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Abstract

A labeling of the vertices of a graph G, φ : V (G) → {1, . . . , r},
is said to be r-distinguishing provided no automorphism of the graph
preserves all of the vertex labels. The distinguishing number of a
graph G, denoted by D(G), is the minimum r such that G has an
r-distinguishing labeling. The distinguishing number of the complete
graph on t vertices is t. In contrast, we prove (i) given any group Γ,
there is a graph G such that Aut(G) ∼= Γ and D(G) = 2; (ii) D(G) =
O(log(|Aut(G)|)); (iii) if Aut(G) is abelian, then D(G) ≤ 2; (iv) if
Aut(G) is dihedral, then D(G) ≤ 3; and (v) If Aut(G) ∼= S4, then
either D(G) = 2 or D(G) = 4. Mathematics Subject Classification
05C,20B,20F,68R

1 Introduction

A classic elementary problem with a surprise answer is Frank Rubin’s key
problem [15], which Stan Wagon recently circulated in the Macalester College
problem column [13].

Professor X, who is blind, keeps keys on a circular key ring. Sup-
pose there are a variety of handle shapes available that can be
distinguished by touch. Assume that all keys are symmetrical so
that a rotation of the key ring about an axis in its plane is unde-
tectable from an examination of a single key. How many shapes
does Professor X need to use in order to keep n keys on the ring
and still be able to select the proper key by feel?

1Research supported in part by NSA 93H-3051
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The surprise is that if six or more keys are on the ring, there need only be 2
different handle shapes; but if there are three, four, or five keys on the ring,
there must be 3 different handle shapes to distinguish them.

The answer to the key problem depends on the shape of the key ring.
For instance, a linear key holder would require only two different shapes of
keys. As long as the ends had differently shaped keys, the two ends could
be distinguished, and one could count from an end to distinguish the other
keys. Thinking about the possible shapes of the key holders, we are inspired
to formulate the key problem as a problem in graph labeling.

A labeling of a graph G, φ : V (G) → {1, 2, . . . , r}, is said to be r-
distinguishing if no automorphism of G preserves all of the vertex labels.
The point of the labels on the vertices is to destroy the symmetries of the
graph, that is, to make the automorphism group of the labeled graph trivial.
Formally, φ is r-distinguishing if for every non-trivial σ ∈ Aut(G), there
exists x in V = V (G) such that φ(x) 6= φ(xσ). We will often refer to a
labeling as a coloring, but there is no assumption that adjacent vertices get
different colors. Of course the goal is to minimize the number of colors used.
Consequently we define the distinguishing number of a graph G by

D(G) = min{r | G has a labeling that is r-distinguishing}.

The original key problem is to determine D(Cn), where Cn is the cy-
cle with n vertices. Clearly, D(C1) = 1, and D(C2) = 2. Let n ≥ 3
and suppose the vertices of Cn are denoted v0, v1, v2, . . . , vn−1 in order. We
define two labelings, each of which makes the cycle look like a line with
two differently shaped ends. Define labeling φ by φ(v0) = 1, φ(v1) = 2,
and φ(vi) = 3 for 2 ≤ i ≤ n − 1. Then φ is 3-distinguishing. None of
C3, C4, C5 can be 2-distinguished. However, for n ≥ 6, if ψ is defined by
ψ(v0) = 1, ψ(v1) = 2, ψ(v2) = ψ(v3) = 1 and ψ(vi) = 2 for 4 ≤ i ≤ n − 1,
then ψ is 2-distinguishing. Hence the surprise.

We next illustrate how different graphs with the same automorphism
group may have different distinguishing numbers. Let Kn be the complete
graph on n vertices, and Jn be its complement. Let K1,n be Jn joined to a
single vertex. Each of these graphs has Sn as its automorphism group. It is
immediate that D(Kn) = D(Jn) = D(K1,n) = n.

Now let Gn denote the graph with 2n vertices obtained from Kn by
attaching a single pendant vertex to each vertex in the clique. Clearly
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Aut(Gn) ∼= Sn. In an r-distinguishing labeling, each of the pairs consist-
ing of a vertex of the clique and its pendant neighbor must have a different
ordered pair of labels; there are r2 possible ordered pairs of labels using r
colors, hence D(Gn) = d√n e.

