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Abstract

An algebraically motivated generalization of Gosper’s algorithm to indefinite bibasic hy-
pergeometric summation is presented. In particular, it is shown how Paule’s concept of
greatest factorial factorization of polynomials can be extended to the bibasic case. It
turns out that most of the bibasic hypergeometric summation identities from literature
can be proved and even found this way. A Mathematica implementation of the algorithm
is available from the author.

AMS Subject Classification. Primary 33D65, 68Q40; Secondary 33D20.

1 Introduction

Recently, Paule and Strehl [10] observed that the algorithm presented by Gosper [7] for in-
definite hypergeometric summation extends quite naturally to the q-hypergeometric case by
introducing a q-analogue of the canonical Gosper-Petkovšek (GP) representation for ratio-
nal functions. Based on the new algebraic concept of greatest factorial factorization (GFF),
Paule [8] developed an alternative but equivalent approach to hypergeometric telescoping. It
was also shown by Paule (cf. Paule and Riese [9]) that the problem of q-hypergeometric tele-
scoping can be treated along the same lines as the q = 1 case by making use of a q-version of
GFF. Built on these concepts, a Mathematica implementation of q-analogues of Gosper’s as
well as of Zeilberger’s [14] fast algorithm for definite q-hypergeometric summation has been
carried out by the author (cf. Paule and Riese [9], and Riese [12]). The original approach to
definite q-hypergeometric summation is due to Wilf and Zeilberger [13].

The object of this paper is to describe how the algorithm qTelescope presented in [9], a
q-analogue of Gosper’s algorithm, generalizes to the bibasic hypergeometric case. In Section 2,
the underlying theoretical background based on a bibasic extension of GFF is discussed, which
leads to the bibasic counterpart of the algorithm qTelescope. In Section 3, the degree setting
for solving the bibasic key equation is established. Applications are given in Section 4 to
illustrate the usage of the newly developed Mathematica implementation which is available by
email request to Axel.Riese@risc.uni-linz.ac.at.
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2 Theoretical Background

In this section, q-greatest factorial factorization (qGFF) of polynomials, which has been intro-
duced by Paule (cf. Paule and Riese [9]) providing an algebraic explanation of q-hypergeometric
telescoping, is extended to the bibasic hypergeometric case. It turns out that to this end the
q-case argumentation can be carried over almost word by word.

2.1 Bibasic Greatest Factorial Factorization

Let � denote the set of all integers, and � the set of all non-negative integers. Let p, q, x,
and y be fixed indeterminates. Assume K = L(κ1, . . . , κn) to be the field of rational functions
in a fixed number of indeterminates κ1, . . . , κn, n ∈ �, where p 6= κi 6= y and q 6= κi 6= x,
1 ≤ i ≤ n, over some computable field L of characteristic 0 and not containing p, q, x, and
y. (For the sake of simplicity with regard to the implementation we will restrict ourselves to
the case where L is the rational number field �.) The transcendental extension of K by the
indeterminates p and q is denoted by F , i.e., F = K(p, q).

For P ∈ F [x, y], let the bibasic shift operator ε be given by (εP )(x, y) = P (qx, py). The
extension of this shift operator to the rational function field F (x, y), the quotient field of the
polynomial ring F [x, y], will be also denoted by ε.

Definition 1. A polynomial P ∈ F [x] (resp. P ∈ F [y]) is called q-monic (resp. p-monic) if
P (0) = 1. A polynomial P ∈ F [x, y] is called bibasic monic if P (x, 0) 6= 0 6= P (0, y) and either
P (0, 0) = 1, or P (0, 0) = 0 and the coefficients of P are relatively prime polynomials in F .†

Example. (i) The following polynomials are bibasic monic:

P1(x, y) = 1, P2(x, y) = 1− apqx2y3, P3(x, y) = (1− q)2x2 + py.

(ii) The following polynomials are not bibasic monic:

P4(x, y) = q, P5(x, y) = xy − apqx2y3, P6(x, y) = (1− q)−1px2 + py.

The properties of being q-monic, p-monic, and bibasic monic are clearly invariant with
respect to the bibasic shift operator ε, i.e., if P is q-monic, p-monic, or bibasic monic, then
the same holds true for εP . Furthermore, the product of two bibasic monic polynomials is
again bibasic monic. Also note that a bibasic monic polynomial P satisfies gcd(x,P ) = 1 =
gcd(y, P ).

Evidently, any non-zero polynomial P ∈ F [x, y] has a unique factorization, the bibasic
monic decomposition, in the form

P = z · xα · yβ · P∗,

where z ∈ F , α, β ∈ �, and P∗ ∈ F [x, y] is bibasic monic.
The bibasic monic decomposition of a polynomial P 6= 0 can be computed easily as follows.

Define α := max{i ∈ � : xi|P}, β := max{j ∈ � : yj|P}, and put P̄ := x−α · y−β · P . If
P̄ (0, 0) 6= 0 define z := P̄ (0, 0), otherwise let l denote the least common multiple of all
coefficient-denominators of P̄ , let g denote the greatest common divisor of all coefficients of
l · P̄ , and define z := g/l. Then, for P∗ := z−1 · P̄ , the bibasic monic decomposition of P is
given by P = z · xα · yβ · P∗.
†In other words, P is assumed to be primitive over L[κ1, . . . , κn, p, q] in this case, which will guarantee the

uniqueness of the so-called bibasic monic decomposition of a polynomial as shown below.
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Example. The bibasic monic decompositions of the polynomials P4, P5, and P6 from the
example above are given by

P4 = q · x0 · y0 · 1, P5 = 1 · x · y · (1− apqxy2), P6 =
p

1− q · x
0 · y0 · (x2 + (1− q)y).

