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Abstract

For any q ≥ 2, let Σq = {0, . . . , q−1}, and fix a string A over Σq. The A-free strings
of length n are the strings in Σn

q which do not contain A as a contiguous substring.
In this paper, we investigate the possibility of listing the A-free strings of length n so
that successive strings differ in only one position, and by ±1 in that position. Such a
listing is a Gray code for the A-free strings of length n.

We identify those q and A such that, for infinitely many n ≥ 0, a Gray code for the
A-free strings of length n is prohibited by a parity problem. Our parity argument uses
techniques similar to those of Guibas and Odlyzko (Journal of Combinatorial Theory
A 30 (1981) pp. 183–208) who enumerated the A-free strings of length n. When q is
even, we also give the complementary positive result: for those A for which an infinite
number of parity problems do not exist, we construct a Gray code for the A-free strings
of length n for all n ≥ 0.
Mathematical Review Subject Numbers: 68R15, 05A15.

1 Introduction
Fix q ≥ 2 and let Σq = {0, . . . , q−1}. When we refer to strings, we mean strings over
Σq. For any strings A and B, an A-factor of B is a contiguous substring of B equal
to A. Fix a string A, and let F(n) = F(n;A) be the strings of length n which do not
have an A-factor. The set F(n) consists of the A-free strings of length n.

We are interested in Gray codes for F(n). A Gray code for a set is a listing of
its elements so that successive elements are “similar.” Define two strings in Σn

q to be
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similar if they differ in exactly one position, and by ±1 in that position. When q is
even, the addition is done modulo q, but the addition is not modular for odd q.

Given S ⊆ Σn
q , we can form a graph whose vertices are the strings in S, and which

has edges between all pairs of similar strings. Let Gq(S) denote this graph. Then
Gq(S) is a bipartite subgraph of the q-ary n-cube. A Gray code for S is equivalent
to a Hamilton path of Gq(S). For a bipartite graph with bipartition (X,Y ) to have a
Hamilton path, X and Y must have cardinalities which differ by at most one. Call a
string B = b0 . . . bn−1 even if

∑
bi is even, and odd if

∑
bi is odd. If S+ and S− denote

the even and odd strings in S, respectively, then (S+, S−) is a bipartition of Gq(S).
Thus, a Gray code for F(n) is only possible if the numbers of even and odd A-free
strings differ by at most one.

In this paper, we investigate the existence of Gray codes for A-free strings. More
specifically, we characterize the q and A for which a Gray code for F(n) cannot exist for
infinitely many n due to problems with the cardinalities of the even and odd strings.
When the number of even and odd strings in F(n) differ by more than one, we say that
F(n) has a parity problem. We say that F(n) has infinite parity problems to indicate
that F(n) has a parity problem for infinitely many n.

The set F(n) can be defined more generally. Let A be any finite set of strings. The
A-free strings of length n, F(n;A), are the strings of length n which do not contain
any A ∈ A as a substring. The previously mentioned definition of F(n) restricted A
to be a singleton set. Let f(n) = |F(n;A)|, and let

F(z) =
∑
n≥0

f(n)z−n

be its generating function. Many authors [7, 6, 12, 3, 8, 10] have shown F(z) to be a
rational generating function of the form

F(z) =
P (z)
Q(z)

,

where P (z) and Q(z) are polynomials in z. Guibas and Odlyzko [6] provide efficient
means of determining the polynomials P (z) and Q(z) for arbitrary A.

When A is a singleton set, Guibas and Odlyzko [6] present a beautiful and concise
formula for F(z) which depends only upon how the string A “overlaps” itself. The
authors use the correlation of a string to measure self-overlaps. Gardner [1] attributes
the notion of correlation to Conway. Let A = a0 . . . am−1 and B = b0 . . . bn−1. The
correlation of A over B, denoted AB , is the binary string of length m where bit i,
0 ≤ i < m, is defined as follows. Place B under A with b0 under ai. If the overlapping
parts of the string match, then bit i of AB is one, otherwise it is zero. Refer to Figure
1 for an example. The autocorrelation of A is AA.

It is often helpful to view AB as the coefficient sequence of a polynomial. If AB =
c0 . . . cm−1, let ABz =

∑m−1
i=0 cizm−1−i. See Figure 1 for an example. Guibas and

Odlyzko [6] show that when A = {A},

F(z) =
zAAz

(z − q)AAz + 1
. (1)
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AB∗z = z3 -z

AB∗ = 0 0 0 1 0 -1 0

AB− = 0 0 0 0 0 1 0

AB+ = 0 0 0 1 0 0 0

ABz = z3 +z

AB = 0 0 0 1 0 1 0

A = 1001010 B = 101011

Figure 1: Correlations and correlation polynomials

We are more concerned with determining the parity difference for F(n) rather than
the cardinality of F(n). The parity difference of F(n) is the difference between the
number of even and odd strings in F(n). When the parity difference is greater than
one, no Gray code for F(n) can exist. To this end, we define the positive correlation of
A over B, denoted AB+, in an analogous manner to the correlation of A over B. For
bit i of AB+ to be one, bit i of AB must be one and ai . . . am−1 must be even. The
negative correlation of A over B, AB−, is defined similarly except that ai . . . am−1 must
be odd. Define the parity correlation of A over B, AB∗, to be the string in {0,±1}m
equal to AB+ − AB−, where the subtraction is performed bitwise. Refer to Figure
1 for an example. The parity correlation determines the parity difference for F(n) in
much the same way as the correlation determines the cardinality of F(n). Let AB∗z
(AB+

z , AB
−
z ) denote the polynomial in z whose coefficient sequence is given by AB∗

(AB+, AB−).
In Section 2, we develop recursive definitions and generating functions for the parity

difference of F(n). In Section 3, the generating functions are used to characterize those
q and A for which F(n) has infinite parity problems. For these q and A, we know that
Gray codes for F(n) often cannot exist. For even q and for those A which do not have
infinite parity problems, Gray codes for F(n) are constructed for all n. This is done
in Section 4. When q is odd and F(n) has no parity problems, we leave it open to
discover Gray codes for F(n). In Section 5, we summarize the results of the paper and
indicate several related questions. Throughout this paper, A = a0 . . . am−1 represents
the chosen string for F(n) = F(n;A), and m denotes the length of A. We assume
m > 0 because every string contains an ε-factor, where ε denotes the null string.

2 Generating Functions and Recurrences
As mentioned in Section 1, the generating function F(z) has been well studied. In this
section, a similar argument is used to obtain the generating function for the parity
difference of F(n).

Let F+(n) and F−(n) denote the even and odd strings of F(n), and let f+(n) and
f−(n) denote the cardinalities of these sets. Denote the parity difference of F(n) by
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f∗(n) = f+(n)− f−(n). We wish to determine the generating function

F ∗(z) =
∑
n≥0

f∗(n)z−n.

To do so, we develop two identities for F ∗(z). The two identities are then combined to
solve for F ∗(z). Our approach follows that of Guibas and Odlyzko [6].

Before developing the first identity, we introduce several more concepts. For i ∈ Σq,
let Fi(n) denote the strings in F(n) which end with i. Also, let GA(n) be the strings of
length n which contain exactly one A-factor, and the A-factor is a suffix of the string.
Our notation for cardinalities and even and odd strings is extended to the sets Fi(n)
and GA(n). So, for example, F+

i (n) are the even strings in Fi(n), and g∗A(n) is the
parity difference of GA(n). Let G∗A(z) =

∑
n≥0 g

∗
A(n)z−n be the generating function for

g∗A(n). For any strings X and Y , X ∗ Y denotes the concatenation of X and Y .
We now develop the first identity for F ∗(z). Assume that am−1 is even, and suppose

we are given n ≥ 0 and B ∈ F+(n). Then C = B ∗ am−1 is also an even string, and
C either ends with A or it does not. Since this is true for all B ∈ F+(n), f+(n) =
g+
A(n+1)+f+

am−1
(n+1). Every string in F(n+1) must terminate with some character,

so F+(n+ 1) = ∪q−1
i=0F+

i (n+ 1). Let S = Σq\{am−1}, and let S+ and S− denote the
subsets of S consisting of the even and odd characters, respectively. For all i ∈ S,
B ∈ F(n) if and only if B ∗ i ∈ Fi(n+ 1). Therefore,

f+(n) = g+
A(n+ 1) + f+

am−1
(n+ 1)

= g+
A(n+ 1) + f+(n+ 1)−

∑
i∈S

f+
i (n+ 1)

= g+
A(n+ 1) + f+(n+ 1)−

∑
i∈S+

f+(n)−
∑
i∈S−

f−(n)

= g+
A(n+ 1) + f+(n+ 1)− |S+|f+(n)− |S−|f−(n). (2)

We similarly arrive at

f−(n) = g−A(n+ 1) + f−(n+ 1)− |S+|f−(n)− |S−|f+(n). (3)

Subtracting eq. (3) from eq. (2) yields

(|S+| − |S−|+ 1)f∗(n) = g∗A(n+ 1) + f∗(n+ 1). (4)

If A terminates with an odd character, the corresponding equation is

(|S+| − |S−| − 1)f∗(n) = g∗A(n+ 1) + f∗(n+ 1). (5)

We now show that eqs. (4) and (5) depend only on the parity of q, not on the actual
value of q or on am−1. Suppose q = 2k and am−1 is even. Then |S+| = k−1, |S−| = k,
and the coefficient of f∗(n) in eq. (4) collapses to zero. If q = 2k and am−1 is odd, then
the coefficient of f∗(n) in eq. (5) is again zero. When q is even, f∗(n) = −g∗A(n) for
n > 0. By multiplying both sides by z−n, summing over n ≥ 0, and using f∗(0) = 1
and g∗A(0) = 0, we arrive at

F ∗(z) = −G∗A(z) + 1 when q is even. (6)
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Figure 2: Overlaps for the second identity

When q is odd, the coefficient of f∗(n) in both eqs. (4) and (5) collapses to one. For
odd q, f∗(n) = g∗A(n+ 1) + f ∗(n+ 1) for all n ≥ 0. Following the same procedure as
before, we get

(z − 1)F ∗(z) = −zG∗A(z) + z when q is odd. (7)