On the other hand, recall that the inflation of graph G, Inf (G), is defined
as follows: the vertices of Inf(G) consist of ordered pairs of elements from
G, the first being a vertex and the second an edge incident to that vertex.
Two vertices in Inf (G) are adjacent if they differ in exactly one component
[3]. In the context of polyhedra, the inflation of a graph is also known as
the truncation [4]. Label the vertices of Kn with 1, . . . , n. Then vertices of
Inf(Kn) can be labelled {ij|1 ≤ i ≤ n, 1 ≤ j ≤ n, and i 6= j} in the obvious
way. Assigning the color 1 to vertex ij if i < j, and the color 2 otherwise
shows that D(Inf(Kn)) = 2. It is easy to see that Aut(Inf (Kn)) ∼= Sn,
provided that n ≥ 4.
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G5 Inf (K4) P

Figure 1 There are only 4 different pairs of 2 colors, henceD(G5) = 3.
Inf(K4) can be distinguished with 2 colors. The Petersen graph P
can be distinguished with 3 colors, but not with 2.

As a final example, consider line graphs of complete graphs. Let L(G)
be the line graph of G. If n ≥ 5, then Aut(L(Kn)) ∼= Aut(Kn) ∼= Sn
[10]. A case analysis proves that D(L(K5)) > 2. The distinguishing number
of a graph must be the same as the distinguishing number of its comple-
ment, and the complement of L(K5) is the Petersen graph. Thus our 3-
distinguishing labeling of the Petersen graph shown in Figure 1 above shows
that D(L(K5)) = 3. In section 5 we sketch an argument due to Lovasz that
for n ≥ 6, D(L(Kn)) = 2.

There is a sense in which distinguishing vertices in a graph is reminiscent
of Polya-Burnside enumeration. That context would provide a set, say C, of
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labeled graphs closed under the action of a given group, say Γ. The Burnside
lemma is a tool for computing the number of inequivalent labeled graphs
in C where equivalence is given by some action from Γ. Our perspective
is essentially dual. We take a particular labeled graph chosen so that it
generates a large set of equivalents. If that set has cardinality |Γ|, then the
labeling is distinguishing.

We now digress for a bit to consider the complexity of the distinguishing
question. First we observe that D(G) = 1 if and only if G is a rigid graph,
i.e., one whose automorphism group is trivial. The complexity of deciding
if a given graph has a non-trivial automorphism has not been settled [9, 11].
It is known to be Turing equivalent to Unique Graph Isomorphism, and is a
candidate for a problem whose difficulty lies between being in P and being
NP − complete. Hence determining if D(G) = 1 may be difficult. Let us fix
the particular question to be: Given a graph G and an integer k, isD(G) > k?
For k = 1, this question is in NP . To see this, it suffices to show that if
D(G) > 1, there is a certificate that allows one to easily verify this fact. Here
such a certificate could be a vertex bijection, since it is straightforward to
check that a vertex bijection is a graph automorphism. In contrast, it seems
plausible that this question is not in co−NP . For larger k, the question is
not obviously in either NP or co − NP . To see this, suppose we are given
a graph G with minimum degree at least 2 and an allegedly r-distinguishing
labeling. If we attach a path of length i to each vertex in G that is labeled
i, then the original vertices all have degree at least 3. The resulting graph
is only polynomially larger than the original, and the original labeling is
r-distinguishing if and only if the new graph is rigid.

Although a given group might be the automorphism group of graphs with
different distinguishing numbers, there are some restrictions. An automor-
phism of a graph G can never take vertices in different vertex orbits to each
other. Thus vertices in different orbits are always distinguished from each
other. Recall that the orbit sizes must divide the order of the group. Thus
it is no surprise that the automorphism group is inextricably entwined with
the distinguishing number.

Let Γ be an abstract group. We will say that the graph G realizes Γ if
Aut(G) ∼= Γ. We define the distinguishing set of a group Γ by

D(Γ) = {D(G)| G realizes Γ }
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The purpose of this paper is to examine how properties of graphs and
groups affect the parameters D. In section 2 we investigate arbitrary groups
and show that D(G) = O(log|Aut(G)|) and 2 ∈ D(Γ). In section 3 we de-
velop some tools to distinguish orbits. One consequence is that if Aut(G)
is either abelian or hamiltonian (but not trivial), then D(G) = 2. We dis-
cuss dihedral groups in Section 4. If Aut(G) is dihedral, then D(G) ≤ 3.
Furthermore if n 6= 3, 4, 5, 6, 10 and Aut(G) ∼= Dn ( Dn

∼= Aut(Cn) ), then
D(G) = 2. In section 5 we obtain the initially counterintuitive result that
D(S4) = {2, 4}. We make conjectures in Section 6.

