In the latter case, illustrated in Figure 5, the symmetric difference of $E\left(C_{2}\right)$ and $E\left(C_{3}\right)$ forms a cycle C^{\prime}, and we can find an edge e^{\prime} in $C_{1} \cap C_{2}$ such that e^{\prime} is also on C^{\prime}. Renaming C^{\prime} as C_{3} and e^{\prime} as e and chord-cutting C_{3} with respect to the new edge e, we achieve Property 3 for the new C_{1}, C_{2}, C_{3} and e while Properties 1 and 2 remain valid. This completes the proof of the assertion.

It follows from the assertion that $P_{13}=C_{1} \cap C_{3}$ is a path contained in C_{2} and containing e. Let $P_{13}^{\prime}\left(P_{31}^{\prime}\right)$ be the subpath of $C_{1}-e\left(C_{3}-e\right)$ between the ends a and b of P_{13}.

Suppose no internal vertex of P_{31}^{\prime} is on C_{2}. Let $P_{13}^{\prime}=\left(a=x_{0}, x_{1}, \ldots, x_{k}=\right.$ $b)$, and let $i(j)$ be the largest (smallest) index such that $x_{0}, \ldots, x_{i}\left(x_{j}, \ldots, x_{k}\right)$ are on C_{2}, as illustrated in Figure 6. Since C_{1} and C_{2} are chordless, P_{31}^{\prime} and $P_{13}^{\prime}\left[x_{i}, x_{j}\right]$ are not single edges, i.e., each has an internal vertex. For the same reason, the subpath of C_{2} from x_{i} to x_{j} that does not contain e has

Figure 5: An illustration for the proof of the assertion.
an internal vertex. We contract x_{0}, \ldots, x_{i} into one vertex and x_{j}, \ldots, x_{k} into another vertex, and now $C_{1} \cup C_{2} \cup C_{3}$ is a subdivision of $K_{2} \oplus 3 K_{1}$, which has $K_{2} \oplus 3 K_{1}$ as a minor, contrary to the hypothesis. A similar argument holds if no internal vertex of P_{13}^{\prime} is on C_{2}.

Figure 6: An illustration for the proof of Theorem 2.
If both P_{13}^{\prime} and P_{31}^{\prime} have an internal vertex on C_{2}, there is a subpath P of C_{2} connecting an internal vertex d of P_{13}^{\prime} to an internal vertex c of P_{31}^{\prime} such that P has no internal vertex on C_{1} or C_{3}. Without loss of generality, we assume that the cycle C_{2} passes through the vertices a, b, c, d in this order. Then, since C_{2} is harmonic with both C_{1} and C_{3}, C_{2} must be $P_{13}[a, b] \cup$
$P_{31}^{\prime}[b, c] \cup P[c, d] \cup P_{13}^{\prime}[d, a]$, as illustrated in Figure 7. Because C_{2} is a chordless cycle, each of $P_{13}^{\prime}[b, d]$ and $P_{31}^{\prime}[a, c]$ has an internal vertex. Hence $C_{1} \cup C_{2} \cup C_{3}$ is a bad subdivision of K_{4}, which can always be contracted to $K_{3,3}-e$, contrary to the hypothesis.

Figure 7: An illustration for the proof of Theorem 2.
The next theorem characterizes the lower 2-cycled graphs. The proof is simple and is omitted.

Theorem 3 A graph G is lower 2-cycled if and only if G has no bridges and every chordless cycle C of G satisfies at least one of the following conditions:

1. For each edge $e=u v$ of $C, G-V(C)$ has a connected component H such that $N(H) \cap V(C)=\{u, v\}$;
2. $G-V(C)$ has a connected component H such that $N(H)$ contains a pair of non-consecutive vertices of C;
3. C is a triangle, and $G-V(C)$ has a connected component H such that $V(C) \subseteq N(H)$.

4 Proof of the Main Theorem

We only need to prove the "only if" part of the Main Theorem. We do so by establishing a series of properties that a 2-connected 2-cycled graph G must possess.

By Corollary 2, we have the following:
Property $1 G$ is planar.
Property 2 For each edge ab of $G, G-\{a, b\}$ has at most two connected components.

Indeed, otherwise there would be three chordless cycles containing $a b$.
We call an edge $a b$ critical if $G-\{a, b\}$ has exactly two connected components.