Equations (6) and (7) constitute the first identity for F ∗(z).
We now develop the second relationship between F ∗(z) and G∗A(z). Fix n ≥ 0 and

let B ∈ F(n). Then B ∗A = C = c0 . . . cn+m−1 certainly contains an A-factor. Let t be
such that ct−m . . . ct−1 is the leftmostA-factor inC. Refer to Figure 2 for an illustration.
Then t > n because B does not have an A-factor, and D = c0 . . . ct−1 ∈ GA(t). Let
r = t − n ≥ 1. Then ct−r . . . ct−1 = a0 . . . ar−1 because these characters begin the A
in B ∗ A. However, ct−r . . . ct−1 = am−r . . . am−1 because D ends in A. Therefore,
am−r . . . am−1 = a0 . . . ar−1, and bit (m− r) of AA is one. For 1 ≤ i ≤ m, let i ∈ AA
denote that bit (m− i) of AA is 1 (similarly for AA+ and AA−). If am−r . . . am−1 has
even parity (r ∈ AA+), then the parity of D is equal to the parity ofB. If am−r . . . am−1

has odd parity (r ∈ AA−), then the parities of B and D are different. In this way,
each B ∈ F+(n) maps to exactly one D in (∪r∈AA+G+

A (n+ r)) ∪ (∪r∈AA−G−A (n+ r)).
Conversely, given a D in (∪r∈AA+G+

A (n+ r)) ∪ (∪r∈AA−G−A (n+ r)), removing the last
r characters gives a unique B in F+(n). Therefore,

f+(n) =
∑

r∈AA+

g+
A(n+ r) +

∑
r∈AA−

g−A (n+ r)

f−(n) =
∑

r∈AA+

g−A(n+ r) +
∑

r∈AA−
g+
A (n+ r)

Subtracting the latter equation from the former yields

f∗(n) =
∑

r∈AA+

g∗A(n+ r) −
∑

r∈AA−
g∗A(n+ r).

Observe that gA(n) = 0 for n < m because m characters are required for an A-factor.
Isolating on the first summation above, we see that∑

n≥0

∑
r∈AA+

g∗A(n+ r)z−n =
∑

r∈AA+

zr
∑
n≥0

g∗A(n+ r)z−(n+r) =
∑

r∈AA+

zrG∗A(z).
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The last term is just zAA+
z G
∗
A(z), so

F ∗(z) = zAA+
z G
∗
A(z)− zAA−z G∗A(z) = zAA∗zG

∗
A(z). (8)

Eq. (8) can be combined with eqs. (6) and (7) to obtain

F ∗(z) =
zAA∗z

zAA∗z + 1
when q is even, (9)

F ∗(z) =
zAAz

(z − 1)AA∗z + 1
when q is odd. (10)

Since F ∗(z) is rational with a degree m polynomial in the denominator, f∗(n)
satisfies a degree m recurrence [8]. This recurrence can be used to efficiently calculate
f∗(n). In the following section, F ∗(z) is used to identify those q and A for which the
set F(n) has infinite parity problems. Constructive results are presented in Section 4.

3 Parity problems
In this section, we examine the generating function F ∗(z) and determine for which q
and which A a Gray code for F(n) is not always possible. For each q, we characterize
all A for which F(n) has infinite parity problems.

Let H(z) =
∑
anz

−n. It is well known that the rate of growth of the an is highly
dependent upon the modulus of the greatest singularity of H(z) (see, for example, Wilf
[11]).

Theorem 3.1 Let H(z) =
∑
n≥0 anz

−n be analytic on the disk |z| > R, let a singular-
ity of H(z) of largest modulus be at a point α0, and let ε > 0 be given. For infinitely
many n we have

|an| > (|α0| − ε)n .

In particular, if H(z) has a singularity of modulus strictly greater than one, then the
coefficients of H(z) are unbounded in absolute value.

The singularities of F ∗(z) are the roots of the polynomial in the denominator of
F ∗(z). This polynomial is either zAA∗z + 1 (when q is even) or (z − 1)AA∗z + 1 (when
q is odd). If the polynomial in question has a root of modulus greater than one, then
Theorem 3.1 implies F(n) has infinite parity problems.

Let p(z) be a polynomial with integer coefficients and a unit leading coefficient.
Suppose that all of the roots of p(z) are contained in the closed unit disk of the
complex plane. This implies (see [9, Problem 200, page 145]) that the non-zero roots
of p(z) are roots of unity. The nth cyclotomic polynomial, φn(z), can be defined as
φn(z) =

∏
(z − θ), where the product is taken over all primitive nth roots of unity.

Therefore, p(z) can be expressed as a monomial zk times a product of cyclotomic
polynomials. A polynomial q(z) is self-reciprocal if α being a non-zero root of q(z)
implies 1/α is also a root. Cyclotomic polynomials are self-reciprocal, as are products
of self-reciprocal polynomials. Thus, if p(z) has all roots in the closed unit disk, then
p(z) is self-reciprocal. It can be easily checked that if q(z) =

∑m
i=0 qiz

m−i is self-
reciprocal then (q0, . . . , qm) = ±(qm, . . . , q0).
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Let (p0, . . . , pm) be the coeffients of the polynomial in the denominator of F ∗(z).
To prove that F(n) has infinite parity problems, we need only show that (p0, . . . , pm) 6=
±(pm, . . . , p0). This is the approach taken in Sections 3.1 and 3.2.

3.1 Parity problems when q is even
Throughout Section 3.1, q is assumed even. The polynomial in the denominator of
F ∗(z) is then p(z) = p(z;A) = zAA∗z + 1. This polynomial either has a root outside
the closed unit disk, or it is self-reciprocal. Given any string A, one can determine
whether p(z) is self-reciprocal by simply examining its coefficients.

We wish to characterize those A for which the roots of p(z) all lie in the closed
unit disk, with the characterization based directly on A and not p(z). A period of A
is an integer p such that ai = ai+p for all 0 ≤ i < m − p. The periods of A are the
positions of the ones in AA. With each non-zero period p, there is a corresponding
prefix a0 . . . ap−1 of A. Call B a base of A if B = a0 . . . ap−1 for some period p > 0 of
A. For any base B of A, A = B ∗ · · · ∗B ∗ C, where C is a (possibly empty) prefix of
B. The minimal period of A is the smallest non-zero period of A. If A has no non-zero
period, then its minimal period is defined to be m. The minimal base of A is the base
corresponding to the minimal period.

Let p be the minimal period of A and let B be its minimal base. The string A is
periodic if p < m and p divides m. In this case, A = B ∗ · · · ∗B. Note that the minimal
base of any string cannot itself be periodic. If A is not periodic, then it is aperiodic.

Not every binary string is an autocorrelation. For example, 000 is not the autocor-
relation of any string. Binary strings which are autocorrelations are known to satisfy
many properties, including the Forward Propagation Rule [5]:

Definition 3.1 A length m bit vector satisfies the Forward Propagation Rule if bits i
and i+ k being one (k ≥ 0) implies bit i+ jk is one for all i ≤ i+ jk < m.

A corollary of the Forward Propagation Rule is that if A = B ∗ · · · ∗ B ∗ C, where B
is the minimal base of A and C is a non-empty (and possibly non-proper) prefix of B,
then AA = 10p−1 ∗ · · · ∗ 10p−1 ∗ CC . The string 10 · · · 0 is the trivial autocorrelation,
and if AA = 10 · · · 0, then A is trivially autocorrelated, or t.a.

Suppose that p(z) = zAA∗z + 1 has all of its roots in the closed unit disk, so p(z) is
self-reciprocal. If X = AA ∗ 1, then it must be that X = XR, where XR denotes the
reverse of X. We claim that this can only occur if A is t.a., or if A is periodic with a
t.a. minimal base. It is simple to verify that in either of these cases, X = XR and the
roots of p(z) are roots of unity.

Now suppose that A is not t.a., and that A is not periodic with a t.a. minimal base.
For instance, suppose that A is periodic, but that its minimal base B is not t.a. Then
bit p−j of BB is one for some 0 < j < p. In this case, bit m− j of AA is also one, but
bits 1 through p− 1 of AA are zero. This implies X 6= XR, where X = AA ∗ 1. Thus,
p(z) cannot be self-reciprocal, so it must have a root outside the closed unit disk. The
case when A is aperiodic but not t.a. can be handled similarly. Therefore, p(z) has all
roots in the closed unit disk iff A is t.a., or if A is periodic with a t.a. minimal base.
For all other A, F(n) has infinite parity problems.
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We could prove directly that if A is t.a. or A is periodic with a t.a. minimal base,
then |f∗(n)| ≤ 1 for all n. In this case, the roots of p(z) are all roots of unity, so f∗(n)
is a periodic function, ie f∗(n) = f∗(n+r) for some r > 0. By showing that |f∗(n)| ≤ 1
for 0 ≤ n < r, we could conclude that |f∗(n)| ≤ 1 for all n. In Section 4, we actually
construct Gray codes for F(n) for all n and any such A. This implies F(n) never has
a parity problem. We therefore omit this latter part of the proof and simply state:

Theorem 3.2 Fix an even q ≥ 2, m > 0, and A ∈ Σm
q . If A is t.a. or A is periodic

with a t.a. minimal base, then F(n) has no parity problems. Otherwise, F(n) has
infinite parity problems.

It may seem to the reader that t.a. strings are rare. In fact, they are not. Guibas
and Odlyzko [5, 4] have studied the number of strings with a given autocorrelation.
When q = 2, about 27% of all strings [5] are t.a. For q ≥ 3, the majority of strings are
t.a., and as q gets larger, the vast majority of strings are t.a. For large q, the fraction
of t.a. strings is about (q − 2)/(q − 1).

In Theorem 3.2, we have characterized those A for which F(n) has infinite parity
problems when q is even. The odd q case is examined in the next section.

3.2 Parity problems when q is odd
When q is odd, the polynomial in the denominator of F ∗(z) is p(z) = p(z;A) =
(z − 1)AA∗z + 1. If p(z) is not self-reciprocal, then F(n) has infinite parity problems.

We first show that, for certain polynomials c(z), if (z− 1)c(z) + 1 is self-reciprocal,
then c(z) has two unit coefficients followed by a zero coefficient. If we interpret c(z)
as AA∗z, then for certain strings A, if p(z) is self-reciprocal, then AA contains the
substring 110.

Lemma 3.1 Let c(z) =
∑m−1
i=0 ciz

m−1−i satisfy c0 6= 0 and c1 = c2 = cm−1 = 0. If
(z − 1)c(z) + 1 is self-reciprocal, then cm−2 = cm−3 = 1.