Moreover, we assume the result of any gcd computation over F [x, y] as being normalized
in the following sense. If P1 = z1 · xα1 · yβ1 · P∗1 and P2 = z2 · xα2 · yβ2 · P∗2 are the bibasic
monic decompositions of P1, P2 ∈ F [x, y], we define

gcdp,q(P1, P2) := gcd(xα1 , xα2) · gcd(yβ1 , yβ2) · gcdp,q(P∗1, P
∗
2),

where the gcdp,q of two bibasic monic polynomials is understood to be bibasic monic.
The polynomial degree in x and y of any P ∈ F [x, y] is denoted by degx(P ) and degy(P ),

respectively.

Definition 2. For any bibasic monic polynomial P ∈ F [x, y] and k ∈ �, the k-th falling
bibasic factorial [P ]kp,q of P is defined as

[P ]kp,q :=
k−1∏
i=0

ε−iP.

Note that by the null convention
∏
i∈∅ Pi := 1 we have [P ]0p,q = 1. In general, polynomials

arising in bibasic hypergeometric summation have several different representations in terms of
falling bibasic factorials. From all possibilities, we shall consider only the one taking care of
maximal chains, which informally can be obtained as follows. One selects irreducible factors
of P in such a way that their product, say

Pk,1(x, y) · Pk,1(q−1x, p−1y) · · ·Pk,1(q−k+1x, p−k+1y),

forms a falling bibasic factorial [Pk,1]kp,q of maximal length k. For the remaining irreducible
factors of P this procedure is applied again in order to find all k-th falling factorial divisors
[Pk,1]kp,q , . . . , [Pk,l]

k
p,q of that type. Then [Pk]

k
p,q := [Pk,1 · · ·Pk,l]kp,q forms the bibasic factorial

factor of P of maximal length k. Iterating this procedure one gets a factorization of P in terms
of “greatest” factorial factors.

Definition 3. We say that 〈P1, . . . , Pk〉, Pi ∈ F [x, y], is a bibasic GFF-form of a bibasic monic
polynomial P ∈ F [x, y], written as GFFp,q(P ) = 〈P1, . . . , Pk〉, if the following conditions hold:

(GFFp,q 1) P = [P1]1p,q · · · [Pk]kp,q ,
(GFFp,q 2) each Pi is bibasic monic, and k > 0 implies Pk 6= 1,
(GFFp,q 3) for i ≤ j we have gcdp,q([Pi]

i
p,q , εPj) = 1 = gcdp,q([Pi]

i
p,q, ε−jPj).

Note that GFFp,q(1) = 〈〉. Condition (GFFp,q 3) intuitively can be understood as prohibit-
ing “overlaps” of bibasic factorials that violate length maximality. The following theorem
states that, as in the q-hypergeometric case, the bibasic GFF-form is unique and thus provides
a canonical form.

Theorem 1. If 〈P1, . . . , Pk〉 and 〈P ′1, . . . , P ′l 〉 are bibasic GFF-forms of a bibasic monic poly-
nomial P ∈ F [x, y], then k = l and Pi = P ′i for all 1 ≤ i ≤ k.
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Proof. The corresponding result for the ordinary hypergeometric case (p = q = 1) has been
proved by Paule [8, Thm. 2.1]. The arguments used there extend immediately to the bibasic
hypergeometric case proceeding by induction on d := degx(P ) + degy(P ).

From algorithmic point of view it is important to note that the bibasic GFF-form can be
computed in an iterative manner essentially involving only gcd computations.

In q-hypergeometric summation, the normalized gcd of a polynomial P and its q-shift εP
plays a fundamental role, as the gcd of P and its shift EP does in ordinary hypergeometric
summation, where (EP )(x) = P (x+ 1). The same is true for bibasic hypergeometric summa-
tion with respect to the bibasic shift operator ε. The mathematical and algorithmic essence
lies in the following lemma.

Lemma 1 (Fundamental GFF��� Lemma). Let P ∈ F [x, y] be a bibasic monic polynomial
with GFFp,q(P ) = 〈P1, . . . , Pk〉. Then

gcdp,q(P, εP ) = [P1]0p,q · · · [Pk]
k−1
p,q .

Proof. Due to the choice of the bibasic shift operator ε, the proof of the so-called Funda-
mental qGFF Lemma (cf. Paule and Riese [9, Lemma 1]) can be carried over to the bibasic
hypergeometric case completely unchanged.

Thus, if GFFp,q(P ) = 〈P1, . . . , Pk〉, then GFFp,q(gcdp,q(P, εP )) = 〈P2, . . . , Pk〉. Conse-
quently, dividing P with GFFp,q(P ) = 〈P1, . . . , Pk〉 by ε−1 gcdp,q(P, εP ) or gcdp,q(P, εP ) re-
sults in separating the product of the first, respectively last, falling bibasic factorial entries,
or in other words

P

ε−1 gcdp,q(P, εP )
= P1 · P2 · · ·Pk and

P

gcdp,q(P, εP )
= P1 · (ε−1P2) · · · (ε−k+1Pk).