Let F be any face of a plane drawing of G. The boundary of F is a cycle C by 2-connectivity, and we call it a face-cycle. If F is the outer face of a plane drawing D of G, we call C the outer cycle of D. Suppose the outer cycle C has a critical edge $a b$. We denote by H the connected component of $G-\{a, b\}$ not containing the other vertices of C. By 2-connectivity we have $N(H) \cap V(C)=\{a, b\}$. We can find another plane drawing D^{\prime} of G by moving H outside of C. If C^{\prime} denotes the new outer cycle, then $V\left(C^{\prime}\right) \supset V(C)$, and $a b$ is a chord of C^{\prime}, rather than an edge of it. We call the operation transforming D into D^{\prime} flipping. If C^{\prime} still has critical edges, we repeat this operation. In a finite number of steps, we obtain a plane drawing of G whose outer cycle C^{*} has no critical edges. We now assert that C^{*} is chordless. If not, a chord $a b$ would spilt the cycle C^{*} into two cycles C^{\prime} and $C^{\prime \prime}$, and we may assume that C^{\prime} is chordless. There must be a vertex u within C^{\prime}, for otherwise there would be no other chordless cycles containing an edge from $C^{\prime}-a b$. Let H be the connected component of $G-V\left(C^{\prime}\right)$ containing u. The set $N(H) \cap V\left(C^{\prime}\right)$ cannot be the two ends of an edge from $C^{\prime}-a b$, because by Property 2 such an edge would be a critical edge on the outer cycle C^{*}. Thus C^{\prime} does not satisfy Condition 1 of Theorem 3, and it must satisfy Condition 2 or 3 . We can therefore find a chordless path P connecting two non-consecutive vertices of the path $C^{\prime}-a b$ such that all the internal vertices of P are from H, as illustrated in Figure 8. It is easy to see that $C^{*} \cup\{a b\} \cup P$ can be contracted to $K_{2} \oplus 3 K_{1}$, contradicting Corollary 1. This proves the assertion.

Recall that the flipping operation adds a new chord of the new outer cycle. Hence by the assertion, no flipping ever takes place, and the outer cycle C of the arbitrary drawing D is chordless. Since each face of a plane drawing can be drawn as the outer face, we have established the following two properties:

Property 3 G has no critical edge.

Figure 8: An illustration for the proof of the assertion.
Property 4 In each plane drawing of G, each face-cycle is chordless.
In each plane drawing, each edge e belongs to two face-cycles by 2connectivity. The latter are chordless by Property 4, and must be the only chordless cycles containing e since G is 2 -cycled. We therefore conclude the following:

Property 5 In each plane drawing of G, each chordless cycle is a face-cycle.
Another property of G is given below.
Property 6 At least one of the face-cycles is not a triangle if $G \neq K_{4}$.
Suppose to the contrary that every face-cycle of G is a triangle. Let C be the outer cycle with vertices a, b and c. Without loss of generality, let $k \geq 3$ be the degree of a, and let $a x_{1}, a x_{2}, \ldots, a x_{k}$ be the edges incident with a in counterclockwise order, where $b=x_{1}$ and $c=x_{k}$. Then by our assumption, $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{k-1} x_{k}$ must be edges of G, as illustrated in Figure 9.

If $k \geq 4$, there is an edge $e=x_{i} x_{j}, j-i>1, e \neq x_{1} x_{k}$, for otherwise $\left\{x_{1}, \ldots, x_{k}\right\}$ is a chordless cycle, hence a face-cycle by Property 5 , but it is not a triangle. But then the triangle $\left\{a, x_{i}, x_{j}\right\}$ is not a face-cycle, contradicting Property 5. Therefore k must be 3 , and for each $\{p, q, r\} \subseteq\left\{a, x_{1}, x_{2}, x_{3}\right\}$, the triangle $\{p, q, r\}$ is a face-cycle by Property 5. Therefore G has no other vertices, and so $G=K_{4}$.

By Property 6, we may assume that we have chosen a plane drawing of G whose outer cycle C has length at least 4 . We make this assumption

Figure 9: An illustration for the proof of Property 6.
for the rest of the proof, and use the notations $N_{C}(u)=N(u) \cap V(C)$ and $N_{C}(S)=N(S) \cap V(C)$ for a vertex u and a vertex-subset S.

Property 7 For each connected component H of $G-V(C), N_{C}(H)$ contains a pair of non-consecutive vertices along C.

