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Abstract
Given any system of n subsets in a matroid M , a transversal of this system

is an n-tuple of elements of M , one from each set, which is independent. Two
transversals differing by exactly one element are adjacent, and two transver-
sals connected by a sequence of adjacencies are locally equivalent, the distance
between them being the minimum number of adjacencies in such a sequence.

We give two sufficient conditions for all transversals of a set system to be
locally equivalent. Also we propose a conjecture that the distance between any
two locally equivalent transversals can be bounded by a function of n only, and
provide an example showing that such function, if it exists, must grow at least
exponentially.

Let M be a matroid, and V = (V1, . . . , Vn) a collection of subsets of M . By a
transversal of V we mean a sequence (v1, . . . , vn) of elements of M such that vi ∈ Vi
for i = 1, . . . , n, and v1, . . . , vn are independent. By the well-known Rado’s Theorem,
transversals exist if and only if the following condition is satisfied:

For every X ⊆ {1, . . . , n}, rank (
⋃
i∈X

Vi) ≥ |X |. (1)

We say that a transversal (v′1, . . . , v
′
n) is a (result of a) local replacement of

(v1, . . . , vn) at i if v′j = vj for j 6= i; and call two transversals locally equivalent
if one can be obtained from the other by a sequence of local replacements; the length
of the shortest such sequence being the distance between the transversals.

In this note we address two questions: under what conditions are all transversals
of a collection V locally equivalent; and how big (in terms of n) can be the distance
between two locally equivalent transversals. Also, we shall consider in more detail
the case when M is the free matroid (the matroid having no cycles).
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1 Sufficient conditions of local equivalence

Here we shall prove two sufficient conditions for all transversals of a set system to be
locally equivalent.

THEOREM 1 If a collection V = (V1, . . . , Vn) of subsets of a matroid M is such
that

For every ∅ 6= X ⊆ {1, . . . , n}, rank (
⋃
i∈X

Vi) > |X| (2)

then all transversals of V are locally equivalent.

The second theorem is a straightforward generalization of a result proved in [1].
Call a subset V ofM thick if for every flatA ofM either V ⊆ A, or |V ∩A| < |V |/2.

THEOREM 2 If V1, . . . , Vn are thick subsets of M and V = (V1, . . . , Vn) satisfies
(1) then all transversals of V are locally equivalent, and the distance between any two
of them does not exceed 2n − 1.

Some examples of thick subsets: one-element sets, cycles of size 3, subspaces of
an n-dimensional vector space over GF(2).

A partial case of Theorem 2 for M a linear vector space over the field GF (2),
and Vi one- or two-dimensional subspaces was proved in [1] and independently in [4].
The proof from [1], almost unchanged, applies to the general situation.

We use the notation 〈X〉 for X ⊆M to mean the flat in M generated by X.

PROOF OF THEOREM 1.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two transversals of V = (V1, . . . , Vn).
Let D = D(x, y) = {i | xi 6= yi}. We shall prove that x and y are locally equivalent
by induction on d = |D(x, y)|.

First we introduce some notation:
I = {1, . . . , n};
XJ = 〈xj | j ∈ J〉 where J ⊆ I ;
for v ∈ 〈x〉, let IX(v) be the smallest set J ⊆ I such that v ∈ XJ . (This set is

uniquely determined.)
Suppose first that 〈x1, . . . , xn〉 6= 〈y1, . . . , yn〉. This means that yi 6∈ 〈x1, . . . , xn〉

for some i. Then the sequence x′ = (x1, . . . , xi−1, yi, xi+1, . . . , xn) is an independent
transversal of V . It is a local replacement of x at i; and |D(x′, y)| < |D(x, y)|. By
induction, we are done in this case.

So, let X = 〈x1, . . . , xn〉 = 〈y1, . . . , yn〉. We construct inductively the sequence
∅ = I0 ⊆ I1 ⊆ . . . ⊆ Ir ⊆ I as follows:

Ik+1 = Ik ∪ {j ∈ I \ Ik | Vj 6⊆ XI\Ik};
r is the first index for which Ir ∩D 6= ∅.
The property (2) implies that Ik ⊂ Ik+1 for all 0 ≤ k < r; in particular, the length

of the sequence does not exceed n− d + 1, and the number r is well-defined.



the electronic journal of combinatorics 3 (1996), #R24 3

Now we construct a sequence (i1, . . . , ir) of indices, and a sequence (v1, . . . , vr) of
elements vk ∈ Vik ; starting with ir and vr. Choose any ir ∈ Ir∩D, and vr ∈ Vir\XI\Ir .

The choice of ir and vr implies that ir ∈ Ir \ Ir−1, and that the set IX(vr)
contains an element j ∈ Ir−1 for which Vj 6⊆ XI\Ir−1. Set ir−1 = j, and choose
vr−1 ∈ Vj \XI\Ir−1

. Again we have ir−1 ∈ Ir−1 \ Ir−2, and the set IX(vr−1) contains
an element j ∈ Ir−2 for which Vj 6⊆ XI\Ir−2

. We continue in the same manner, and
finally find i1 ∈ I1 and v1 ∈ Vi1 such that v1 6∈ 〈X〉.