Proof. Let p(z) =
∑m
i=0 piz

m−i = (z − 1)c(z) + 1 be self-reciprocal. Then p0 = c0,
pm = 1− cm−1 = 1, and for i, 0 < i < m, pi = ci − ci−1. If pi = pm−i for 0 ≤ i ≤ m,
then

c0 = p0 = pm = 1
−c0 = c1 − c0 = p1 = pm−1 = cm−1 − cm−2 = −cm−2

0 = c2 − c1 = p2 = pm−2 = cm−2 − cm−3

Therefore, cm−2 = cm−3 = 1. The same result follows when pi = −pm−i for all i. 2

Suppose c(z) = AA∗z in Lemma 3.1. If the conditions are satisfied and p(z) is self-
reciprocal, then last three positions of AA∗ are 110. Applying the Forward Propagation
Rule, it is easy to see that no autocorrelation can contain the substring 110. Thus, if
AA is of the form 100X0 for some binary string X , then p(z) cannot be self-reciprocal.

We now examine other possible forms of AA and determine when p(z) is self-
reciprocal. If AA = X1 and am−1 is odd, then p(z) has constant term two, and is thus
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not self-reciprocal. Let p be the minimal period of A and let B be its minimal base.
The rest of the analysis is divided into three cases.

Case 1: When p > 2. In this case, AA = 100X. We have already discussed the
possibility that AA = 100Y 0, and the possibility that AA = 100Y 1 with am−1 odd. We
are left to consider when AA = 100Y 1 and am−1 is even. Suppose am−1 is even and AA
ends in 01k, k > 0. Since a0 = am−k = · · · = am−1 is even, AA∗z = zkc(z)+zk−1+. . .+1,
where c(z) is the degree (m−k−1) polynomial whose coefficients are given by the first
m− k positions of AA∗. The constant term of c(z) is zero. In this case,

p(z) = (z − 1)AA∗z + 1 = zk((z − 1)c(z) + 1).

If p′(z) = (z − 1)c(z) + 1 is self-reciprocal, then the lower three coefficients of c(z) are
1, 1, 0 by Lemma 3.1. This implies bits (m−k−3) through (m−k−1) of AA are 110,
again leading to a contradiction. Thus p′(z), and p(z), are not self-reciprocal.

Case 2: When p = 2. We separately examine when m is even and m is odd. First
suppose m is even. Then AA = (10)m/2 and A = B ∗ · · · ∗ B for an aperiodic string
B of length two. Say B is an even string, so p(z) = zm − zm−1 + zm−2 · · · − z + 1. In
this particular subcase, the roots of p(z) are roots of unity (p(z) divides zm+1 + 1). If
B is an odd string and m = 2, then p(z) = −z2 + z + 1. Here, the parity differences
are the Fibonacci numbers (doesn’t the generating function look familiar?). Finally,
consider when B is odd and m ≥ 4. The smallest term of AA∗z is −z, so p(z) =
±zm ∓ zm−1 · · ·+ z+ 1, where the signs of zm and zm−1 are different, but the signs of
z and 1 are both positive. This p(z) is not self-reciprocal. Thus, when p = 2 and m is
even, F(n) has infinite parity problems if the minimal base is an odd string. Otherwise,
the roots of p(z) are roots of unity.

If m is odd, a similar analysis yields that F(n) has infinite parity problems if the
minimal base does not consist of two even characters. If B does consist of two even
characters, then the roots of p(z) all lie in the closed unit disk.

Case 3: When p = 1. We have already considered the possibility that AA = X1
and am−1 is odd. We therefore need only consider when am−1 is even. In this case,
p(z) = zm, and F ∗(z) is a simple polynomial with coefficients in {0,±1}. When p = 1
and a0 = am−1 is odd, F(n) has infinite parity problems. When a0 is even, F(n) does
not have a parity problem for any n.

As mentioned in Section 3.2, if p(z) has all roots in the closed unit disk, then f∗(n)
is a periodic function. By showing that |f ∗(n)| ≤ 1 for 0 ≤ n < r, where r is the period
of the function, we could prove that when the roots of p(z) are all in the closed unit
disk, F(n) has no parity problems. As in Section 3.1, we omit this part of the proof,
and state the following theorem.

Theorem 3.3 Fix an odd q ≥ 3, m > 0, and A ∈ Σm
q with minimal period p. If

• p > 3, or

• p = 2, m is even, and a0a1 is odd, or

• p = 2, m is odd, and either a0 or a1 is odd, or

• p = 1 and a0 is odd,
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then F(n) has infinite parity problems. Otherwise, F(n) has no parity problems.

In Section 3, we have examined the generating function F ∗(z) and identified the q
and A for which the coefficients of F ∗(z) are unbounded. In Section 4, Gray codes are
constructed for F(n) when q is even and A is t.a. or A is periodic with a t.a. minimal
base. These are the only A for which F(n) has no parity problems when q is even. For
odd q, it remains open to find Gray codes for F(n) when F(n) has no parity problems.

4 Gray Codes for A-Free Strings when q is even
Throughout Section 4, q is assumed even. The goal of this section is to construct Gray
codes for F(n) for all n ≥ 0 when A is t.a. or A is periodic with a t.a. minimal base.
For all other A, Theorem 3.2 showed that F(n) has infinite parity problems. We begin
by presenting the recursive identity on which our constructions are based.

Let C be a string over Σq. Define H(n;C) to be the D ∈ Σn
q such that C ∗D has

no A-factor. It is clear that for any k ≤ n,

H(n;C) =
⋃

D∈H(n−k;C)

D ∗ H(k;C ∗D). (11)

For certain A, we construct Gray codes for H(n;C) for all n and C. Letting ε denote
the empty string, F(n) = H(n; ε). Thus, for certain A, we get Gray codes for F(n).

Our method of constructing Gray codes is recursive. In Section 4.1, we describe
the construction methods and present the main recursive step. Sections 4.2 through
4.5 supply the construction of the basis. The basis construction is also recursive.

4.1 Construction Overview
In this section, we overview our construction methodology. The main inductive step is
given in the following lemma. Let h∗(n;C) be the parity difference of H(n;C). Bold
letters (L) represent sequences of strings. If L is a list of strings, then LR denotes the
reverse of L.

Lemma 4.1 Fix an even q ≥ 2, m > 0, and A ∈ Σm
q . Suppose there exists k > 0 such

that both of the following conditions are true.

1. For any n, 1 ≤ n ≤ k, and for any C with no A-factor, there is a Gray code for
H(n;C). When h∗(n;C) = 0, there is a cyclic Gray code.

2. There exist strings S, T ∈ Σk
q , of equal parity, such that for any D with no A-

factor, there is a Gray code for H(k;D) from S to T .

Then, for all n ≥ 1 and for all C with no A-factor, there is a Gray code for H(n;C).
When h∗(n;C) = 0, there is a cyclic Gray code.

Proof. We argue by induction on n. Let C be any string with no A-factor. When
1 ≤ n ≤ k, condition (1) of the lemma provides Gray codes for H(n;C). Assume n > k
and recall the recursive definition of eq. (11).
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By induction, there exists a Gray code L′ = D0, . . . ,DN−1 for H(n − k;C). For
0 ≤ i < N , let Li be the Gray code for H(k;C ∗ Di) from S to T which exists by
condition (2). A Gray code for H(n;C) is given by

L = D0 ∗ L0, D1 ∗LR1 , D2 ∗ L2, . . .

Since S and T have equal parity, |h∗(k;D)| = 1 for all D. Therefore, h∗(n;C) = 0 iff
h∗(n− k;C) = 0, and L is cyclic iff L′ is cyclic. 2

We are left with the difficult task of proving that the conditions of the lemma can
be satisfied when A is t.a. and when A is periodic with a t.a. minimal base. Sections
4.2 through 4.5 show this to be true. If A is t.a., then the conditions are satisfied when
k = m. If A is periodic with a t.a. minimal base, then the conditions are satisfied when
k = m+ p, where p is the minimal period of A.

We construct cyclic Gray codes for H(n;C) whenever h∗(n;C) = 0. It is therefore
important to know when h∗(n;C) = 0 and when |h∗(n;C)| = 1. For n ≤ m, Lemma
4.2 characterizes these two cases based upon whether H(n;C) contains certain strings.
For i < j, aj . . . ai is defined to be the empty string. Every C ∈ Σ∗q has an ε-suffix.

Lemma 4.2 Fix an even q ≥ 2, m > 0 and A ∈ Σm
q . For any n, 1 ≤ n ≤ m, and for

any C ∈ Σ∗q , |h∗(n;C)| = 1 if and only if am−n . . . am−2x ∈ H(n;C) for all x 6= am−1

and C ends with a0 . . . am−n−1. Otherwise, h∗(n;C) = 0.

Proof. We attempt to pair the even and odd strings in H(n;C). If every string in
H(n;C) except one can be paired with a string of opposite parity, then |h∗(n;C)| = 1.
Arbitrarily pair the even and odd characters in Σq. For x ∈ Σq, the mate of x is the
element with which x is paired. For D = d0 . . . dn−1 ∈ H(n;C), let D′ = d0 . . . dn−2y,
where y is the mate of dn−1. Then (D,D′) is a perfect pairing of H(n;C) unless
there exists a D ∈ H(n;C) with C ∗D′ having an A-suffix. In this case, C ends with
a0 . . . am−n−1 and D = am−n . . . am−2z, where z is the mate of am−1. Since C ∗D does
not have an A-factor, C ∗am−n . . . am−2x does not have an A-factor for any x 6= am−1,
and D is the only unpaired string in H(n;C). 2

Let q, m, and A be as in the lemma. Suppose that n, 1 < n ≤ m, and C ∈ Σ∗q
are such that |h∗(n;C)| = 1. By the preceding lemma, C ∗ am−n . . . am−1 has an
A-suffix, but C ∗ am−n . . . am−2x does not have an A-factor for x 6= am−1. Then
(C ∗ am−n) ∗ am−n+1 . . . am−1 also has an A-suffix, and (C ∗ am−n) ∗ am−n+1 . . . am−2x
does not have an A-factor for x 6= am−1. Thus |h∗(n−1;C ∗am−n)| = 1. For x 6= am−n,
since C ∗ x does not end with am−n, h∗(n− 1;C ∗ x) = 0.

Now suppose n and C are such that h∗(n;C) = 0. Then either am−n . . . am−2x ∈
H(n;C) for all x ∈ Σq, or am−n . . . am−2x 6∈ H(n;C) for all x ∈ Σq. So h∗(n− 1;C ∗
am−n) = 0. For x 6= am−n, C ∗ x does not end with am−n, so h∗(n− 1;C ∗ x) = 0.

We thus get the following corollary of Lemma 4.2.