In fact, $N_{C}(H)$ cannot be empty or a single vertex by 2 -connectivity. Neither can it be the two ends of an edge e of C, since otherwise e would be a critical edge by Property 2, contrary to Property 3. Therefore $N_{C}(H)$ contains a pair of non-consecutive vertices along C.

Property $8 G-V(C)$ is connected.
If not, $G-V(C)$ would have at least two connected components H_{1} and H_{2}. For $i=1,2, N_{C}\left(H_{i}\right)$ contains a pair of non-consecutive vertices a_{i}, b_{i} on C by Property 7. we can find a path P_{i} connecting a_{i} to b_{i} all of whose internal vertices are from H_{i}. By planarity, P_{1} and P_{2} do not intersect except possibly at the ends. Therefore the minor $C \cup P_{1} \cup P_{2}$ can be contracted to $K_{2} \oplus 3 K_{1}$, contrary to Corollary 1.

Property $9 G-V(C)$ contains no cycle.
If $G-V(C)$ contains a cycle, it must contain a chordless cycle C^{\prime}. There exists vertex-disjoint paths P_{1} and P_{2} between C and C^{\prime} (this can be seen by adding a new vertex s adjacent to every vertex of C and another new vertex t adjacent to every vertex of C^{\prime} without destroying 2-connectivity, and then
applying Menger's Theorem to s and t). Let x_{i} and y_{i} be the ends of P_{i} on C and C^{\prime}, respectively.

If x_{1} and x_{2} are not consecutive along C, let y^{\prime} be a third vertex on C^{\prime}, and let e be any edge of the subpath of C^{\prime} from y_{1} to y_{2} that avoids y^{\prime}, as illustrated in Figure 10. Then e belongs to three chordless cycles of the minor $C \cup C^{\prime} \cup P_{1} \cup P_{2}$, contrary to Lemma 1 .

Figure 10: An illustration for the proof of Property 9.
Therefore we may assume that x_{1} and x_{2} are consecutive along C, and similarly y_{1} and y_{2} are consecutive along C^{\prime}. Then since the edge $x_{1} x_{2}$ of C is not critical by Property $3, G-\left\{x_{1}, x_{2}\right\}$ has a shortest path P_{3} from C to C^{\prime}. Let x_{3} and y_{3} be the ends of P_{3} on C and C^{\prime}, respectively. If P_{3} and $P_{1} \cup P_{2}$ are disjoint, then since C has at least four vertices, we can forget P_{1} or P_{2} and then we are back to the previous case. Otherwise, let z be the first vertex of P_{3} that belongs to $P_{1} \cup P_{2}$. We may assume without loss of generality that z is on P_{1}, as illustrated in Figure 11.
Consider the minor $M=C \cup C^{\prime} \cup P_{1} \cup P_{2} \cup P_{3}\left[x_{3}, z\right]$ of G. The edge $y_{1} y_{2}$ is on three chordless cycles of M, namely $C^{\prime}, P_{1} \cup P_{2} \cup\left\{x_{1} x_{2}, y_{1} y_{2}\right\}$, and $P_{3}\left[x_{3}, z\right] \cup P_{1}\left[z, y_{1}\right] \cup\left\{y_{1} y_{2}\right\} \cup P_{2} \cup P^{\prime}$, where P^{\prime} is the subpath of C from x_{2} to x_{3} that avoids x_{1}. This contradicts Lemma 1 , thereby proving Property 9.

By Property 8 and Property $9, G-V(C)$ is a tree T.
Property $10 T$ must be a path.
If T is not a path, it has a vertex v such that $\operatorname{deg}_{T}(v) \geq 3$. By Property 7, $N_{C}(T)$ has two non-consecutive vertices a and b along C. The forest $T-v$

Figure 11: An illustration for the proof of Property 9.
has connected components T_{1} and T_{2} (possibly identical) such that $\{a\} \subseteq$ $N_{C}\left(T_{1}\right) \cup N_{C}(v)$ and $\{b\} \subseteq N_{C}\left(T_{2}\right) \cup N_{C}(v)$. Let T_{3} be a connected component of $T-v$ distinct from T_{1} and T_{2}. Since v is not a cut vertex of G by 2connectivity, there exists a vertex $c \in N_{C}\left(T_{3}\right)$. Let P be a path from v to c via T_{3}, as illustrated in Figure 12.