2 Distinguishing arbitrary groups

Our first result says that given a fixed group, a graph that realizes that group
cannot have an arbitrarily large distinguishing number.

Theorem 1 Suppose Hk = {e} < Hk−1 < · · · < H2 < H1 = Γ is a longest
chain of subgroups of Γ where Hi+1 is a proper subgroup of Hi for 1 ≤ i ≤
k − 1. If G realizes Γ, then D(G) ≤ k.

Proof Suppose φ is an r-distinguishing labeling of G, where r = D(G).
Let G1, G2, . . . , Gr be isomorphic copies of G. For 1 ≤ i ≤ r label Gi by
ci : V (Gi)→ {1, 2, 3, . . . , i} where

ci(v) =
{
φ(v) if φ(v) ≤ i
1 if φ(v) > i

Notice that if ci(v) 6= 1, then ci(v) = φ(v).
Now the automorphism group of Gi, Aut(Gi), is the subgroup of Aut(G),

each element of which preserves the labeling ci of the vertices of Gi. Clearly
Aut(Gi+1) is a subgroup of Aut(Gi). We claim Aut(Gi+1) is a proper sub-
group of Aut(Gi). By contradiction, suppose Aut(Gi+1) = Aut(Gi). We
show that there exists an automorphism that preserves φ, hence φ is not
r-distinguishing. Let ψ : V (G)→ {1, 2, 3, . . . , r} − {i+ 1} by

ψ(v) =
{

1 if φ(v) = i+ 1
φ(v) otherwise

Then ψ uses only r − 1 colors, and therefore cannot be distinguishing
because D(G) = r. There must then exist a non-trivial automorphism g of G
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such that ψ(vg) = ψ(v) for all vertices v inG. If v is a vertex with φ(v) 6= i+1,
then ψ(vg) = ψ(v) = φ(v). If φ(vg) 6= i+ 1, then φ(vg) = ψ(vg) = φ(v). We
need to prove that if φ(v) = i+ 1 or φ(vg) = i+ 1, then φ(vg) = φ(v).

Since g preserves the labels {1, 2, 3, . . . , i}, g preserves ci and so g ∈
Aut(Gi). We have assumed that Aut(Gi) = Aut(Gi+1), hence g preserves
ci+1. If φ(v) = i+ 1, then ci+1(v) = i+ 1 = ci+1(vg). Hence φ(vg) = i+ 1, so
φ(v) = φ(vg). Conversely, if φ(vg) = i+ 1, then ci+1(vg) = i + 1 = ci+1(v).
Hence φ(v) = i + 1 = ci+1(v). Therefore, g preserves φ and φ cannot be
distinguishing. This contradicts our assumption that φ is an r-distinguishing
labeling. 2

We remark that this proves that the largest integer in D(S3) is 3, since
the subgroups of S3 have orders 1, 2, 3, 6, and no order 2 subgroup can be
contained in an order 3 subgroup. The complete graph on 3 vertices requires
3 colors to distinguish, and we show in the next theorem that 2 is in the
distinguishing set of every group, so D(S3) = {2, 3}.

Corollary 1.1 Let Γ have m elements. Then the largest integer in D(Γ) is
less than or equal to 1 + blog2(m)c.

Proof Let k be as defined in Theorem 1. Since |Hi+1|
|Hi| ≥ 2, |Γ| ≥ 2k. 2

The standard construction of a graph that realizes a particular group is
due to Frucht, see [7]. Recall that the construction begins with one vertex
for each group element. Vertices corresponding to group elements u and v
are joined by a directed colored edge labeled g precisely if ug = v. A graph
is obtained by replacing the colored arcs by graph gadgets (typically paths
with different length paths off each vertex). Given a group Γ, we denote
the Frucht graph by F (Γ) and note that Aut(F (Γ)) ∼= Γ. Now if Σ is a
subgroup of Γ, then we may obtain a labeled graph whose automorphism
group is isomorphic to Σ by labeling F (Γ) in the following way: If a vertex
is one of the original vertices of the Cayley graph and is in Σ or if the vertex
is in a gadget that replaced an arc labeled with an element of Σ, then that
vertex is labeled 1. All other vertices are labeled 2. Any automorphism of
the labeled graph must preserve the 1’s and is thus an automorphism from
F (Σ). Consequently, we can realize any subgroup of a given group with a
2-colored Frucht graph.