To simplify the notation, let us assume that i1 = 1, . . ., ir = r.
Now we shall perform certain local replacements of both x and y. Consider

the sequences x(i) = (v1, . . . , vi, xi+1, . . . , xn) and y(i) = (v1, . . . , vi, yi+1, . . . , yn) for
i = 1, . . . , r. Let also x(0) = x, y(0) = y.

By the choice of the elements vi, we have vi 6∈ 〈xi, . . . , xn〉, and for i ≥ 2, vi ∈
〈xi−1, . . . , xn〉. Therefore all the sequences x(j), 0 ≤ j ≤ r, are transversals, and are
locally equivalent to x.

If we have 〈x(i)〉 = 〈y(i)〉 for i = 1, . . . , j then all the sequences y(i), 0 ≤ i ≤ j,
are also transversals, and are locally equivalent to y. If this holds for j = r then
|D(x(r), y(r))| = |D(x, y)|−1, and x and y are locally equivalent by induction. On the
other side, if i is the first value for which 〈x(i)〉 6= 〈y(i)〉 then x(i) is locally equivalent
to y(i) by the argument from the beginning of this proof. Thus, in either case x is
locally equivalent to y, and the theorem is proved. 2

PROOF OF THEOREM 2.

The proof below exactly follows the proof of Proposition 5.1 in [1].
Take any two bases x = (x1, . . . , xn) and y = (y1, . . . , yn). Suppose that xi 6= yi

for some i. Let X = 〈xj | j 6= i〉, and Y = 〈yj | j 6= i〉. As xi 6∈ X and yi 6∈ Y , and
using the fact that Vi is thick, we have

|Vi \ (X ∪ Y )| ≥ |Vi| − |Vi ∩X| − |Vi ∩ Y | > |Vi| − |Vi|/2− |Vi|/2 = 0.

Therefore there exists an element z of Vi which belongs to neither X nor Y ; and we
can replace both xi and yi by z. Thus, using at most two local replacements, we can
reduce by 1 the number of places in which x and y disagree.

This argument gives an upper bound of 2n−1 on the maximum distance between
transversals; because at the last stage, when x and y differ in only one place, one
needs only one local replacement, and not two. 2

The proof of Theorem 1 also gives an upper bound on the distance between
transversals; the distance cannot exceed

2 + 4 + . . . + 2(n− 1) + 1 = n2 − n+ 1.

By all probability, this bound is far from sharp. It would be very interesting to
find the exact bound on the distance between transversals under the assumptions of
Theorem 1.
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2 Free matroid

A free matroid M is a matroid with no cycles. In a free matroid all subsets are
independent; and rank (X) = |X | for all X ⊆M . Let V = (V1, . . . , Vn) be a collection
of subsets of M which has at least one transversal. Let N = {1, . . . , n}. By the kernel
of V we shall mean the largest subset X ⊆ N for which

|
⋃
i∈X

Vi| = |X |.

The kernel exists since if X1 and X2 satisfy this property then so does X1 ∪X2.

THEOREM 3 Two transversals of V are locally equivalent if and only if they agree
on the kernel K of V; the distance between them then does not exceed 2(n−|K|)− 1.

PROOF. We construct a bipartite graph G = (N ∪M,E) with parts N and
M ; i ∈ N is adjacent to v ∈M when v ∈ Vi. The transversals of V are in one-to-one
correspondence with the matchings in G covering the part N ; and a local replacement
in this language corresponds to changing a single edge in the matching.

Let L be the set of vertices in M adjacent to vertices from K ; by definition of K
we have |L| = |K|. Thus, no edge incident to a vertex in K can ever be changed;
and the “only if” part of the theorem is proved.

The set system corresponding to the graph induced on (N \ K) ∪ (M \ L) has
an empty kernel, and at least one transversal. Thus, if K 6= ∅ then we can apply
induction on |N |. So we assume thatK = ∅, i.e. V satisfies the conditions of Theorem
1.

Let A = (ai | i ∈ N ) and B = (bi | i ∈ N ) be any two transversals. Colour the
edges (i, ai) blue, and (i, bi) red. The multigraph formed by all coloured edges is a
disjoint union of cycles (possibly of length 2 if ai = bi for some i), paths, and isolated
vertices. Let {C1, . . . , Ck} be the set of all its cycles. We shall prove by induction on
n+ k that the distance between A and B is at most n + k. Since k ≤ n, and k = n
only if A = B, this will prove the theorem.

Let C =
⋃
Ci, X = C ∩ N , Y = C ∩M . We have |X | = |Y |. Applying the

inequality 2 to the set X we see that in G there is an edge between X and M \ Y ;
colour it green. This edge is incident to exactly one of the cycles C1, . . . , Ck; we delete
it from C and apply the same argument to the set of remaining cycles; and continue
in the same manner until we get k green edges. We shall consider the subgraph G′

of G formed by all coloured edges (blue, red, and green). The system corresponding
to G′ also satisfies the property 2, and both A and B are its transversals.