2.2 Bibasic Hypergeometric Telescoping

A sequence (fk)k∈� is said to be bibasic hypergeometric (see, e.g. Petkovšek, Wilf, and Zeil-
berger [11]) in p and q over F , if there exists a rational function ρ ∈ F (x, y) such that
fk+1/fk = ρ(qk, pk) for all k where the quotient is well-defined.

Assume we are given a bibasic hypergeometric sequence (fk)k∈�. Then the problem of
bibasic hypergeometric telescoping is to decide whether there exists a bibasic hypergeometric
sequence (gk)k∈� such that

gk+1 − gk = fk, (1)

and if so, to determine (gk)k∈� with the motive that for a, b ∈ �, a ≤ b,
b∑

k=a

fk = gb+1 − ga,

which solves the indefinite summation problem.
For the rational function ρ, related to fk+1/fk as above, there exists a representation

ρ(x, y) = z · xα · yβ · A∗(x, y)/B∗(x, y) with bibasic monic A∗,B∗ ∈ F [x, y], z ∈ F , and
α,β ∈ �, which we call a rational representation of the bibasic hypergeometric sequence
(fk)k∈�. If additionally A∗ and B∗ are relatively prime, then ρ(x, y) is called the reduced
rational representation of (fk)k∈�. For α ∈ �, let α+ := max(α, 0) and α− := max(−α, 0).

It will be shown below that bibasic hypergeometric telescoping can be decided construc-
tively as follows.
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Algorithm Telescope���. Input: a bibasic hypergeometric sequence (fk)k∈� specified by its
reduced rational representation ρ = z · xα · yβ ·A∗/B∗;
Output: a bibasic hypergeometric solution (gk)k∈� of (1); in case such a solution does not
exist, the algorithm stops.

(i) Compute the bibasic GP form of (fk)k∈�, i.e.,

(a) determine unique bibasic monic polynomials P∗, Q∗, R∗ ∈ F [x, y] such that

A∗

B∗
=
εP∗

P∗
· Q
∗

εR∗
, (2)

where gcdp,q(P∗,Q∗) = 1 = gcdp,q(P∗, R∗) and gcdp,q(Q∗, εjR∗) = 1 for all j ≥ 1,
and

(b) let ax, bx, ay, and by denote the coefficients of the lowest occurring powers of x and
y in A∗(x,0), B∗(x,0), A∗(0, y), and B∗(0, y), respectively. Define

(γ, δ) :=


(ϕ,ψ) if α = 0 = β and qϕ · pµ · by/ay = z = pψ · qν · bx/ax

for ϕ,ψ ∈ � and µ, ν ∈ �,
(ϕ, 0) if α = 0 6= β and z = qϕ · pµ · by/ay for ϕ ∈ �, µ ∈ �,
(0, ψ) if α 6= 0 = β and z = pψ · qν · bx/ax for ψ ∈ �, ν ∈ �,
(0, 0) otherwise,

and put

P := xγ · yδ · P∗,
Q := z · q−γ · p−δ · xα+ · yβ+ ·Q∗, (3)

εR := xα− · yβ− · εR∗,

with the motive that then

ρ =
εP

P
· Q
εR
.

(ii) Try to solve the bibasic key equation

P = Q · εY −R · Y (4)

for a polynomial Y ∈ F [x, y].

(iii) If such a polynomial solution Y exists, then

gk =
R(qk, pk) · Y (qk, pk)

P (qk, pk)
· fk (5)

is a bibasic hypergeometric solution of (1), otherwise no bibasic hypergeometric solution
(gk)k∈� exists.



the electronic journal of combinatorics 3 (1996), #R19 6

The steps of Algorithm Telescopep,q are derived as follows. First, assume that a bibasic
hypergeometric solution (gk)k∈� with rational representation gk+1/gk = σ(qk, pk) of (1) exists.
Then evidently we have

gk = τ(qk, pk) · fk, (6)

where τ(x, y) = 1/(σ(x, y)− 1) ∈ F (x, y).
By relation (6), equation (1) is equivalent to

z · xα+ · yβ+ ·A∗ · ετ − xα− · yβ− ·B∗ · τ = xα− · yβ− ·B∗, (7)

where the reduced rational representation of (fk)k∈� is given by ρ = z · xα · yβ ·A∗/B∗.
Vice versa, any rational solution τ ∈ F (x, y) of (7) gives rise to a bibasic hypergeometric

solution gk := τ(qk, pk)·fk of (1). This means, bibasic hypergeometric telescoping is equivalent
to finding a rational solution τ of (7).

Any τ ∈ F (x, y) can be represented as the quotient of relatively prime polynomials in the
form τ = U/V where U ,V ∈ F [x, y] with V = xϕ · yψ · V∗ the bibasic monic decomposition of
V. In case such a solution τ of (7) exists, assume we know V or a multiple V ∈ F [x, y] of V.
Then by clearing denominators in

z · xα+ · yβ+ ·A∗ · εU
εV
− xα− · yβ− ·B∗ · U

V
= xα− · yβ− ·B∗,

the problem reduces further to finding a polynomial solution U ∈ F [x, y] of the resulting
difference equation with polynomial coefficients,

z · xα+ · yβ+ ·A∗ · V · εU − xα− · yβ− ·B∗ · (εV ) · U = xα− · yβ− ·B∗ · V · εV. (8)

Note that at least one polynomial solution, namely U = U·V/V, exists. Furthermore, equations
of that type simplify by canceling gcdp,q’s. For instance, in order to get more information about
the denominator V, let Vi := εiV/ gcdp,q(V, εV), i ∈ {0, 1}. Then (7) is equivalent to

z · xα+ · yβ+ ·A∗ · V0 · εU − xα− · yβ− ·B∗ · V1 · U = xα− · yβ− ·B∗ · V0 · V1 · gcdp,q(V, εV). (9)

Now, if 〈P1, . . . ,Pm〉, m ∈ �, is the bibasic GFF-form of V∗, it follows from gcdp,q(U ,V) =
1 = gcdp,q(V0,V1) and the Fundamental GFFp,q Lemma that

V0 = (ε0P1) · · · (ε−m+1Pm) | B∗ and V1 = qϕ · pψ · (εP1) · · · (εPm) | A∗.