Corollary 4.1 Fix an even q ≥ 2, m > 0, and A ∈ Σm
q . For any n, 1 < n ≤ m, and

any C ∈ Σ∗q, h∗(n;C) = 0 if and only if h∗(n − 1;C ∗ x) = 0 for all x ∈ Σq. Also,
|h∗(n;C)| = 1 if and only if |h∗(n− 1;C ∗ am−n)| = 1 and h∗(n− 1;C ∗ x) = 0 for all
x ∈ Σq\{am−n}.
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When q = 2 and n ≤ m, Gray codes for H(n;C) are studied in Section 4.2. When
q ≥ 4 is even and n ≤ m, Gray codes are examined in Section 4.3. Gray codes when
n ≤ m do not require A to be t.a. or to be periodic with a t.a. minimal base. By
Lemma 4.2, F(n) cannot have a parity problem when n ≤ m. Only as n gets larger
can parity problems arise. Gray codes for arbitrary n are discussed in Sections 4.4
and 4.5. The former section considers when A is t.a., while the latter section considers
when A is periodic with a t.a. minimal base.

4.2 Gray codes when q = 2 and n ≤ m
In this section we construct Gray codes for H(n;C) when q = 2 and n ≤ m. Through-
out Section 4.2, it is assumed that q = 2. The constructions of this section also assume
that A ends with two identical characters. In Sections 4.4 and 4.5, we show how to
remove this restriction. For x ∈ Σq, let x = x+ 1 mod q.

The Gray code constructions of this section are based on eq. (11) when k = n− 1.
For any C, define r(C) = r(C;A) to be the minimum length of any non-empty string
D such that C ∗D ends in A-factor. Such a D must be of the form am−r . . . am−1 for
some 0 < r ≤ m. When k = n− 1 and C does not have an A-factor, eq. (11) becomes

H(n;C) = am−1 ∗H(n− 1;C ∗ am−1) when r(C) = 1, (12)
= 0 ∗ H(n− 1;C ∗ 0) ∪ 1 ∗ H(n− 1;C ∗ 1) otherwise. (13)

We build cyclic Gray codes forH(n;C) when h∗(n;C) = 0, and Gray codes between
fixed endpoints when |h∗(n;C)| = 1. Given h∗(n;C), Corollary 4.1 yields h∗(n−1;C∗0)
and h∗(n−1;C ∗1). If C does not have an A-factor, then H(n;C) = Σn

q when r(C) > n
because r(C) characters are needed to create an A-factor. We say that L contains the
path [X, . . . , Z] if X, . . . , Z appears as a contiguous subsequence of L or LR.

Theorem 4.1 Fix q = 2, m > 1 and A ∈ Σm
2 such that A ends with two identical

characters. Let n be in the range 2 ≤ n ≤ m. Then there exist strings Sn, Tn, Xn, Yn,
Zn, and Z′n such that for any C ∈ Σ∗2 with no A-factor,

1. If r(C) = 1 and n ≥ 3, then there exists a Gray code for H(n;C) containing
the path [Xn, Yn, Zn]. When h∗(n;C) = 0, the Gray code is cyclic. Otherwise,
|h∗(n;C)| = 1, and the Gray code starts at Sn and ends at Tn.

2. If r(C) > 1 and n ≥ 2, then there exists a Gray code for H(n;C) containing
the path [Xn, Yn, Z

′
n]. When h∗(n;C) = 0, the Gray code is cyclic. Otherwise,

|h∗(n;C)| = 1, and the Gray code starts at Sn and ends at Tn.

For 2 ≤ n ≤ m, Sn and Tn have parity opposite that of An = am−n . . . am−1, and
An ∈ H(n;C) implies Sn, Tn ∈ H(n;C).

Proof. Assume that A ends in 00; similar techniques apply if A ends in 11. We prove
Parts 1 and 2 by induction on n using the recursive decomposition of eqs. (12) and
(13), and using the strings

Sn = am−n . . . am−1 Xn = 101n−2

Tn = am−n . . . am−2am−1 Yn = 1n

Z ′n = 01n−1 Zn = 1101n−3
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Let C0 = C ∗ 0 and C1 = C ∗ 1.
Basis. First consider when n = 2 and r(C) > 1. If r(C) > 2, then H(2;C) = Σ2

2. If
r(C) = 2 then H(2;C) = {01, 11, 10}. The Gray codes in these cases are 01, 11, 10, 00
and 01, 11, 10, respectively. These Gray codes satisfy Part 2.

Next consider when n = 3 and r(C) = 2, so C ends with a0 . . . am−3. By eq. (13)

H(3;C) = 0 ∗H(2;C0) ∪ 1 ∗ H(2;C1).

Note that C0 ends with a0 . . . am−2, so r(C0) = 1 and H(2;C0) = {11, 10}. Since C1

ends with 1, r(C1) ≥ 2. If r(C1) = 2, then H(2;C1) = {01, 11, 10}, and if r(C1) >
2, then H(2;C1) = Σ2

2. In the former case, let L = 101, 111, 011, 010, 110. Then
L contains the path [X3, Y3, Z

′
3]. The fact that r(C1) = 2 implies that C1 ends in

a0 . . . am−3, so am−3 = 1, and L runs between S3 and T3. In the latter case, L =
101, 111, 011, 010, 110, 100 is a cyclic Gray code containing [X3, Y3, Z

′
3].

Inductive step for Part 1. Suppose that n is in the range 3 ≤ n ≤ m, C ∈ Σ∗2 has
no A-factor, and r(C) = 1. Then H(n;C) = 1 ∗ H(n − 1;C1) by eq. (12). Since C1

ends with 1, r(C1) ≥ 2 and H(n− 1;C1) falls into Part 2 of the theorem. Inductively
assume that the theorem holds for H(n− 1;C1).

Suppose h∗(n;C) = 0, so h∗(n − 1;C1) = 0 also. By induction, there exists
a cyclic Gray code L1 for H(n − 1;C1) containing the path [Xn−1, Yn−1, Z′n−1] =
[101n−3, 1n−1, 01n−2]. Then 1 ∗ L1 is a Gray code for H(n;C) satisfying Part 1.

Next suppose |h∗(n;C)| = 1, so |h∗(n− 1;C1)| = 1 also. We can inductively find a
Gray code L1 for H(n− 1;C1) such that L1 starts at Sn−1 and ends at Tn−1. Further,
L1 contains the path [Xn−1, Yn−1, Z

′
n−1]. If am−n = 1, then 1 ∗L1 satisfies Part 1. By

Lemma 4.2, C1 must end with a0 . . . am−n, so am−n = 1. This concludes the inductive
step for Part 1 of the theorem.
Inductive step for Part 2. Suppose that n is in the range 3 ≤ n ≤ m, C ∈ Σ∗2 has
no A-factor, and r(C) ≥ 2. Inductively assume that the theorem holds for H(n−1;C0)
and H(n − 1;C1). We separately examine when h∗(n;C) = 0 (Case 2a), and when
|h∗(n;C)| = 1 (Case 2b).
Case 2a. Suppose h∗(n;C) = 0. By Corollary 4.1, both h∗(n−1;C0) and h∗(n−1;C1)
are also zero. Note that r(C1) ≥ 2 because C1 ends with 1. There is a cyclic Gray code
L1 for H(n−1;C1) containing the path [Xn−1, Yn−1, Z

′
n−1]. Also, there is a cyclic Gray

code L0 for H(n− 1;C0) containing the path [Xn−1, Yn−1, Un−1], where Un−1 = Zn−1

if r(C0) = 1, and Un−1 = Z ′n−1 otherwise. Since L0 and L1 both contain the path
[Xn−1, Yn−1], a Gray code L for H(n;C) can be formed by joining 0 ∗L0 and 1 ∗L1 by
these strings as in Figure 3. Then L contains the path [1 ∗ Z′n−1, 1 ∗ Yn−1, 0 ∗ Yn−1] =
[Xn, Yn, Z′n], satisfying Part 2.
Case 2b. Suppose |h∗(n;C)| = 1. Let D = C ∗ am−n and E = C ∗ am−n, so

H(n;C) = am−n ∗ H(n− 1;D)
⋃

am−n ∗ H(n− 1;E).

Using Corollary 4.1, h∗(n−1;D) = 0 and |h∗(n−1;E)| = 1. The possibility that n = 3
and r(C) = 2 was considered in the basis. Inductively, there exists a cyclic Gray code Ld
forH(n−1;D) containing the path [Xn−1, Yn−1, Un−1], where Un−1 = Zn−1 if r(D) = 1
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1 ∗ L1

0 ∗ L0

¶
µ

³
´. . . . . .r r r1 ∗ Z′n−1 1 ∗ Yn−1 1 ∗Xn−1

. . . . . .r r r
0 ∗ Un−1 0 ∗ Yn−1 0 ∗Xn−1

¶
µ

³
´

If r(C0) = 1, then Un−1 = 1101n−4.
If r(C0) > 1, then Un−1 = 01n−2.

Figure 3: Gray code construction for Case (2a)

am−n ∗ Le

am−n ∗ Ld

. . . . . .r r r r ram−n ∗ Sn−1

am−n ∗ U ′n−1 am−n ∗ Yn−1 am−n ∗Xn−1
am−n ∗ Tn−1

. . . . . .r r r
am−n ∗ Un−1 am−n ∗ Yn−1 am−n ∗Xn−1

¶
µ

³
´

If r(D) = 1, then Un−1 = Zn−1. Else Un−1 = Z′n−1.
If r(E) = 1, then U ′n−1 = Zn−1. Else U ′n−1 = Z′n−1.

Figure 4: Gray code construction for Case (2b)

and Un−1 = Z′n−1 otherwise. There also exists a Gray code Le for H(n−1;E) starting
at Sn−1 and ending at Tn−1. The Gray code Le contains the path [Xn−1, Yn−1, U ′n−1],
where U ′n−1 = Zn−1 if r(E) = 1 and U ′n−1 = Z ′n−1 otherwise.

Let L be the Gray code obtained from am−n ∗Ld and am−n ∗Le as shown in Figure
4. Then L starts and ends on the correct vertices, and it contains the path

[am−n ∗U ′n−1, am−n ∗ Yn−1, am−n ∗ Yn−1, am−n ∗Un−1].

If am−n = 0, then D ends with 1, so r(D) > 1 and Un−1 = Z′n−1. If am−n = 1, then
E ends with 1, so r(E) > 1 and U ′n−1 = Z′n−1. In either case, L contains the path
[Xn, Yn, Z′n]. This completes the inductive argument.