Figure 12: An illustration for the proof of Property 10.
We contract $T-T_{3}$ to a single vertex w, which becomes an end of P. Consider the minor $M=C \cup P \cup\{w a, w b\}$ of G. If $c \neq a, b$, then, as illustrated in Figure 13 (a), M is a bad subdivision of K_{4}, which is not upper 2-cycled. Otherwise we may assume that $c=a$, as illustrated in Figure 13 (b), and we contract the edge $w b$ of M to obtain a subdivision of $K_{2} \oplus 3 K_{1}$, which is not
upper 2-cycled. In both cases, Lemma 1 is contradicted.

Figure 13: Illustrations for the proof of Property 10. (a): $c \neq a, b ;(\mathrm{b}): c=a$.

Property 11 If u and v are the two ends of the path T and $u \neq v$, then $N_{C}(u)$ and $N_{C}(v)$ are nonempty, and each of $N_{C}(T-u)$ and $N_{C}(T-v)$ consists of either a single vertex or a pair of consecutive vertices along C.

The sets $N_{C}(u)$ and $N_{C}(v)$ (and hence also $N_{C}(T-u)$ and $N_{C}(T-$ $v)$) are nonempty by 2 -connectivity. Assume that $N_{C}(T-v)$ contains nonconsecutive vertices a and b along C. We contract $T-v$ to a vertex w, and let P be a path from w to C via v. Then we argue about the minor $M=C \cup P \cup\{w a, w b\}$ as in Property 10. Similarly, $N_{C}(T-u)$ has no non-consecutive vertices along C.

Now we are ready to list all the possible 2-connected 2-cycled graphs, and thereby prove Theorem 1 , by considering all possibilities for T.
Case 1: T is a single vertex v. Then G is a rim-subdivision of a wheel W_{k} with $k \geq 3$ if $\operatorname{deg}_{G}(v) \geq 3$, and by Property $7 G$ is a subdivision of $K_{2,3}$ if $\operatorname{deg}_{G}(v)=2$.
Case 2: $V(T)=\{u, v\}$. If each of $N_{C}(u)$ and $N_{C}(v)$ has only one vertex, then the two vertices are distinct and non-consecutive by Property 7 , so G is a subdivision of $K_{2,3}$. If one of $N_{C}(u)$ and $N_{C}(v)$ has one vertex and the other has two (necessarily consecutive by Property 11), then $N_{C}(u) \cap N_{C}(v)=\emptyset$ by Property 7 and so G is a star-subdivision of K_{4}. If both $N_{C}(u)$ and
$N_{C}(v)$ (distinct by Property 7) have two vertices (necessarily consecutive by Property 11), then G is a triangles-joining or a rim-subdivision of the wheel W_{4} depending on whether $N_{C}(u) \cap N_{C}(v)$ is empty or not.
Case 3: T is a path of length at least 2 , with ends u, v. Neither $N_{C}(T-u)$ nor $N_{C}(T-v)$ contains a pair of non-consecutive vertices of C by Property 11, whereas $N_{C}(T)$ does by Property 7 . So $N_{C}(u) \cup N_{C}(v)$ must contain a pair a, b of non-consecutive vertices, with $a \in N_{C}(u)$ and $b \in N_{C}(v)$. Moreover, $N_{C}(x)$ does not meet $\{a, b\}$ for any internal vertex x of T. If $y \in N_{C}(x)$ for some internal vertex x of T, then by the above and Property 11, y must be different from and adjacent to both a and b. For the same reason, $N_{C}(u) \subseteq\{y, a\}$ and $N_{C}(v) \subseteq\{y, b\}$, and $N_{C}(z) \subseteq\{b, y\} \cap\{a, y\}=\{y\}$ for all internal vertices z of T. Therefore G must be a rim-subdivision of a wheel with center y. If $N_{C}(x)$ is empty for every internal vertex x of T, then the argument is similar to the one of Case 2.

References

[1] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. 1976. Macmillan, London, 1976.
[2] M. Conforti, G. Cornuéjols, A. Kapoor, K. Vušković, and M.R. Rao. Balanced matrices. In J.R. Birge and K.G. Murty, editors, Mathematical Programming State of the Art 1994, pages 1-33. The University of Michigan, 1994.
[3] K. Truemper. Alpha-balanced graphs and matrices and $G F(3)$-representability of matroids. Journal of Combinatorial Theory B, 32:112-139, 1982.

[^0]: ${ }^{1}$ uripeled@uic.edu
 ${ }^{2}$ jwu2@uic.edu