This observation gives rise to a simple and straightforward algorithm for computing a
multiple V ∗ := [P1]1p,q · · · [Pn]np,q of V∗. For instance, if P1 := gcdp,q(ε−1A∗, B∗) then obviously
P1|P1. Actually, one can iteratively extract bibasic monic Pi-multiples Pi such that εPi|A∗
and ε−i+1Pi|B∗ by the following algorithm.

Algorithm V�MULT. Input: relatively prime and bibasic monic polynomials A∗,B∗ ∈
F [x, y] that constitute the bibasic monic quotient of ρ = z · xα · yβ ·A∗/B∗ ∈ F (x, y);
Output: bibasic monic polynomials P1, . . . , Pn such that V ∗ := [P1]1p,q · · · [Pn]np,q is a multiple
of V∗, the bibasic monic part of the denominator V = xϕ · yψ · V∗ of τ ∈ F (x, y).

(i) Compute n = min{j ∈ � | gcdp,q(ε−1A∗, εk−1B∗) = 1 for all integers k > j}.
(ii) Set A0 = A∗, B0 = B∗, and compute for i from 1 to n:

Pi = gcdp,q(ε−1Ai−1, ε
i−1Bi−1),

Ai = Ai−1/εPi,

Bi = Bi−1/ε
−i+1Pi.
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A proof for the fact that the Pi are indeed multiples of the Pi has been worked out for the
ordinary hypergeometric case by Paule [8, Lemma 5.1]. It can be carried over to the bibasic
hypergeometric world almost word by word. Hence we leave the steps of the verification to
the reader.

Note that in general step (i) of Algorithm V∗MULT would be a rather time-consuming task
involving resultant computations which could be solved by generalizing the univariate case
(cf. Abramov, Paule, and Petkovšek [1]) in a straightforward way, for instance, as follows. De-
fineR1(v, w) := Resx(A∗(x, y),B∗(vx,wy)) and R2(v,w) := Resy(A∗(x, y), B∗(vx, wy)), viewed
as polynomials of v and w over F [y], respectively F [x]. Then n is the maximal positive integer
such that R1(qn, pn) ·R2(qn, pn) = 0 if such an integer exists, and n = 0 otherwise. However,
in our implementation we make use of the fact that A∗ and B∗ already come in nicely factored
form so that the computation of n boils down to a comparison of those factors.

Moreover, Algorithm V∗MULT also delivers the constituents of the bibasic monic part of
the GP representation (2) as stated in the following lemma.

Lemma 2. Let n, An, Bn, and the tuple 〈P1, . . . , Pn〉 be computed as in Algorithm V∗MULT.
Then for P∗ = V ∗, Q∗ = An, and R∗ = ε−1Bn we have

A∗

B∗
=
εP∗

P∗
· Q
∗

εR∗
,

where gcdp,q(P∗,Q∗) = 1 = gcdp,q(P∗,R∗) and gcdp,q(Q∗, εjR∗) = 1 for all j ≥ 1.

For more details on GP representations in the q-hypergeometric case, see Abramov, Paule,
and Petkovšek [1], or Paule and Strehl [10]. The results obtained there also apply in the
bibasic hypergeometric case.

With the multiple V ∗ of V∗ in hands, all what is left for solving (7), and thus the bibasic
hypergeometric telescoping problem (1), is to determine appropriate multiplicities γ and δ
such that

V = xγ · yδ · V ∗ is a multiple of V = xϕ · yψ · V∗.

For that we consider equation (9) again in the equivalent version

z · xα+ · yβ+ ·A∗ · V∗ · εU − xα− · yβ− ·B∗ · qϕ · pψ · (εV∗) · U = xα− · yβ− ·B∗ · V∗ · εV, (10)

and distinguish the following cases corresponding to step (ib) of Algorithm Telescopep,q.

(i) Assume that either α− 6= 0 or α+ 6= 0. In the first case we have α+ = 0 and xα− | U ,
hence ϕ must be 0 because of gcdp,q(U ,V) = 1. This means, we can choose γ := 0. In
the second case we have α− = 0 and xmin(α+,ϕ) | U , because of εV = xϕ · yψ · qϕ ·pψ · εV∗.
Again ϕ must be 0, and again we can choose γ := 0. Analogously, if β 6= 0 we can choose
δ := 0.