Note that Sn and Tn have parity opposite that of An. If C ∗ am−n . . . am−1 does
not have an A-factor, then neither does C ∗ am−n . . . am−1. Likewise for C ∗ Tn. 2

By considering the small n cases not covered by Theorem 4.1, we get the following.

Corollary 4.2 Fix q = 2, m > 1 and A ∈ Σm
2 such that A ends with two identical

characters. For any n, 1 ≤ n ≤ m, and for any C ∈ Σ∗2 with no A-factor, there is a
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Gray code for H(n;C). When h∗(n;C) = 0, the Gray code is cyclic. Otherwise, its
endpoints are independent of C and of equal parity.

Proof. We need only consider when n ≤ 2 and Theorem 4.1 does not apply. 2

In the next section, we present results analogous to Theorem 4.1 and Corollary 4.2
for even q ≥ 4.

4.3 Gray codes when q ≥ 4 is even and n ≤ m
In this section, we construct Gray codes for H(n;C) when 1 ≤ n ≤ m and q ≥ 4 is
even. For x ∈ Σq, we defined x ≡ x+ 1 mod q. We similarly define x ≡ x− 1 mod q.
Recall from Section 1 that when q is even, two strings are “similar” if they differ at
one position, and by ±1 mod q in that position.

Theorem 4.2 Fix an even q ≥ 4, m > 0 and A ∈ Σm
q . For any n, 1 ≤ n ≤ m,

there exist strings Sn, Tn, Xn, Yn, and Zn such that for any C ∈ Σ∗q with no A-
factor, there exists a Gray code for H(n;C) containing the path [Xn, Yn, Zn]. When
h∗(n;C) = 0, the Gray code is cyclic, and when |h∗(n;C)| = 1, the Gray code is from
Sn to Tn. Further, Sn and Tn have parity opposite that of An = am−n . . . am−1, and
An ∈ H(n;C) implies Sn, Tn ∈ H(n;C).

Proof. Let x satisfy |x− am−1| ≥ 2. We argue inductively on n using the strings

Sn = am−n . . . am−1 Xn = xxn−1

Tn = am−n . . . am−1 Yn = xn

Zn = xxn−1

Let C be a string over Σq with no A-factor. When r(C) > 1, H(1;C) = Σq. When
r(C) = 1, H(1;C) = Σq \{am−1}. Note that {x, x, x} ⊆ H(1;C). The Gray codes in
these cases are, respectively, am−1, am−1, . . . , am−1 and am−1, . . . , am−1. These Gray
codes satisfy the theorem.

Suppose that 1 < n ≤ m and C ∈ Σ∗q has no A-factor. From (11) we obtain

H(n;C) =
⋃

y∈H(1;C)

y ∗ H(n− 1;C ∗ y).

For each y ∈ H(1;C), assume the theorem holds for H(n− 1;C ∗ y). Let Ly be a Gray
code for H(n − 1;C ∗ y) containing the path [Xn−1, Yn−1, Zn−1]. These Gray codes
exist inductively, and are either cyclic, or between Sn and Tn.

Suppose h∗(n;C) = 0. By Corollary 4.1, h∗(n− 1;C ∗ y) = 0 for all y ∈ H(1;C), so
the Gray codes Ly are cyclic. The y ∗ Ly can be connected as in Figure 5 (a) to form
a Gray code for H(n;C). First, join all y ∗Ly using the string y ∗ Yn−1, ensuring that
[x∗Yn−1, x∗Yn−1, x∗Yn−1] is a subpath. This can be done because {x, x, x} ⊆ H(1;C).
Next, use the outer two strings on the fixed path to finish the joining the y ∗Ly. This
strategy can be employed independent of r(C).

A similar strategy works when |h∗(n;C)| = 1. In this case, by Corollary 4.1,
|h∗(n − 1;C ∗ am−n)| = 1 and h∗(n − 1;C ∗ y) = 0 for y ∈ H(1;C)\{am−n}. For
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(a) when h∗(n;C) = 0
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x ∗ Lx

...

(a) when |h∗(n;C)| = 1

Figure 5: Gray code construction when q ≥ 4 is even.

y ∈ H(1;C), y 6= am−n, Ly is cyclic, while Lam−n goes from Sn−1 to Tn−1. Connect all
of the y ∗Ly using y ∗Yn−1. Then, as before, use the outer two strings to finish joining
the y ∗ Ly. Refer to Figure 5 (b) for an illustration.

Observe that Sn and Tn have parity opposite that of An, and if C ∗ An = C ∗
am−n . . . am−1 has no A-factor, then neither do C ∗ Sn and C ∗ Tn. 2

As with Theorem 4.1, we get a corollary to Theorem 4.2.

Corollary 4.3 Fix an even q ≥ 4, m > 0 and A ∈ Σm
q . For any n, 1 ≤ n ≤ m, and

any C ∈ Σ∗q with no A-factor, there is a Gray code for H(n;C). When h∗(n;C) = 0,
the Gray code is cyclic. Otherwise, its endpoints are independent of C and of equal
parity.

The techniques used to construct Gray codes in Theorems 4.1 and 4.2 do not apply
as n is increased. In particular, Lemma 4.2 and Corollary 4.1 are not true for all n > m.
For larger n, a new construction technique must be employed.

In Section 3.1 we showed that, when q is even, unless A is either t.a. or periodic
with a t.a. minimal base, then F(n) has infinite parity problems. In Section 4.4, Gray
codes for F(n) are constructed for all n when A is t.a and q is even. When A is periodic
with a t.a. minimal base and q is even, Gray codes for F(n) also exist for all n ≥ 0.
The proof of this result is in Section 4.5.
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4.4 A trivially autocorrelated
Recall that A is trivially autocorrelated, or t.a., if AA = 10 · · · 0, or, equivalently, if
r(A) = m. A trivially autocorrelated string can overlap itself in only the trivial ways.
In this section, we construct Gray codes for F(n) for all n ≥ 0 when A is t.a. and q is
even. The main result of this section is Theorem 4.3.

Theorem 4.3 Fix an even q ≥ 2, m > 0, and a t.a A ∈ Σm
q . For all n ≥ 1 there is

a Gray code for F(n). If f∗(n) = 0, and either A 6∈ {01, 10} or q ≥ 4, then there is a
cyclic Gray code.

We prove Theorem 4.3 a little later. First, we examine the parity difference ofH(m;C).

Lemma 4.3 Fix an even q ≥ 2, m > 0 and a t.a A ∈ Σm
q . For any C ∈ Σ∗q with no

A-factor, |h∗(m;C)| = 1.

Proof. Let C ∈ Σ∗q be a string with no A-factor. It is clear that A 6∈ H(m;C). By
Lemma 4.2, if, for all x 6= am−1, A′ = a0 . . . am−2x ∈ H(m;C), then |h∗(m;C)| = 1.
Suppose D = C∗A′ has an A-factor. Any A factor in D must overlap A′ in a non-trivial
way, which contradicts the hypothesis that A is t.a. Therefore, C ∗ A′ does not have
an A-factor and the lemma is proved. 2

We now prove Theorem 4.3. Recall Lemma 4.1 of Section 4.1. First suppose that
A is any non-empty t.a. string and q ≥ 4. Then Corollary 4.3 provides Gray codes
for H(n;C) for all n, 1 ≤ n ≤ m, and all C with no A-factor. It provides cyclic Gray
codes when h∗(n;C) = 0. This same corollary, in conjuction with Lemma 4.3 above,
also proves the existence of strings S and T , of equal parity, such that for any D with
no A-factor, there is a Gray code for H(m;D) from S to T . Hence, conditions (1) and
(2) of Lemma 4.1 are satisfied when k = m. We can therefore conclude that for all
n ≥ 1 and for all C with no A-factor, there is a Gray code for H(n;C). Further, there
is a cyclic Gray code when h∗(n;C) = 0. Since F(n) = H(n; ε), Theorem 4.3 is proved
when q ≥ 4 is even.

Next suppose that q = 2 and A is a t.a. string ending in two identical characters. In
this case, Corollary 4.2 and Lemma 4.3 prove that, when k = m, conditions (1) and (2)
of Lemma 4.1 are again satisfied. Thus, for all n ≥ 1 and all C with no A-factor, there
is a Gray code for H(n;C). There is a cyclic Gray code when h∗(n;C) = 0. Again,
Theorem 4.3 follows by F(n) = H(n;C).

We are left to consider when q = 2 and A is t.a. but does not end in two identical
characters. We claim that any t.a. binary string of length m ≥ 3 has either am−2 =
am−1 or a0 = a1. To see this, suppose A is a t.a. binary string of length m ≥ 3 with
a0 6= a1 and am−2 6= am−1. WLOG, say a0 = 0. If am−1 = 0, then bit (m− 1) of AA
is one. If am−1 = 1, then A begins and ends with 01, so bit (m− 2) of AA is one. In
either case, A is not t.a.

So every t.a. binary string of length m ≥ 3 must begin or end with two identical
characters. We have already considered when A ends with two identical characters, so
suppose that A begins with two identical characters, and let Z be the reverse of A.
Then Z is also t.a., and Z ends with two identical characters. For n ≥ 1, we can find
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a Gray code L for the strings with no Z-factor. Reversing every string on L gives a
Gray code for F(n), the strings with no A-factor.

We have now proved Theorem 4.3 in all cases except when q = 2 and m < 3. The
only t.a. binary strings of length less than or equal to two are {0, 1, 01, 10}. When
A = 0, F(n) = {1n}. When A = 01, F(n) = {1k0n−k|0 ≤ k ≤ n}. When A = 1
or A = 10, the set F(n) is similarly defined. Gray codes in these cases are clear and
unique. If A ∈ {01, 10}, then no cyclic Gray code exists even when the parity difference
is zero. This completes the proof of Theorem 4.3.

In Section 4.5, we prove an analogous result when A is periodic with a t.a. minimal
base.

4.5 A periodic with a t.a. minimal base
In this section, we examine H(n;C) when A = B ∗ · · · ∗ B and B is t.a. Throughout
Section 4.5, B refers to the minimal base of A and p to the minimal period. Again,
q ≥ 2 is assumed even. The overall strategy employed in this section is identical to
that of the previous section. We identify k such that |h∗(k;C)| = 1 independent of C.
We then apply Lemma 4.1 to obtain Gray codes for all n.

As seen in Section 4.4, when A is t.a. and k = m, |h∗(k;C)| = 1 independent of C.
When A is periodic with a t.a. minimal base, this is no longer true, as we see below.