Theorem 2 For any finite group Γ, 2 ∈ D(Γ).
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Proof First we note that for any group Γ, there is a connected cubic graph
G which realizes Γ, see [6]. Suppose G has n vertices. Attach a path with
dlog2ne vertices to each vertex of G to obtain Ĝ. There are 2dlog2ne ≥ n
possible colorings of the paths using 2 colors. Color each one differently.
Then this labeling is 2-distinguishing for Ĝ. Since we have attached the same
sized path to every vertex, every automorphism of G is also an automorphism
of Ĝ. An automorphism of Ĝ must preserve the original vertices of G, since
the original vertices have degree 4 in Ĝ and the new vertices have degree less
than or equal to 2. This fixes the first vertex of each new path, and hence
the rest of the new path. 2

3 Distinguishing via orbits

It is not necessary that a labeling distinguish every orbit separately in order
to distinguish the entire graph. See Figure 2 below. Sometimes it is easy
to distinguish each orbit separately. We say that an r-labeling distinguishes
an orbit if every automorphism that acts non-trivially on the orbit maps at
least one vertex to a vertex with a different label. Alternatively if U ⊆ V (G)
let G[U ] denote the induced subgraph of G on the vertex set U . Then if U
is an orbit of G, a labeling distinguishes U if it distinguishes G[U ]. Trivially
an orbit of size 1 can be distinguished with 1 color.
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Figure 2 Two graphs which realize D4. Each graph can be distin-
guished with 2 colors, even though no orbit is separately distinguished.

Theorem 3 Let Γ be the automorphism group of graph G. Let u be a
vertex of G and Hu = {h ∈ Γ|uh = u} be the stabilizer subgroup of u. Let
Ou be the vertex orbit that contains u. If Hu is normal in Γ, then Ou can be
distinguished with 2 colors.
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Proof Color vertex u red and the rest of the vertices in Ou blue. Then if
there exists an automorphism h in Γ which does not distinguish Ou, it must
fix u and there must exist x, y ∈ Ou such that xh = y, but x 6= y. Since
h fixes u, h ∈ Hu. Since x, y ∈ Ou, there are group elements g1, g2 such
that x = ug1 and y = ug2. Then ug1h = ug2. Since Hu is normal, there
exists h′ ∈ Hu such that g1h = h′g1. Therefore, uh′g1 = ug1, since Hu is the
stabilizer of u. This means x = ug1 = ug2 = y, hence h fixes every vertex in
Ou. 2

Recall that a non-abelian group is called hamiltonian if every subgroup
is normal [8].

Corollary 3.1 If non trivial Γ is abelian or hamiltonian, then D(Γ) = {2}.

Proof Every subgroup of Γ is normal. Hence every orbit can be distinguished
with 2 colors. 2

A large orbit can force a graph to have a low distinguishing number.

Theorem 4 Let G be a graph with Aut(G) = Γ. If G has an orbit O =
{u1, u2, u3, . . . , us} that can be distinguished with k colors, and ∩si=1Hui =
{e} where Hui is the stabilizer group of ui, then G can be distinguished with
k colors.

Proof Let O be labeled with a k-distinguishing labeling. Let σ ∈ Γ. Then
σ acts non-trivially on O because the only element that fixes every member
of O is the identity. Therefore, there exists a member of O, say ui such that
the color of ui is different from the color of uiσ. 2

If vertex u in G has stabilizer subgroup Hu, then the size of the orbit that
contains u is |Aut(G)|/|Hu|.

Corollary 4.1 A graph G which has an orbit of size |Aut(G)| can be dis-
tinguished with 2 colors.

Proof Let O be such an orbit. Then the stabilizer subgroup of every element
of O has order 1, hence is trivial. Color one vertex red and the rest blue.
Then every non-trivial automorphism of the graph must take the red vertex
to a blue one. 2

Having many orbits can force a graph to be 2-distinguishable.
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Theorem 5 Let G realize group Γ. Let u1, u2, . . . , ut be vertices from dif-
ferent vertex orbits of G with H1, H2, . . . , Ht their respective stabilizing sub-
groups. If H1 ∩H2 ∩ · · · ∩Ht = {e}, then D(G) = 2.