(ii) Assume that α = 0 and β 6= 0, hence ψ = 0 by (i). For ϕ > 0, evaluating equation (10)
at x = 0 results in

z · yβ+ ·A∗(0, y) · V∗(0, y) · U(0, py)− yβ− ·B∗(0, y) · qϕ · V∗(0, py) · U(0, y) = 0. (11)

In order to evaluate (11) at y = 0, note that P ∈ F [x, y] being bibasic monic does
not necessarily imply that P (0, y) ∈ F [y] is p-monic. To overcome this problem, let us
consider the p-monic decompositions of U(0, y) and V∗(0, y), say U(0, y) = u · yβu · Ū(y)
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and V∗(0, y) = v · yβv · V̄ (y), respectively. Now, dividing equation (11) by U(0, y) ·
V∗(0, y) 6= 0 leads to

z · yβ+ ·A∗(0, y) · pβu · Ū(py)
Ū(y)

− yβ− ·B∗(0, y) · qϕ · pβv · V̄ (py)
V̄ (y)

= 0. (12)

Additionally, let the p-monic decompositions of A∗(0, y) and B∗(0, y) be given by
A∗(0, y) = ay · yβa · Ā(y) and B∗(0, y) = by · yβb · B̄(y), respectively. Then the pow-
ers yβa+β+ and yβb+β− must be equal, and after cancellation equation (12) at y = 0
turns into

z · ay · pβu − by · qϕ · pβv = 0.

This means, we obtain as a condition for ϕ > 0 that z = qϕ · pµ · by/ay with µ ∈ �.
Hence, in this case we choose γ := ϕ, i.e., we set γ to this q-power if z has this particular
form, and γ := 0 otherwise. Analogously, if α 6= 0 and β = 0 we define δ := ψ > 0, if
z = pψ · qν · bx/ax with ν ∈ �, and δ := 0 otherwise.

(iii) Finally, for the case α = 0 = β similar reasoning as in case (ii) leads to the conditions

qϕ · pµ · by/ay = z = pψ · qν · bx/ax, (13)

for ϕ > 0 or ψ > 0, and µ, ν ∈ �. Thus, if both conditions (13) are satisfied we choose
γ := ϕ and δ := ψ, and otherwise γ = δ := 0.

The remaining steps of Algorithm Telescopep,q now are explained as follows. Once again,
employing the GP representation for the bibasic monic quotient of ρ,

A∗

B∗
=
εP∗

P∗
· Q
∗

εR∗
,

it is easily seen that equation (8) can be written as

z · q−γ · p−δ · xα+ · yβ+ · Q
∗

εR∗
· εU − xα− · yβ− · U = xγ+α− · yδ+β− · P∗. (14)

Because of relative primeness of certain polynomials, we observe that xα− |U , yβ− |U , and
εR∗ | εU . Hence by defining Y by the relation

U = xα− · yβ− · q−α− · p−β− ·R∗ · Y,

the task to solve equation (8) for U reduces to solve

z · q−γ · p−δ · xα+ · yβ+ ·Q∗ · εY − xα− · yβ− · q−α− · p−β− ·R∗ · Y = xγ · yδ · P∗ (15)

for Y ∈ F [x, y]. By definition (3) of P , Q, and R, equation (15) immediately turns into the
bibasic key equation (4),

Q · εY −R · Y = P.

Finally, from U/V = R · Y/P , again by definition (3), it follows directly that

gk =
R(qk, pk) · Y (qk, pk)

P (qk, pk)
· fk

as in (5) actually is a solution of the bibasic hypergeometric telescoping problem (1). This
completes the proof of the correctness of Algorithm Telescopep,q .
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3 Degree Setting for Solving the Bibasic Key Equation

To solve the bibasic key equation

P = Q · εY −R · Y (16)

we first have to determine degree bounds d1 and d2, say, for the solution polynomial Y ∈ F [x, y]
with respect to x and y, respectively, as shown in Theorem 2 below. Then we put

Y (x, y) :=
d1∑
i=0

d2∑
j=0

yi,j · xi · yj

with undetermined yi,j and solve (16) for the yi,j by equating to zero all coefficients of xiyj

in the equation

P −Q · εY +R · Y = 0,

which corresponds to solving a system of linear equations.

Theorem 2. Let lxQ(y), lyQ(x), lxR(y), and lyR(x) denote the leading coefficient polynomials of
Q and R with respect to x and y, respectively. Let QR+ := Q+R and QR− := Q−R. Then
bounds for degx(Y ) and degy(Y ) are given by:

(Ax) If degx(QR+) 6= degx(QR−), then

degx(Y ) ≤ max{degx(P )−max{degx(QR+), degx(QR−)}, 0}.

(Ay) If degy(QR
+) 6= degy(QR

−), then

degy(Y ) ≤ max{degy(P )−max{degy(QR
+), degy(QR

−)}, 0}.

(Bx) If degx(QR+) = degx(QR−), then

(B1x) if degx(Q) 6= degx(R), then

degx(Y ) = degx(P )− degx(QR+),

(B2x) if degx(Q) = degx(R), then

(B2ax) if lxR(y)/lxQ(y) is of the form pµ · qν · r(y) with µ, ν ∈ �, and r(y) a rational
function with r(0) = 1, then

degx(Y ) ≤ max{degx(P )− degx(QR+), ν},

(B2bx) otherwise

degx(Y ) = degx(P )− degx(QR+).

(By) If degy(QR+) = degy(QR−), then

(B1y) if degy(Q) 6= degy(R), then

degy(Y ) = degy(P )− degy(QR
+),
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(B2y) if degy(Q) = degy(R), then
(B2ay) if lyR(x)/lyQ(x) is of the form pµ · qν · r(x) with µ, ν ∈ �, and r(x) a rational

function with r(0) = 1, then

degy(Y ) ≤max{degy(P )− degy(QR
+), µ},

(B2by) otherwise

degy(Y ) = degy(P )− degy(QR
+).