Lemma 4.4 Fix an even q ≥ 2, m > 0 and a periodic A ∈ Σm
q with a t.a minimal

base B. For any C ∈ Σ∗q with no A-factor, h∗(m;C) = 0 if and only if C ends with B.
Otherwise, |h∗(m;C)| = 1.

Proof. Let C ∈ Σ∗q be any string with no A-factor. By Lemma 4.2 with n = m,
h∗(m;C) = 0 if and only if A′ = a0 . . . am−2x 6∈ H(m;C) for some x 6= am−1. Suppose
C ∗ A′ has an A-factor. Some B-term of this A-factor must overlap the first B-term
of A′. Since B is t.a., the B-terms must overlap completely. This implies that C ends
with B. Otherwise, A′ ∈ H(m;C) for all x 6= am−1, and |h∗(m;C)| = 1. 2

Suppose that A ∈ Σm
q is periodic with a t.a. minimal base and with minimal period

p. By the previous lemma, there cannot exist strings S and T such that for any C
with no A-factor, there is a Gray code for H(m;C) from S to T . However, we will
show that such strings S and T do exist for H(m + p;C). As an intermediate step,
we extend Theorems 4.1 and 4.2 to provide Gray codes for H(n;C) for n in the range
m < n ≤ m+ p. This is done below.

Lemma 4.5 Fix an even q ≥ 2, m > 0, and a periodic A ∈ Σm
q with a t.a. minimal

base B and with minimal period p. When q = 2, further assume that m ≥ 2 and
am−2 = am−1. For any C ∈ Σ∗q with no A-factor and any n, 1 ≤ n ≤ p, there is a Gray
code for H(m+n;C). When h∗(m+n;C) = 0, there is a cyclic Gray code. Otherwise,
|h∗(m+n;C)| = 1, and there is a Gray code between two strings independent of C and
of equal parity.

Proof. Let C ∈ Σ∗q be a string with no A-factor, and let n be in the range 1 ≤ n ≤ p.
By Corollaries 4.2 and 4.3, for 1 ≤ l ≤ m, there exist strings Sl and Tl, of equal parity,
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such that H(l;C) has a Gray code between Sl and Tl whenever |h∗(l;C)| = 1. Define
S and T by S = Sn ∗ Sm and T = Tn ∗ Tm. We show that when |h∗(n+ m;C)| = 1,
there is a Gray code for H(n+ m;C) between S and T . Observe that S and T have
equal parity.

For a recursive decomposition of H(m+ n;C), we use eq. (11) with k = m. Since
n ≤ p, there exists at most one D ∈ H(n;C) such that C ∗D ends with B, namely
An = bp−n . . . bp−1. By Lemma 4.4, for at most oneD ∈ H(n;C) does h∗(m;C∗D) = 0.
When C ∗D does not end with B, there is a Gray code LD for H(m;C ∗D) between
Sm and Tm. When C ∗D ends with B, there is a cyclic Gray code LD for H(m;C ∗D).
Consider: when |h∗(n;C)| = 1 (Case 1), and when h∗(n;C) = 0 (Case 2).
Case 1. Assume |h∗(n;C)| = 1. By Corollaries 4.2 and 4.3, there exists a Gray code
L′ = D0, . . . ,DN−1 for H(n;C) between Sn and Tn. Note that N is odd. By Lemma
4.2, C ends with a0 . . . am−n−1, so An 6∈ H(n;C). Therefore, for no D in H(n;C) does
C ∗D end with B. By Lemma 4.4, |h∗(m;C ∗Di)| = 1 for all Di. For each i, we can
find a Gray code Li for H(m;C ∗Di) from Sm to Tm. Let

L = D0 ∗L0, D1 ∗ LR1 , · · · , DN−1 ∗ LN−1.

Then L is a Gray code for H(m+ n;C) from S to T .
Case 2. Assume h∗(n;C) = 0. By Corollaries 4.2 and 4.3, there is a cyclic Gray code
L′ = D0, . . . ,DN−1 for H(n;C). We have two subcases to consider: when there exists
a Di such that C ∗ Di ends with B, and when no such Di exists. In the latter case,
by Lemma 4.4, |h∗(m;C ∗Di)| = 1 for all Di. There exists a Gray code Li for each
H(m;C ∗Di) from Sm to Tm by Corollaries 4.2 and 4.3. Then

L = D0 ∗L0, D1 ∗ LR1 , . . . ,DN−1 ∗ LRN−1

is a cyclic Gray code for H(m+ n;C).
Next, consider when there exists an i such that C ∗ Di ends with B. WLOG we

can assume that i = 0, so D0 = An. First, assume that either n ≥ 2 or q ≥ 4. By
Theorems 4.1 and 4.2, there exist strings Xm, Ym ∈ Σm

q such that for all i, there is a
Gray code for H(m;C ∗Di) containing the path [Xm, Ym]. When i = 0, there is a cyclic
Gray code, and for all other i, there is a Gray code from Sm to Tm. By Theorems 4.1
and 4.2, Sn and Tn are in H(n;C) because An = D0 ∈ H(n;C). Further, Sn and Tn
have parity opposite that of An.

Let l and r be such that Dl = Sn and Dr = Tn. WLOG assume l < r. By the parity
condition, l and r must be odd. The construction of the Gray code for H(m+ n;C)
has three phases. Refer to Figure 6 for a graphical illustration. We refer to Xm and
Ym as special strings.

In phase one, we construct a Gray code for ∪li=0Di ∗ H(m;C ∗Di). Starting with
the Sm end of Ll, follow Ll until reaching the first special string. Then jump to Ll−1

and move to Sm or Tm, whichever end is reachable without passing through the other
special string. At this endpoint, jump to Ll−2, and continue this process of using only
the part of Li between an endpoint its closest special string. At D0, follow the cyclic
Gray code L0 between the special strings, and then work back up the Li using the
part of Li not used on the way down. Continue this process until the Tm end of Ll
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Figure 6: Constructing a Gray code for H(m+ n;C) when 1 ≤ n ≤ p

is reached. This constructs a Gray code for ∪li=0Di ∗ H(m;C ∗ Di) from Sn ∗ Sm to
Sn ∗ Tm.

In phase two, a Gray code for ∪r−1
i=l+1Di ∗ H(m;C ∗Di) is constructed. The Gray

code begins with Dl+1 ∗ Tm and ends with Dr−1 ∗ Sm. The Gray code is defined by

Dl+1 ∗ LRl+1, Dl+2 ∗ Ll+2, . . . , Dr−1 ∗ LRr−1.

Phase three constructs a Gray code for ∪N−1
i=r Di ∗ H(m;C ∗ Di) from Tn ∗ Sm to

Tn ∗ Tm. This Gray code is constructed in a similar manner to the phase one Gray
code. Starting with Sm in Lr, follow Lr from Sm to the nearest special string, then
jump to Lr+1. In Lr+1, move to the endpoint reachable without passing through the
other special string, and jump to Lr+2. When LN−1 is reached, use it to turn around
by going between Sm and Tm. Recall that r is odd and N is even, so this is possible.
Then travel back down the unused portions of the Li until reaching Dr ∗ Tm.

Concatenating together the Gray codes from each phase yields a Gray code for
H(m+ n;C) from S to T .

We have not yet considered when q = 2 and n = 1. It is a simple matter to get a
Gray code for H(m+ 1;C) from Gray codes for H(m;C0) and H(m;C1). We omit the
details. In all cases, when h∗(m + n;C) = 0, the Gray codes constructed are cyclic.
Otherwise, the Gray codes are between S and T . 2

Suppose A ∈ Σm
q is periodic with minimal period p and with a t.a. minimal base.

Let C ∈ Σ∗q be a string with no A-factor. The preceding lemma supplies a Gray code
for H(n;C) for n in the range m < n ≤ m + p. This result can be combined with
Corollaries 4.2 and 4.3 to get Gray codes for H(n;C) whenever 1 ≤ n ≤ m + p. We
next show that at the upper bound of this range, there is always a Gray code between
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two endpoints independent of C.

Lemma 4.6 Fix an even q ≥ 2, m > 0, and a periodic A ∈ Σm
q with a t.a. minimal

base and with minimal period p. If C ∈ Σ∗q has no A-factor, then |h∗(m+ p;C)| = 1.

Proof. As in the proof of Lemma 4.2, we pair even and odd strings. Say C ∈ Σ∗q
has no A-factor, and let D = d0 . . . dm+p−1 be a string in H(m+ p;C). If D does not
end with A′ = a0 . . . am−2x, where x is the mate of am−1, then pair D with the string
obtained by replacing the last character of D with its mate.

Let S denote the set of unpaired strings in H(m + p;C). We claim each D ∈ S
can be paired with the string obtained by replacing the character in position (p − 1)
of D with its mate unless D also begins with B′ = b0 . . . bp−2x, where x is the mate of
bp−1 = am−1. Suppose D = d0 . . . dp−1 ∗A′ ∈ S but E = D′ ∗A′ = d0 . . . dp−2y ∗A′ 6∈ S,
where y is the mate of dp−1. Every A-factor in C ∗E must use last character of D′. If
the A-factor of C ∗E ends on this character, then D′ = B. If a B-term of the A-factor
overlaps the first B-term of A′, then the B-terms must overlap completely. Again,
D′ = B. Thus, the only possible unmatched string is B′ ∗A′.

We claim B′ ∗A′ ∈ H(m+ p;C) for all C ∈ Σ∗q with no A-factor. If D = C ∗B′ ∗A′
contained an A-factor, then either the A-factor is in C ∗ B′, or the A-factor overlaps
the A′-suffix of D. In either case, B overlaps itself in a non-trivial way. Thus B′ ∗A′ ∈
H(m+ p;C), and h∗(m+ p;C) is ±1 depending on the parity of B′ ∗A′. 2

We now prove the main result of this section.

Theorem 4.4 Fix an even q ≥ 2, m > 0, and a periodic A ∈ Σm
q with a t.a. minimal

base. For n ≥ 1, there exists a Gray code for F(n). When f ∗(n) = 0, there is a cyclic
Gray code.