Proof Color u1, u2, . . . , ut red and the rest of the vertices blue. Let g ∈ Γ.
Since the intersection of the stabilizers of u1, u2, . . . , ut is just the identity,
there is some some i such that g does not fix ui. Thus uig is colored blue,
while ui is colored red. Thus we have a 2-distinguishing labeling of G. 2

4 Dihedral groups

We use Dn (n ≥ 3) to denote the dihedral group of order 2n. Such groups
arise naturally in geometry as the symmetries of the regular n-gon and in
graph theory as the automorphism groups of the cycles. The dihedral groups
are the most elementary non-abelian groups, having a cyclic subgroup half
the size of the original group. In this section we compute the distinguishing
set of every dihedral group.

Let Dn be generated by σ, τ where σn = e, τ 2 = e, and τσ = σn−1τ .
Every element τσi for 0 ≤ i ≤ n − 1 is an involution of Dn. These are the
only involutions of Dn unless n is even, in which case σ

n
2 is an involution and

{e, σ n
2 } is the center of Dn.

The non-trivial subgroups of Dn fall into one of three types: a subgroup
of < σ >, the cyclic half of Dn, a subgroup isomorphic to Dm where m|n,
and a subgroup with the identity and an order 2 element (which is not a
power of σ). We describe these three types by their generators, and select
coset representatives for the orbits of vertices with one of these subgroups
as its stabilizer. Let 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1. The three types of
subgroups are

< σj >,< σj, τσi >,< τσi >

Then < σj > is normal in Dn, so has no conjugates except itself. The
intersection of its conjugates is also itself. If vertex v has stabilizer < σj >,
then the orbit of v is {v, vσ, vσ2, . . . , vσj−1, vτ, vτσ, vτσ2, . . . , vτσj−1}.

The subgroups conjugate to < σj, τ > are the subgroups

< σj, τσ >,< σj , τσ2 >, . . . ,< σ, τσj−1 >
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whose intersection is < σj >. If vertex v has stabilizer < σj, τσi >, then the
orbit of v is {v, vσ, vσ2, . . . , vσj−1}.

The subgroups conjugate to < τ > are generated by the involutions that
have a τ :

< τσ >,< τσ2 >, . . . ,< τσn−1 >

whose intersection is just the identity. If vertex v has stabilizer < τσi >,
then the orbit of v is {v, vσ, vσ2, . . . , vσn−1}.

Lemma 1 LetG realizeDn, and suppose thatG has t orbits. Let u1, u2, . . . , ut
be vertices from the t different vertex orbits of G with H1, H2, . . . ,Ht their
respective stabilizing subgroups. Then < σ > ∩H1 ∩H2 ∩ · · · ∩Ht = {e}.

Proof We observe that the conjugacy class of σt in Dn is {σt, σn−t}, since
σlσtσ−l = σt and τσiσtτσi = σn−t. Hence if σt is an element of any subgroup
H, then σt is an element of any subgroup conjugate to H. Therefore, if
σt ∈ H1 ∩ H2 ∩ · · · ∩ Ht, then σt is in every conjugate of each of these
stabilizers, hence is in every stabilizer of every vertex of G. If σt fixes every
vertex of G, since G realizes Dn, σt = e and t = n. 2

Lemma 2 Let G realize Dn. Let u be a vertex in G whose stabilizer
Hu =< σj >. Let Ou be the orbit of u. Then G can be distinguished with 2
colors.

Proof Let u, u2, . . . , ut be vertices from all the different vertex orbits of G
with Hu,H2, . . . , Ht their respective stabilizing subgroups. Then Hu ∩H2 ∩
· · · ∩Ht ⊆ Hu =< σj >. By Lemma 1 the intersection must be the identity,
in which case G is 2-distinguishable by Theorem 5. 2

Lemma 3 Let G realize Dn. Let u be a vertex in G whose stabilizer
Hu =< σj, τσi > or < τσi >. Let Ou be the orbit of u. If |Ou| ≥ 6 then Ou

can be distinguished with 2 colors.