Proof. We rewrite the key equation to obtain

2P = QR+ · (εY − Y ) +QR− · (εY + Y ). (17)

Cases (Ax) and (Ay) follow immediately. Note that it might happen that

degx(QR+) > degx(P ) and degx(QR−) = degx(P ),

and simultaneously

degy(QR
+) > degy(P ) and degy(QR

−) = degy(P ).

In this case, setting degx(Y ) = degy(Y ) = 0 could yield a solution, since εY − Y = 0 then.
For Case (B1x) let a := degx(Q), c := degx(Y ), and let lxY (y) denote the leading coefficient

polynomial of Y with respect to x. Assume that degx(Q) > degx(R). Then (17) gives

2P (x, y) = (lxQ(y)xa + . . . ) · [(lxY (py) qc − lxY (y))xc + . . . ]

+ (lxQ(y)xa + . . . ) · [(lxY (py) qc + lxY (y))xc + . . . ]

= 2 lxQ(y) lxY (py) qc xa+c + . . . . (18)

Clearly, the coefficient of xa+c in (18) will never vanish. Therefore we have

degx(Y ) = degx(P )− degx(Q).

Including the case degx(Q) < degx(R), we obtain

degx(Y ) = degx(P )−max{degx(Q),degx(R)} = degx(P )− degx(QR+).

Analogous reasoning leads to Case (B1y).
For Case (B2x) we similarly observe that

2P (x, y) = [(lxQ(y) + lxR(y))xa + . . . ] · [(lxY (py) qc − lxY (y)) xc + . . . ]

+ [(lxQ(y)− lxR(y))xa + . . . ] · [(lxY (py) qc + lxY (y))xc + . . . ]

= 2 [lxQ(y) lxY (py) qc − lxR(y) lxY (y)] xa+c + . . . . (19)

Now we no longer have the guarantee that the coefficient of xa+c in (19) does not vanish, but
it is easily seen that this happens only for

qc =
lxR(y)
lxQ(y)

· l
x
Y (y)
lxY (py)

. (20)

Note that lxY (y) is actually not known. However, for any non-zero polynomial h(y) = h0 +
h1 y + · · ·+ hd yd, the quotient h(y)/h(py) is of the form p−m · s(y), where s(y) is a rational
function with s(0) = 1 and m is the zero-root multiplicity of h(y). Hence, the rightmost
fraction in (20) may eliminate only positive integer powers of p and a rational function of y
but never introduce a power of q. This proves Case (B2ax), and after interchanging x and p
with y and q, respectively, also Case (B2ay).

On the other hand, if the coefficient of xa+c in (19) does not vanish, we obtain Case (B2bx)
and analogously Case (B2by).
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4 Applications

In this section we shall illustrate the method of bibasic hypergeometric telescoping using the
author’s Mathematica implementation qTelescope, which is a bibasic extension of a q-ana-
logue of Gosper’s algorithm originally described in Paule and Riese [9].

Let the q-shifted factorial of a ∈ F be defined as usual (see, e.g. Gasper and Rahman [5])
by

(a; q)k :=


(1− a)(1− aq) · · · (1− aqk−1), if k > 0,
1, if k = 0,[
(1− aq−1)(1− aq−2) · · · (1− aqk)

]−1
, if k < 0,

and

(a; q)∞ :=
∞∏
k=0

(1− aqk),

where products of q-shifted factorials will be abbreviated by

(a1, a2, . . . , an; q)k := (a1; q)k (a2; q)k · · · (an; q)k.

In the present implementation we allow as summand any bibasic hypergeometric sequence
(fk)k∈� of the form

fk =
∏
r(Cr q

(crir)k+dr ; qir)ark+br∏
s(Ds q(vsjs)k+ws ; qjs)tsk+us

·
∏
r(C

′
r p

(c′ri
′
r)k+d′r ;pi

′
r )a′rk+b′r∏

s(D′s p
(v′sj

′
s)k+w′s ; pj′s)t′sk+u′s

×R(qk, pk) · qα(k2) · pβ(k2) · zk,

with
Cr,Ds power products in K(p),
C ′r,D

′
s power products in K(q),

ar, ts, a
′
r, t
′
s specific integers (i.e., integers free of any parameters),

br, us, b′r , u
′
s integer parameters free of k, or ±∞ if ar (resp. ts, a′r, t′s) = 0,

cr, vs, c′r, v
′
s specific integers,

dr, ws, d′r, w
′
s integer parameters free of k,

ir , js, i′r, j
′
s specific non-zero integers,

R a rational function in F (qk, pk) such that the denominator factors completely
into a product of terms of the form (1−Dqvk+w) and (1−D′pv′k+w′),

α,β specific integers, and
z a rational function in F .