Proof. This proof is similar to the proof of Theorem 4.3 in Section 4.4. Suppose
that A ∈ Σm

q is periodic with a t.a. minimal base B and with minimal period p, and
that q ≥ 4 is even. Say C ∈ Σ∗q has no A-factor. Refer to Lemma 4.1 of Section
4.1. By Corollary 4.3 and Lemma 4.5, there exist a Gray code for H(n;C) for all
1 ≤ n ≤ m + p. There is a cyclic Gray code whenever h∗(n;C) = 0. This satisfies
condition (1) of Lemma 4.1. By Lemmas 4.5 and 4.6, for any D with no A-factor, there
exist a Gray code for H(m+ p;D) between two strings independent of D and of equal
parity. This satisfies condition (2) of Lemma 4.1. Therefore, for all n ≥ 1 and for all C
with no A-factor, there exists a Gray code for H(n;C). This Gray code is cyclic when
h∗(n;C) = 0. This, of course, implies the Gray code result for F(n) = H(n; ε).

Now suppose q = 2. If A ends in two identical characters, then the arguments of
the preceding paragraph can be repeated by replacing Corollary 4.3 with Corollary 4.2.
We have not yet considered when A is periodic with a t.a. minimal base and A does
not end in two identical characters. As in Section 4.4, if p ≥ 3, then A either begins or
ends in two identical characters. If A begins with two identical characters, then Gray
codes for F(n) can be found by considering the reverse of A.

We are left to consider when p ≤ 2. If p = 2, then B ∈ {01, 10}. In this case,
neither A nor its reverse satisfies the conditions of Corollary 4.2. If p = 1 and m ≥ 2,
then A satisfies the conditions of Corollary 4.2 and the conclusions follow as before.
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The remaining possibility is that B ∈ {01, 10}. To construct Gray codes forH(n;C)
in this case requires complicating the constructions in Section 4. In particular, there
are more individual cases in the basis. The details can be found in Appendix A, and
the conclusions of the theorem still follow. 2

When q is even, we have constructed Gray codes for F(n) for all n ≥ 1 when A is
t.a. or A is periodic with a t.a. minimal base. The results of Section 3.1 prove that
these are the only A for which Gray codes are always possible.

5 Conclusions
In this paper, we have investigated the existence of Gray codes for A-free strings. We
have determined for which q and A Gray codes for F(n) are always possible, and in
the even q case, we have constructed the Gray codes. When q is odd, it remains
open to construct Gray codes for F(n) when no parity problems exist. Recall that
when q is odd, two strings are similar if they differ in one position, and by ±1 in that
position, where the addition is not modulo q. If modular arithmetic were used, the
resulting auxiliary graph Gq(F(n)) would not be bipartite, thus invalidating the parity
arguments of Section 3. Note that when q is odd, it is possible for the graph Gq(F(n))
to be disconnected. For example, consider when q = 5, A = 2, and n ≥ 1. However,
we conjecture that, with few exceptions, there do exist a Gray codes for F(n) when
F(n) does not have infinite parity problems.

Similarly, we can consider removing the modular arithmetic in the even q case.
Again, we conjecture that, for the most part, there exist Gray codes for F(n) when
F(n) does not have infinite parity problems. We can also consider using modular
arithmetic in the odd q case. The parity arguments of Section 3 would no longer apply,
so Gray codes may exist in situations not covered in Section 3

As mentioned in Section 1, the A-free string concept has been defined more gen-
erally. It would be interesting to develop conditions on a set A of strings such that
F(n;A) has a Gray code for all n ≥ 0. In this general case, even if q is even and we use
modular addition, the graph Gq(F(n)) need not be connected. For example, consider
when q = 2, A = {01, 10}, and n ≥ 2.

There have also been many variations on the A-free string concept. Given A =
{A1, . . . , Ap} and a vector m = (m1, . . . ,mp), let F(n;A; m) denote the set of X ∈ Σn

q

such that, for 1 ≤ i ≤ p, X has mi occurrences of Ai. Goulden and Jackson [3] prove
that F(n;A; m) has a rational generating function. Zeilberger [12] and Goulden and
Jackson [2] have studied similar sets when each i ∈ Σq is restricted to appear a certain
number of times. Zeilberger [13] has also studied the concept of A-free strings when
A cannot appear as a subsequence (not necessarily contiguous). Gray codes for these
variations deserve future attention.

We briefly mention the topic of generating A-free strings. Given A, one can define
a deterministic finite automaton M so that M accepts ∪nF(n;A) [10]. Once we have
a DFA for a language, generating its elements is a simple procedure.

The enumeration and generation of objects with restricted subobjects is an area rich
for study. If strings are genetic sequences and certain subsequences are “diseased,” what
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is the probability of being disease-free? How does one efficiently generate all graphs
that do not contain certain subconfigurations? How many ways can G be colored so
that there does not exist a unicolored edge? These and many other problems can be
characterized as enumerating and generating sets of objects with forbidden subobjects.
As seen in this paper, introducing a Gray code requirement to the generation problem
can complicate and enrich even the simple examples.
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[9] George Pólya and Gabor Szegö. Problems and Theorems in Analysis, volume II.
Springer-Verlag, 1976.

[10] Howard Straubing. Applications of the theory of automata in enumeration. Dis-
crete Mathematics, 64:269–279, 1987.

[11] Herbert S. Wilf. Generatingfunctionology. Academic Press, Inc., 1990.

[12] Doron Zeilberger. Enumerating words by their number of mistakes. Discrete
Mathematics, 34:89–91, 1981.

[13] Doron Zeilberger. Enumerating totally clean words. Discrete Mathematics,
64:313–315, 1987.



the electronic journal of combinatorics 3 (1996) #R17 24

A Appendix: A Special Case Construction
In the main body of this paper, we classified A ∈ Σ∗2 such that, when q = 2, F(n;A)
either had infinite parity problems, or F(n;A) had no parity problems. Further, for
most of the A for which F(n;A) had no parity problems, Gray codes for F(n;A)
were constructed for all n ≥ 0. When A is periodic with minimal base 01 or 10, we
proved that F(n;A) had no parity problems, but we did not provide the Gray code
construction. In this appendix, we remedy the situation by supplying the construction.

We continue to use A = a0 . . . am−1 to denote the excluded substring, where m
denotes the length of A. For this appendix, we assume that A is periodic with minimal
base 10. Hence, m ≥ 4. If the minimal base of A were 01, then a Gray code for F(n;A)
is found by reversing all of the strings on a Gray code for F(n;AR).

We actually construct Gray codes for the set H(n;C), thus implying Gray codes
for F(n) = H(n; ε). As in Section 4, the construction of Gray codes for H(n;C) has
three stages: when n ≤ m, when m < n ≤ m+ 2, and when n > m+ 2. Gray codes
for H(n;C) when n ≤ m are constructed in Section A.1. Gray codes for the latter two
stages are described in Section A.2.

A.1 Gray codes when n ≤ m
In this section, we construct Gray codes for H(n;C) for all C with no A-factor and all
n ≤ m. Lemma A.1, below, provides most of the Gray codes. This lemma is analogous
to Theorem 4.1 of Section 4.

Lemma A.1 Fix q = 2, m ≥ 4 even, and let A be the periodic string of length m with
minimal base 10. Let n be in the range 4 ≤ n ≤ m. There exist strings Sn, Tn, Vn,
Wn, Xn, Yn, and Zn such that for any C ∈ Σ∗2 with no A-factor,

1. If r(C) = 1 and n ≥ 5, then there exists a Gray code for H(n;C) containing
the path [Vn,Wn,Xn]. When h∗(n;C) = 0, the Gray code is cyclic. Otherwise,
|h∗(n;C)| = 1, and the Gray code starts at Sn and ends at Tn.

2. If r(C) = 2 and n ≥ 4, then there exists a Gray code for H(n;C) containing
the path [Yn,Wn, Zn]. When h∗(n;C) = 0, the Gray code is cyclic. Otherwise,
|h∗(n;C)| = 1, and the Gray code starts at Sn and ends at Tn.

3. If r(C) > 2 and n ≥ 4, then there exists a Gray code for H(n;C) containing
the path [Vn,Wn, Yn]. When h∗(n;C) = 0, the Gray code is cyclic. Otherwise,
|h∗(n;C)| = 1, and the Gray code starts at Sn and ends at Tn.

Proof. Let C0 = C ∗ 0 and C1 = C ∗ 1. We argue by induction on n using the strings

Sn = am−n . . . am−1 Xn = 1101n−3

Tn = am−n . . . am−2am−1 Yn = 01n−1

Vn = 101n−2 Zn = 11101n−4

Wn = 1n

Basis. The basis includes when n = 4 and r(C) > 1, when n = 5 and 2 ≤ r(C) ≤ 3,
and when n = 6 and r(C) = 3. First consider when n = 4. If r(C) > 4, then
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r(C) > 4 r(C) = 4 r(C) = 3 r(C) = 3 r(C) = 2
A 6= 1010 A = 1010

0000 1011 0000 1011 0000
0010 1111 0010 1111 0100
0110 0111 0110 0111 1100
1110 0011 1110 0110 1101
1010 0001 1010 1110 0101
1000 1001 1000 1100 0001
1100 1101 1100 1101 0011
0100 0101 1101 1001 0111
0101 0100 1001 0001 1111
1101 0000 1011 0011 1110
1001 0010 1111 0010 0110
1011 0110 0111 0000 0010
1111 1110 0011 1000
0111 1100 0001
0011 1000
0001

Table 1: Gray codes for H(4;C) in basis

H(4;C) = Σ4
2. If r(C) = 4, then H(4;C) = Σ4

2\{1010}. Suppose that r(C) = 3. If
A 6= 1010, then H(4;C) = Σ4

2\{010b}, where 010b represents the strings in Σ4
2 with

prefix 010. If A = 1010, then H(4;C) = Σ4
2\{010b, 1010}. Finally, when r(C) = 2,

H(4;C) = Σ4
2\{10bb}. Whenever |h∗(4;C)| = 1, the starting and ending points of the

Gray code must be 1011 and 1000. Gray codes for these cases are given in Table 1.
The strings on the specified subpath are underlined.