Suppose first that there exists a green edge pq, p ∈ N , q ∈ M such that q is not
incident to any red edge. Then we can perform one local replacement on B replacing
the red edge incident to p by pq, and reduce the number of cycles by 1. By induction,
we are done in this case. Similarly we treat the case when q is not incident to any
blue edge.
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Thus, for every green edge pq, q ∈ M the vertex q is incident to both red and
blue edges. Let a be an end vertex of a red-blue path abc . . .; we have a ∈M , b ∈ N ,
c ∈ M . Say, the edge ba is red, and bc is blue. No green edge is incident to a. We
perform one local replacement on A, replacing bc by ba, and then delete the vertices
b and a. The system corresponding to the remaining graph still satisfies the property
2, and has n− 1 sets. Thus, by induction, the theorem is proved. 2

3 Lower bounds on the distance

We begin this section with a conjecture.

CONJECTURE. For every natural n there exists f(n) such that for every matroid
M , if x = (x1, . . . , xn) and y = (y1, . . . , yn) are two locally equivalent transversals
of a set system (V1, . . . , Vn) in M then the distance between x and y does not exceed
f(n).

I firmly believe this conjecture to be true. Trivially, f(1) = 1. It is easy to prove
(and is left to the reader as an exercise) that f(2) = 3. The case n = 3 can possibly
be dealt with by a long and tedious but not very difficult argument.

On the other hand, the function f(n) if it exists must grow at least exponentially.
Below we shall construct examples proving this, and an example showing that f(3) ≥
7.

EXAMPLE 1. Let M be a 3-dimensional space over any field; a, b, x three linearly
independent vectors. Set

V1 = {a, b}, V2 = {a, b, x}, V3 = {a+ x, b+ x, a+ b}.

It is easy to check that this set system has eight independent transversals, and that
the transversals (a, b, a+ x) and (b, a, b+ x) are at distance 7.

EXAMPLE 2. For i = 1, . . . , n let Vi = {e0
i , e

1
i } be n disjoint sets of size 2;

M =
⋃
Vi, the matroid structure on M to be specified later.

The set H = V1 × . . . × Vn of n-tuples of elements of M forms the Hamming
graph; two n-tuples being adjacent whenever they differ in only one coordinate. Ev-
ery matroid structure on M determines a subgraph of H induced on the vertices
corresponding to independent subsets of M ; and we need to choose a matroid struc-
ture on M so that the diameter of some connected component of this graph be as
big as possible. We shall use the following easy lemma.

LEMMA. For every set V , and every collection X of k-subsets of V such that
|X1 \X2| ≥ 2 for any two different X1, X2 ∈ X there exists a matroid on V in which
a k-set is independent if and only if it doesn’t belong to X .

PROOF. Let the bases of the matroid be the k-subsets of V not belonging to
X . We only need to check that they satisfy the exchange axiom:
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For any two bases X, Y , and any x ∈ X there exists y ∈ Y such that X\{x}∪{y}
is also a base.

If x ∈ Y then we can take y = x. If X \ Y = {x} then Y \ X = {y}, and we
replace x by y. So, let x ∈ X \ Y , and |Y \ X| ≥ 2, say, {y, z} ⊆ Y \ X. By our
assumption on the collection X at least one of the sets X \ {x} ∪ {y}, X \ {x} ∪ {z}
does not belong to X and therefore is a base — the exchange property is proved. 2

We shall denote vertices of H by (0, 1)-vectors of length n; the vector (ε1, . . . , εn)
corresponding to the transversal (eε11 , . . . , e

εn
n ). The condition on the collection X

from the Lemma now means simply that X corresponds to an independent set of
vertices of H.

Let n be even, n = 2m. Denote by Hi the set of vectors of weight i: those having
exactly i coordinates equal to 1.

We shall construct the set X = Hm−2 ∪ (Hm \ Y)∪Hm+2 for some Y ⊆ Hm such
that in the graph H \ X the set Y is contained in a connected compomnent of large
diameter.

We define a graph on the set Hm; two vectors are adjacent if and only if they
differ in exactly two coordinates. This is the Johnson graph J(2m,m). The vertices
of any induced path of length l in this graph form such set Y with the diameter of
the connected component equal to 2l. So, we need to find long induced paths in the
graphs J(2m,m). By a recent result of A.Evdokimov [2], one can find such paths of
length > (2 − ε)n for any ε > 0 and large enough n. This proves that f (n) grows
faster than any exponent (2− ε)n.

The mentioned theorem of A.Evdokimov is new and yet unpublished but it is
easy to prove an exponential (though worse) lower bound using a well-known result
by the same A.Evdokimov [3] that in the binary Hamming graph of dimension m
one can find an induced path of length c · 2m. If (v1, . . . , vl) is such path then the
sequence of vectors (w1, . . . , wl) where wi = vivi (vi is the complement of vi) gives
an induced path in the graph J(2m,m) of the same length. Thus, f (n) ≥ c · 2n/2.

Finally, I conjecture that f (n) ≤ 2n− 1. This conjecture is not supported by any
evidence, and is much more dubious than the first one.
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