For the actual computation of the GP representation let ρ(x, y) denote the possibly non-
reduced rational representation of the summand fk. It is obvious from the input specification
that ρ can always be converted into the form

ρ(x, y) =
(εP̄ )(x, y)
P̄ (x, y)

·
∏
i(1− Γi xγi)∏
j(1−∆j xδj )

·
∏
i(1− Γ′i y

γ′i)∏
j(1−∆′j y

δ′j )
· xᾱ · yβ̄ · z̄

=
(εP̄ )(x, y)
P̄ (x, y)

· Ā(x, y)
B̄(x, y)

· xᾱ · yβ̄ · z̄,
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where P̄ ∈ F [x, y] is bibasic monic and satisfies gcdp,q(P̄ , Ā) = 1 = gcdp,q(εP̄ , B̄); the
Γi,∆j,Γ′i,∆

′
j are power products in F , the γi, δj , γ′i, δ

′
j are positive integers, ᾱ, β̄ ∈ �, and

z̄ ∈ F .
Concerning Algorithm V∗MULT, it is clear from above that any P̄ 6= 1 will actually con-

tribute to [P1]1p,q and thus can be treated separately. Due to our input restrictions — this is
the reason for admitting only power products instead of arbitrary rational functions — it is
possible to find n in step (i) of Algorithm V∗MULT simply by comparing all factors in Ā and
B̄ as already mentioned.

Furthermore, since Ā and B̄ are both products of a q-monic and a p-monic polynomial,
they will never contribute to bx/ax and by/ay. Thus, bx/ax and by/ay are in any case integer
powers of q and p, respectively, coming from εP̄ /P̄ . Therefore, they do not take influence on
the computation of γ and δ at all.

4.1 Bibasic Summation Formulas

In 1989, Gasper [3] derived the indefinite bibasic summation formula

n∑
k=0

fk =
n∑
k=0

(1− apkqk)(1− bpkq−k)
(1− a)(1− b)

(a, b; p)k (c, a/bc; q)k
(q, aq/b; q)k (ap/c, bcp; p)k

qk

=
(ap, bp; p)n (cq, aq/bc; q)n
(q, aq/b; q)n (ap/c, bcp;p)n

= gn (21)

by showing that gk is a bibasic hypergeometric solution of the equation fk = gk − gk−1,
however, without revealing how to come up with gk. With our implementation the job of
finding gk is left to the computer.

In[1]:= <<qTelescope.m

Out[1]= Axel Riese’s qTelescope implementation version 2.0 loaded

In[2]:= qTelescope[(1-a p^k q^k) (1-b p^k/q^k) qfac[a,p,k] qfac[b,p,k] qfac[c,q,k] *

qfac[a/b/c,q,k] q^k / ((1-a) (1-b) qfac[q,q,k] qfac[a q/b,q,k] *

qfac[a p/c,p,k] qfac[b c p,p,k]), {k, 0, n}]

a q

qfac[a p, p, n] qfac[b p, p, n] qfac[---, q, n] qfac[c q, q, n]

b c

Out[2]= ---------------------------------------------------------------

a p a q

qfac[---, p, n] qfac[b c p, p, n] qfac[q, q, n] qfac[---, q, n]

c b

Applying the same argumentation, Gasper and Rahman [4] generalized (21) to

n∑
k=−m

(1− adpkqk)(1− bpk/dqk)
(a, b;p)k (c, ad2/bc; q)k

(dq, adq/b; q)k (adp/c, bcp/d; p)k
qk

=
(1− a)(1− b)(1− c)(1− ad2/bc)

d(1− c/d)(1− ad/bc)

×
{

(ap, bp; p)n (cq, ad2q/bc; q)n
(dq, adq/b; q)n (adp/c, bcp/d;p)n

− (c/ad, d/bc; p)m+1 (1/d, b/ad; q)m+1

(1/c, bc/ad2; q)m+1 (1/a, 1/b; p)m+1

}
. (22)
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Obviously, (21) is the case d = 1, m = 0 of (22). Since the output of qTelescope for identity
(22) is quite lengthy, here we shall consider only the case m = −1 after dividing the summand
by the constant fraction on the right hand side. Of course, the algorithm works for symbolic
m as well.

In[3]:= qTelescope[(1-a d p^k q^k) (1-b/d p^k/q^k) qfac[a,p,k] qfac[b,p,k] *

qfac[c,q,k] qfac[a d^2/b/c,q,k] q^k d (1-c/d) (1-a d/b/c) /

(qfac[d q,q,k] qfac[a d q/b,q,k] qfac[a d p/c,p,k] *

qfac[b c p/d,p,k] (1-a) (1-b) (1-c) (1-a d^2/b/c)), {k, 1, n}]

2

a d q

Out[3]= -1 + (qfac[a p, p, n] qfac[b p, p, n] qfac[c q, q, n] qfac[------, q, n]) /

b c

b c p a d p a d q

(qfac[-----, p, n] qfac[-----, p, n] qfac[d q, q, n] qfac[-----, q, n])

d c b

4.2 Bibasic Matrix Inverses

Al-Salam and Verma [2] showed that the triangular matrices H = (hn,k) and G = (gk,n),
where

hn,k =
(−1)n+k (hqpn; q)n−1 (1− hqkpk)

(p; p)n−k (hqpn; q)k

and

gk,n =
(hpnqn; q)k−n

(p; p)k−n
p(
k−n

2 )

are inverse to each other. This result is equivalent to the fact that

n∑
k=m

hn,k · gk,m = δn,m, (23)

where δn,m denotes the Kronecker symbol. Running the algorithm we obtain:

In[4]:= qTelescope[(-1)^(n+k) qfac[h q p^n,q,n-1] (1-h q^k p^k) *

qfac[h p^m q^m,q,k-m] p^Binomial[k-m,2] /

(qfac[p,p,n-k] qfac[h q p^n,q,k] qfac[p,p,k-m]), {k, m, n}]

Out[4]= {0, {-m + n != 0}}

This means, we algorithmically proved identity (23) form 6= n, but evaluation failed for m = n.
However, it is easily seen that hn,n · gn,n = 1, which completes the proof.