Next consider when n = 5. Note that m ≥ 6 because m ≥ n = 5 and m is even. If
r(C) = 2, then H(5;C) = Σ5

2\{10bbb}. If r(C) = 3, then H(5;C) = Σ5
2\{010bb}. Gray

codes for H(5;C) when r(C) = 2, 3 are given in Table 2.
We leave the case when n = 6 and r(C) = 3 as an exercise for the reader. Again,

m ≥ n = 6. One must separately consider when A = 101010 and when A 6= 101010.
For any k ≤ n,

H(n;C) =
⋃

D∈H(n−k;C)

D ∗ H(k;C ∗D). (14)

The inductive steps use equation (14) when k = n− 1 and when k = n− 2.
Inductive step for Part 1. Let C ∈ Σ∗2 be a string with no A-factor and with

r(C) = 1. Let n satisfy 5 ≤ n ≤ m. Then H(n;C) = 1 ∗ H(n− 1;C1), and r(C1) =
m− 1 > 2. By induction, there is a Gray code L1 for H(n− 1;C1) containing the path
[Vn−1,Wn−1, Yn−1] = [101n−3, 1n−1, 01n−2]. Note that L = 1 ∗ L1 contains the path
[1101n−3, 1n, 101n−2] = [Xn,Wn, Vn]. If L1 is cyclic, then L is cyclic and we are done.
Otherwise, h∗(n;C) = 1. In this case, |h∗(n− 1;C1)| = 1, and L1 is between Sn−1 and
Tn−1 by induction. By Lemma 4.2, C1 ends with a0 . . . am−n, so am−n = 1. Thus, L
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r(C) = 2 r(C) = 3
00000 01111 01010 00000 11101 10010
00001 11111 01011 00001 11100 10011
00011 11101 01001 00011 10100 10001
00010 11100 01000 00010 10101 11001
00110 11000 00110 10111 11011
00111 11001 00111 11111 11010
00101 11011 00110 01111 11000
00100 11010 00100 01110 10000
01100 11110 01100 11110
01101 01110 01101 10110

Table 2: Gray codes for H(5;C) in basis

starts and ends on the correct strings.
Inductive step for Part 2. Let C ∈ Σ∗2 be a string with no A-factor and with

r(C) = 2. Let n satisfy 6 ≤ n ≤ m. Then

H(n;C) = 0 ∗H(n− 1;C0)
⋃

1 ∗H(n− 1;C1),

r(C0) = m > 2, and r(C1) = 1. Inductively, there is a Gray code L0 for H(n− 1;C0)
containing the path [Vn−1,Wn−1, Yn−1] = [101n−3, 1n−1, 01n−2], and a Gray code L1

for H(n − 1;C1) containing the path [Vn−1,Wn−1,Xn−1] = [101n−3, 1n−1, 110n−4]. A
Gray code L for H(n;C) can be formed by joining 0 ∗ L0 and 1 ∗ L1 using the path
[Vn−1,Wn−1]. The resulting Gray code L contains the path [01n−1, 1n, 11101n−4] =
[Yn,Wn, Zn]. If both L0 and L1 are cyclic, then L is cyclic. Otherwise, |h∗(n− 1;C ∗
am−n)| = 1 and h∗(n− 1;C ∗ am−n) = 0 by Corollary 4.1. Thus, Lam−n is cyclic, and
Lam−n is between Sn−1 and Tn−1. The resulting L is between Sn and Tn.

Inductive step for Part 3. Let C ∈ Σ∗2 be a string with no A-factor and with
r(C) > 2. Let n satisfy 5 ≤ n ≤ m. First consider when r(C) = 3 and n > 6 (n = 5, 6
were examined in the basis). Let C00 = C ∗ 00, and similarly define C01, C10, and
C11. Since m ≥ n > 6, we know r(C01) = 1, and r(Cij) > 2 for ij 6= 01. There exist
Gray codes Lij for H(n − 2;Cij), where L01 contains the path [Vn−2,Wn−2,Xn−2] =
[101n−4, 1n−2, 1101n−5], and, for ij 6= 01, Lij contains the path [Vn−2,Wn−2, Yn−2] =
[101n−4, 1n−2, 01n−3].

The individual Gray codes can be joined as in Figure A.1. We first form the
subpath [01n−1, 1n, 101n−2, 001n−2]. We then use the outer two strings on the specified
subpaths of the Lij to finish connecting the Lij . During this process, we must use
the paths [011n−2, 011101n−5] and [01101n−4, 11101n−4]. This ensures that the rest of
the connections can be made. If h∗(n;C) = 0, then h∗(n − 2;Cij) = 0 for all ij by
repeated applications of Corollary 4.1. Thus, all of the Lij are cyclic, and the resulting
L is cyclic. By the same corollary, if |h∗(n;C)| = 1, then |h∗(n− 2;Cxy)| = 1, where
xy = am−nam−n+1, and h∗(n − 2;Cij) = 0 for ij 6= xy. Then Lxy is between Sn−2

and Tn−2, and Lij is cyclic for ij 6= xy. In this case, L starts and ends on the correct
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Figure 7: Constructing Gray code when r(C) = 3

strings. In Figure A.1, we illustrate the construction when xy = 01. We include paths
for both cyclic and non-cyclic Lxy.

Finally, consider when r(C) ≥ 4 and 5 ≤ n ≤ m. Then r(C0) ≥ 3 and r(C1) ≥ 3.
There exist Gray codes L0 and L1 for H(n − 1;C0) and H(n − 1;C1), respectively.
Each Li contains the path [Vn−1,Wn−1, Yn−1] = [101n−3, 1n−1, 01n−2]. Join the Li
using the path [Vn−1,Wn−1]. This forms a Gray code L for H(n;C) containing the
path [Vn,Wn, Yn]. If both Li are cyclic, then L is cyclic. Otherwise, as in the other
cases, L is between the specified endpoints.

This completes the proof of the lemma. 2

We can then obtain the following corollary of Lemma A.1.

Corollary A.1 Fix q = 2, m ≥ 4 even, and let A be the periodic string of length
m with minimal base 10. For any n, 1 ≤ n ≤ m, and for any C ∈ Σ∗2 with no A-
factor, there is a Gray code for H(n;C). When h∗(n;C) = 0, the Gray code is cyclic.
Otherwise, its endpoints are independent of C and of equal parity.

Proof. Most of the Gray codes are supplied by Lemma A.1. The possibilities not
covered by Lemma A.1 are when r(C) = 1 and n ≤ 4, or when r(C) > 1 and n ≤ 3.
In the former case, H(n;C) = 1 ∗H(n− 1;C1), and r(C1) = m− 1 ≥ 3. So H(n;C) =
1 ∗ Σn−1

2 if either m > 4 or n < 4, and H(n;C) = 1 ∗ (Σ3
2 \{010}) if n = m = 4.

There certainly exist Gray codes in these cases. In the latter case, if r(C) > n, then
H(n;C) = Σn

2 . If r(C) = k ≤ n, then

H(n;C) = {D ∈ Σn
2 |D does not begin with am−k . . . am−1}.

Again, Gray codes are easy to find. 2
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A.2 Gray codes when n > m

In this section, we prove the following results. These results are analogs to Lemma 4.5
and Theorem 4.4 of Section 4.

Lemma A.2 Fix q = 2, m ≥ 4 even, and let A be the periodic string of length m with
minimal base 10. For all C with no A-factor and all n, m + 1 ≤ n ≤ m + 2, there
exist a Gray code for H(n;C). When h∗(n;C) = 0, the Gray code is cyclic, and when
|h∗(n;C)| = 1, the Gray code is between two strings independent of C and of equal
parity.

Theorem A.1 Fix q = 2, m ≥ 4 even, and let A be the periodic string of length m
with minimal base 10. For n ≥ 1, there exists a Gray code for F(n). When f∗(n) = 0,
there exists a cyclic Gray code.

We first prove Lemma A.2. We prove only the n = m+1 case, the n = m+2 proof
being similar. Let C ∈ Σ∗2 be a string with no A-factor. By Lemma 4.2, h∗(m;C) = 0
if and only if C ends in 10. Otherwise, |h∗(m;C)| = 1. Since C1 cannot end in 10,
|h∗(m;C1)| = 1. Likewise, h∗(m;C0) = 0 iff C ends in 1.

By Corollary A.1, there exist strings S′, T ′ ∈ Σm
2 , of equal parity, such that for any

D with no A-factor and not ending in 10, there is a Gray code for H(m;D) between
S′ and T ′. When |h∗(m+ 1;C)| = 1, we prove there is a Gray code for H(m+ 1;C)
between S = 1 ∗ S′ and T = 1 ∗ T ′.

First suppose r(C) = 1. By Corollary A.1, there is a Gray code L1 for H(m;C1)
between S′ and T ′. Then L = 1 ∗ L1 is a Gray code for H(m + 1;C) satisfying the
conditions of the lemma.

Next suppose r(C) = 2, so r(C0) > 2 and r(C1) = 1. In this case, C ends in 10,
so |h∗(m;C0)| = 1 and |h∗(m;C1)| = 1. By Corollary A.1, for i = 0, 1, there exists a
Gray code Li for H(n;Ci) between S′ and T ′. Then 0 ∗L0, 1 ∗L1 is a cyclic Gray code
for H(m+ 1;C).

Finally, suppose r(C) > 2 so r(Ci) > 1 for i = 0, 1. By Lemma A.1, there exist
strings Wm and Ym such that, for i = 0, 1, there exists a Gray code Li for H(m;Ci)
containing the path [Wm, Ym]. Since C1 does not end in 10, |h∗(m;C1)| = 1 and L1

runs between S′ and T ′. The Gray code L0 can either be cyclic (when C ends in 1)
or between S′ and T ′ (when C ends in 0 or C = ε). If L0 is between S′ and T ′, then
0 ∗ L0, 1 ∗ L1 is a cyclic Gray code for H(m + 1;C). If L0 is cyclic, then 0 ∗ L0 can
be spliced into 1 ∗L1 using the path [Wm, Ym]. In either case, the resulting Gray code
satisfies the restrictions of the lemma.

This completes the construction of the Gray code for H(m+ 1;C). A similar case
by case analysis can be performed when n = m+ 2. This finishes the proof of Lemma
A.2.

We now prove Theorem A.1. As in Section 4.5, we use Lemma 4.1 to prove this
theorem. Let C ∈ Σ∗2 be any string with no A-factor. Corollary A.1 and Lemma A.2
provide Gray codes for H(n;C) when 1 ≤ n ≤ m+ 2. They provide cyclic Gray codes
whenever h∗(n;C) = 0. Lemma 4.6 proves that |h∗(m+ 2;C)| = 1 for any C with no
A-factor, thus yielding Gray codes for H(m+ 2;C) between two strings independent
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of C and of equal parity. We can then apply Lemma 4.1 to conclude that, for all
n ≥ 1 and for all C with no A-factor, there exists a Gray code for H(n;C). When
h∗(n;C) = 0, there is a cyclic Gray code.

In this appendix, we have constructed Gray codes for H(n;C) when A is periodic
with minimal base 10. This, in essence, completes the proof of Theorem 4.4 in Section
4 which stated that if A is periodic with a t.a. minimal base, then there exists a Gray
code for F(n) for all n ≥ 1.