Proof The orbit of u is Ou = {u, uσ, uσ2, . . . , uσj−1}, where we may assume
that j ≥ 6. Let A = {u, uσ2, uσ3}. Color the vertices in A red and the
rest of Ou blue. Note that this corresponds with the labeling l′ from the
introduction. We claim that this is a 2-distinguishing coloring of Ou, i.e. that
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every automorphism that acts non-trivially on Ou does not fix A. The proof
goes as follows: Suppose g ∈ Dn fixes A, then ug ∈ A, hence ug = u, uσ2 or
uσ3. The automorphisms that send u to u are Hu, the automorphisms that
send u to uσ2 are Huσ

2 and the automorphisms that send u to uσ3 are Huσ
3.

We check that each automorphism in Hu, Huσ
2, Huσ

3 either acts trivially on
Ou or does not fix A. The subgroup of automorphisms that act trivially on
Ou is the intersection of the stabilizer subgroups of each vertex, hence, if
Hu =< σj, τσi > this is < σj > and if Hu =< τσi >, this is {e}.

If Hu =< σj, τσi >, then j divides n and the elements of Hu are

e, σj , σ2j, σ3j, . . . , σ(n
j
−1)j, τσi, τσi+j, τσi+2j, . . . , τσi+(n

j
−1)j

Let 0 ≤ d ≤ n
j
− 1. The table below shows the outcomes when these

automorphisms are applied to A.

Aσdj = A Aτσi+dj = {u, uσn−2, uσn−3}
Aσdjσ2 = {uσ2, uσ4, uσ5} Aτσi+djσ2 = {uσ2, u, uσn−1}
Aσdjσ3 = {uσ3, uσ5, uσ6} Aτσi+djσ3 = {uσ3, uσ, u}

Since n ≥ 6, only σdj preserve A, however, σdj acts trivially on Ou.
IfHu =< τσi >, thenHu = {e, τσi}. The table below shows the outcomes

when τσi, τσiσ2, τσiσ3 are applied to A.

Aτσi = {u, uσn−2, uσn−3}
Aτσiσ2 = {uσ2, u, uσn−1}
Aτσiσ3 = {uσ3, uσ, u}

Since n ≥ 6, none of these preserve A. 2

Lemma 4 Let G realize Dn. Let u be a vertex in G whose stabilizer
Hu =< σj, τσi > or < τσi >. Let Ou be the orbit of u. If |Ou| ≥ 6 then G
can be distinguished with 2 colors.

Proof If Hu =< τσi >, then the intersection of the subgroups conjugate
to Hu is just the identity. Thus we apply Lemma 3 to prove that Ou is
2-distinguishable and Theorem 4 to prove that G is 2-distinguishable.

Assume that Hu =< σj , τσi >. Then since Ou is 2-distinguishable, ev-
ery automorphism that acts non-trivially on Ou takes a red vertex to a blue
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vertex. The automorphisms which act trivially on Ou are those in the in-
tersection of the stabilizers of vertices in Ou. This intersection is the cyclic
subgroup Λ =< σj >.

The action of Λ on G makes vertex orbits U1, U2, . . . , Us (which are con-
tained in the vertex orbits of G under Dn). The orbit Ou under Λ is broken
into 1-orbits, since σj fixes Ou. For each orbit Ui which has order greater
than 1, choose a vertex vi ∈ Ui and color vi red and the rest of the vertices
in Ui blue. Then we claim that every automorphism in Λ must take a red
to a blue vertex, because every automorphism in Λ must move vi for some i.
Let σdj ∈ Λ, where 1 ≤ d ≤ (n

j
− 1). If viσ

dj = vi, then Uiσ
dj = Ui since Λ is

abelian. Thus if σdj fixes vi for every 1 ≤ i ≤ s, then σdj fixes Ui for every
1 ≤ i ≤ s, hence σdj fixes all of G. This contradicts our assumption that G
realizes Dn. Thus our coloring 2-distinguishes G. 2

Theorem 6 D(Dn) = {2} unless n = 3, 4, 5, 6, 10, in which case, D(Dn) =
{2, 3}.

Proof Let G be a graph that realizes Dn. By Lemmas 2, 3, 4, if G has an
orbit of size at least 6, then G is 2-distinguishable. Let p be a prime divisor
of n, and suppose that pα is the largest power of p that divides n. Then the
action of the cyclic subgroup Λ =< σ

n
pα > makes vertex orbits in G of size

1, p, p2, . . . , or pα. Let u be a vertex in G, and let d be the smallest positive
integer such that uσd

n
pα = u. Then d is the size of the Λ-orbit that contains

u. Therefore, d divides pα. We claim that there must be an orbit O under
Λ of size pα. If not, then for each u ∈ G, uσd

n
pα = u for some d = pβ and

β < α. Since d n
pα

= pβ n
pα

= n
pα−β , and α − β ≥ 1, then uσ

n
p = u. Hence σ

n
p

fixes all of G, which contradicts our assumption that G realizes Dn. Thus O
stays the same size or becomes larger under the action of Dn. Therefore, if n
has a divisor which is a prime power pα greater than 6, then D(Dn) = {2}.