These matrices were used in a slightly modified form also by Gessel and Stanton [6] in the
derivation of a family of q-Lagrange inversion formulas.

Al-Salam and Verma [2] employed the fact that the n-th q-difference of a polynomial of
degree less than n is equal to zero, to show that(

1− a

q

) n∑
k=0

(−1)k (apk; q)n−1

(p; p)k (p; p)n−k
p(
k
2) = δn,0. (24)
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Unfortunately, for dk := (apk; q)n−1, we find that

dk+1

dk
=

(1− apk+1)(1− apk+1q) · · · (1− apk+1qn−2)
(1− apk)(1− apkq) · · · (1− apkqn−2)

is a rational function of qk and pk only for fixed n. Therefore dk is not a valid input for the
algorithm. To overcome the problem, we replace k, n, and a in (24) by k −m, n−m, and
a−1pmq1−n, respectively, such that (24) turns into the orthogonality relation

cn,m

n∑
k=m

an,k · bk,m = δn,m (25)

with

cn,m = (1− a−1pmq−n)a1+m−n q(
m+1

2 )−(n2),

an,k =
(ap−k; q)n
(p; p)n−k

(−1)1+k+n p(
n−k

2 ),

bk,m =
p−k(m+1)

(p;p)k−m (ap−k; q)m+1
.

Note that an,k and bk,m still do not fit into the input specification of the algorithm. For
A = (an,k), B = (bk,m), and C = (cn,m), relation (25) could be rewritten as A·B = diag(C)−1,
showing that the matrix diag(C) ·A = (cn,n · an,k) is inverse to the matrix B. Since inverse
matrices commute, (25) is equivalent to

n∑
k=m

ck,k · bn,k · ak,m = δn,m,

or, in other words
n∑

k=m

(−1)k+m (1− ap−kqk) (ap−m; q)k
(p;p)n−k (p; p)k−m (ap−n; q)k+1

p(
k−m

2 )−n(k+1)+k(m+1) = δn,m. (26)

In[5]:= qTelescope[(-1)^(k+m) (1-a q^k/p^k) qfac[a/p^m,q,k] *

p^(Binomial[k-m,2]-n(k+1)+k(m+1)) /

(qfac[p,p,n-k] qfac[p,p,k-m] qfac[a/p^n,q,k+1]), {k, m, n}]

Out[5]= {0, {-m + n != 0}}

For m = 0, (26) reduces to

n∑
k=0

(−1)k (1− ap−kqk) (a; q)k
(p; p)n−k (p;p)k (ap−n; q)k+1

p(
n−k

2 ) = δn,0.

In[6]:= qTelescope[(-1)^k (1-a q^k/p^k) qfac[a,q,k] p^Binomial[n-k,2] /

(qfac[p,p,n-k] qfac[p,p,k] qfac[a/p^n,q,k+1]), {k, 0, n}]

Out[6]= {0, {n != 0}}

Proceeding in the same way, we can prove the bibasic identity (cf. Gasper [3])(
1− a

q

)(
1− b

q

) n∑
k=0

(−1)k (apk, bp−k; q)n−1 (1− ap2k/b)
(p;p)k (p; p)n−k (apk/b;p)n+1

pk(n−1)+(n−k2 ) = δn,0,
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by transforming it into the equivalent version(
1− b

a

) n∑
k=0

(1− ap−kqk)(1− bpkqk) (−1)k (a, b; q)k (bpk+1/a; p)n−1

(p;p)k (p;p)n−k (ap−n, bpn; q)k+1
p(
n−k

2 ) = δn,0.

In[7]:= qTelescope[(1-b/a) (1-a q^k/p^k) (1-b p^k q^k) (-1)^k qfac[a,q,k] *

qfac[b,q,k] qfac[b/a p^(k+1),p,n-1] p^Binomial[n-k,2] /

(qfac[p,p,k] qfac[p,p,n-k] qfac[a/p^n,q,k+1] qfac[b p^n,q,k+1]),

{k, 0, n}]

Out[7]= {0, {n != 0}}

4.3 Open Problems

With the input specification described above we actually have not taken into account that a
bibasic hypergeometric summand fk could involve q-shifted factorials with mixed bases such
as (a;piqj)k for i, j ∈ � as well. However, since to our knowledge applications of this type
have not arisen in practice up to now, this feature has not been implemented yet.

For the sake of simplicity we restricted ourselves to discuss in detail the bibasic case.
Nevertheless, the presented approach should easily extend to the multi-basic case, i.e., to
sequences being hypergeometric in independent bases q1, . . . , qm.

So far we found only one single bibasic example in the literature which we could not handle
with our machinery, namely Gasper’s [3] transformation formulas

∞∑
k=0

1− apkqk
1− a

(a; p)k (c/b; q)k
(q; q)k (abp;p)k

bk

=
1− c
1− b

∞∑
k=0

(ap;p)k (c/b; q)k
(q; q)k (abp; p)k

(bq)k

=
1− c

1− abp

∞∑
k=0

(ap;p)k (cq/b; q)k
(q; q)k (abp2; p)k

bk

=
(1− c) (ap; p)∞
(1− b) (abp;p)∞

∞∑
k=0

(b; p)k (cqpk; q)∞
(p; p)k (bqpk;p)∞

(ap)k,

when max(|p|, |q|, |ap|, |b|) < 1.
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