We may therefore assume that n has no prime divisor greater than 5, that
n has at most one factor of 5, one factor of 3, and two factors of 2. Thus
the only remaining cases are n = 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. We prove first
that if n ≥ 12, then D(Dn) = {2}.

We may assume that every orbit of G has size less than or equal to 5.
By Lemma 2, we may assume that the stabilizer of every vertex is one of
the second two types: either < σj, τσi > of order 2n

j
or < τσi > of order

2. However, an order 2 stabilizer corresponds to an order n orbit, which is
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greater than 5 if n ≥ 12. Let u be a vertex in an orbit O of size d (where
d = 1, 2, 3, 4 or 5 and d divides n) with stabilizer Hu, of size 2n

d
. Then

Hu =< σd, τσi > for some 0 ≤ i ≤ d − 1. Thus < σd > fixes O. Let u′

be a vertex in an orbit O′ of size d′ with stabilizer Hu′ =< σd
′
, τσi

′
>. Let

l = lcm(d, d′). Then < σd
′
> fixes O′ and < σl > fixes both O and O′. In

order for G to realize Dn, G must have orbits with sizes whose least common
multiple is n.

Hence if n = 12, there are orbits of size 3, 4; if n = 15, there are orbits
of size 3, 5; if n = 20, then 4, 5; if n = 30, then 2, 3, 5; if n = 60, then 3, 4, 5.
Since 15 is odd and 30 has only one prime factor of 2, there is no 2-orbit if
n = 15, and no 4-orbit if n = 30. If n = 12, 20, 60, then there must be a
4-orbit, but then there is no 2-orbit, because we can choose a stabilizer from
the 2-orbit, < σ2, τ >, and a stabilizer from the 4-orbit, < σ4, τσ >, whose
intersection is < σ4 >. By Lemma 1, the intersection of stabilizer subgroups
from all the orbits is then just the identity, and hence by Theorem 5 G can
be 2-distinguished. Similarly, G cannot have two orbits of the same size.
Except for 1-orbits, then, the orbit sizes for each n must be exactly as listed
in the first sentence of this paragraph.

Hence if n ≥ 12, the orbits of G have sizes which are all pairwise relatively
prime. The bipartite graphs formed by the vertices of two orbits and the
edges between the orbits are then either complete or empty. By Lemma 5
below, Dn is the product of the automorphism group of each orbit, considered
as a subgraph of G. Since each orbit must form a vertex transitive graph,
the orbits of size 3 are K3 or its complement; the orbits of size 4 are K4,
its complement, C4 or its complement; and the orbits of size 5 are K5 or its
complement, C5, or its complement. In each case, the product of the sizes
of the appropriate groups is larger than the size of Dn for the corresponding
value of n. Thus if n ≥ 12, D(Dn) = {2}.

Next we show that if n = 3, 4, 5, 6, 10, then D(Dn) = {2, 3}. As ob-
served above, D(S3) = {2, 3}, and D3 = S3. ¿From the key problem,
3 ∈ D(D4), D(D5). Now D2m has center C = {e, σm}, and D2m/C ∼= Dm

when m is odd by σ → (σ, τ ) and τ → (e, τ ). Hence K3,2, which requires 3
colors to distinguish, realizes D6, and C5 ∨K2 realizes D10.

It remains to be shown that if n = 3, 4, 5, 6, 10, every graph with auto-
morphism group Dn can be distinguished with 3 colors. Let u1, u2, . . . , ut be
vertices from the t different vertex orbits of G with H1,H2, . . . , Ht their re-
spective stabilizing subgroups. By Lemma 1,< σ > ∩H1∩H2∩· · ·∩Ht = {e}.
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Therefore the subgroup ∩tl=1Hl is of the third type, so ∩tl=1Hl =< τσi >, for
some 0 ≤ i ≤ n− 1. Color u1, u2, . . . , ut red, and choose one vertex v which
is not fixed by τσi (all of u1, u2, . . . , ut are fixed by τσi) and color v green.
Color the rest of the vertices in G blue. Then every automorphism either
moves a red vertex to a vertex which is not red, except for τσi which fixes
all the red vertices, but moves the unique green vertex to either a red or a
blue vertex. Thus every graph that realizes Dn can be 3-distinguished. 2

Lemma 5 Suppose O is an orbit of G and for every other orbit O′ of G,
G[O′] 6∼= G[O]. Furthermore suppose that each bipartite graph formed by the
vertices in O,O′ and the edges between these two orbits is either empty or
complete. Then Aut(G) = Aut(G[O])× Aut(G[V −O]).

Proof Let v ∈ V , h1 ∈ Aut(G[O]), and h2 ∈ Aut(G[V − O]). We define
ω : Aut(G[O])× Aut(G[V −O])→ Aut(G) by

ω(h1, h2)(v) =
{

(v)h1 if v ∈ O
(v)h2 if v ∈ V −O

Then ω(h1, h2) is an automorphism ofG, because it preserves the adjacen-
cies in O, in V −O, and between O and V −O. Conversely, any automorphism
of G, when restricted to O is an automorphism of G[O], and when restricted
to V −O is an automorphism of G[V −O]. 2

5 The symmetric group

Before proceeding to our principal result of this section (determining D(S4)),
we present an argument (due to Lovasz [12]) to show that if n ≥ 6, then
D(L(Kn)) = 2. Since Aut(L(Kn)) = Aut(Kn) = Sn, it is enough to show
that by 2-coloring the edges of Kn we can break every vertex automorphism
of Kn, since every automorphism of the vertices of Kn is an automorphism
of the edges as well. Let G consist of a path of n vertices with one additional
edge joining the second and fourth vertex. If n ≥ 6, then G is rigid. Thus if
we color the edges of a copy of G in Kn red and all the complementary edges
blue, we have destroyed all the automorphisms.

Theorem 7 D(S4) = {2, 4}. Furthermore, if G is a graph such that D(G) =
4, then G has exactly one 4-orbit and every other vertex is fixed by every
automorphism of G.
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Outline of Proof Let G realize S4. Every orbit size must divide 24. By
Corollary 4.1, if G has a 24 orbit, then G can be 2-distinguished. It is not
hard to show that any orbit with 8 or 12 vertices can be 2-distinguished.
From Theorem 4 it follows that if G has an orbit of size 8 or 12, then G can
be 2-distinguished. The rest of the argument falls into two cases depending
on whether or not G has an orbit of size 4.

Suppose that G does have a 4-orbit U . The stabilizer of any vertex in U
must be isomorphic to S3. There are four copies of S3 in S4, which are all
conjugate, so each is the stabilizer of exactly one vertex in U . The induced
subgraph G[U ] on U must be a vertex transitive graph on 4 vertices. Since the
stabilizer of each vertex in U contains a 3-cycle, G[U ] cannot be a matching
or a 4-cycle, Thus G[U ] is either 4 independent vertices or K4.

If every orbit besides U has size 1, then by Lemma 5, Aut(G) = Aut(G[U ]) =
S4, hence four colors are necessary to distinguish the four vertices in U and
sufficient to distinguish G. If there exists an orbit W besides U which has
size greater than 1, then the proof proceeds by providing a 2 coloring of the
graph between U and W which must be 2-distinguishing of G.

Suppose that G has no orbit of size 4. Then the possible orbit sizes
for G are 1, 2, 3, or 6. The rest of the argument proceeds by analyzing the
stabilizers of the possible orbits and providing 2-distinguishing colorings for
graphs with 6-orbits, and graphs without 6-orbits, but with 3-orbits. Clearly
graphs with largest orbit size 2 can be 2-distinguished. The authors will be
happy to provide details of the proof upon request. 2

6 Conjectures

Conjecture 1 There does not exist a group Γ such that D(Γ) = {2, 3, 4}.

Conjecture 2 If n ≥ 4, then n − 1 is not in D(Sn). In particular this
would imply that D(S5) = {2, 3, 5}. We further conjecture that for 6 ≤ n ≤
9, D(Sn) = {2, 3, n}.

Conjecture 3 If G realizes Sn and D(G) = n, then G consists of Kn or its
complement together with vertices in 1- orbits.
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