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Abstract. The set of the three dimensional polyominoes of minimal area and of volume n

contains a polyomino which is the union of a quasicube j × (j + δ) × (j + θ), δ, θ ∈ {0, 1},
a quasisquare l × (l + ε), ε ∈ {0, 1}, and a bar k. This shape is naturally associated to the
unique decomposition of n = j(j +δ)(j +θ)+ l(l+ε)+k as the sum of a maximal quasicube, a

maximal quasisquare and a bar. For n a quasicube plus a quasisquare, or a quasicube minus

one, the minimal polyominoes are reduced to these shapes. The minimal area is explicitly
computed and yields a discrete isoperimetric inequality. These variational problems are the

key for finding the path of escape from the metastable state for the three dimensional Ising
model at very low temperatures. The results and proofs are illustrated by a lot of pictures.
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1. Introduction

Suppose we are given n unit cubes. What is the best way to set them out, in order to
obtain a shape having the smallest possible area?

A little thinking suggests the following answer: first build the greatest cube you can,
say j × j × j. Then complete one of its side, or even two, if you can, to obtain a quasicube
j × (j + δ) × (j + θ), where δ, θ ∈ {0, 1}. With the remaining cubes, build the greatest
quasisquare possible, l × (l + ε), ε ∈ {0, 1}, and put it on a side of the quasicube. With
the last cubes, make a bar of length k < l + ε and stick it against the quasisquare.

Our first main result is that this method indeed yields a three dimensional polyomino of
volume n and of minimal area, which is naturally associated to the unique decomposition of
n = j(j +δ)(j +θ)+ l(l+ε)+k as the sum of a maximal quasicube, a maximal quasisquare
and a bar. We can compute easily the area of these shapes and we thus obtain a discrete
isoperimetric inequality. However, the structure of the set of the minimal polyominoes
having a fixed volume n depends heavily on n. Our second main result is that the set
of the minimal polyominoes of volume n is reduced to the polyominoes obtained by the
previous method if and only if n is a quasicube plus a quasisquare or a quasicube minus one.

A striking consequence of this result is that there exists an infinite sequence of minimal
polyominoes, which is increasing for the inclusion. This fact is crucial for determining
the path of escape from the metastable state for the three dimensional Ising model at
very low temperatures [2,5]. The system nucleates from one phase to another by creating
a droplet which grows through this sequence of minimal shapes. This question was our
original motivation for solving the variational problems addressed here. The corresponding
two–dimensional questions have already been handled [9,10,11]. In dimension three, we
need a general large deviation framework [5,7] and the answer to precise global variational
problems (like the previous ones), as well as to local ones: what are the best ways (as far
as area is concerned) to grow or to shrink a parallelepiped?

Neves has obtained the first important results concerning the general d–dimensional case
of this question in [8]†. Using an induction on the dimension, he proves the d–dimensional
discrete isoperimetric inequality from which he deduces the asymptotic behaviour of the
relaxation time. However to obtain full information on the exit path one needs more refined
variational statements which we do prove here (for instance uniqueness of the minimal
shapes for specific values of the volume) together with a precise investigation of the energy
landscape near these minimal shapes. The introduction of the projection operators is a
key to reduce efficiently the polyominoes and to obtain the uniqueness results. Bollobás
and Leader use similar compression operators to solve another isoperimetric problem [3].
The first part of the paper deals with the two dimensional case. The two dimensional results
are indeed necessary to handle the three dimensional situation, which is the subject of the
second part. We expect that similar results hold in any dimension.

†We thank R. Schonmann for pointing us to this reference.
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2. The two dimensional case

We denote by (e1, e2) the canonical basis of the integer lattice Z2. A unit square is
a square of area one, whose center belongs to Z2 and whose vertices belong to the dual
lattice (Z+1/2)2. We do not distinguish between a unit square and its center: thus (x1, x2)
denotes the unit square of center (x1, x2). A two dimensional polyomino is a finite union
of unit squares. It is defined up to a translation. The set of all polyominoes is denoted
by C. Notice that our definition does not require that a polyomino is connected. However,
except for a few exceptions, we will deal with connected polyominoes. The area |c| of
the polyomino c is the number of its unit squares. We denote by Cn the set of all the
polyominoes of area n. The perimeter P (c) of a polyomino c is the number of unit edges
of the dual lattice (Z + 1/2)2 which belong only to one of the unit squares of c. Notice
that the perimeter is an even integer. For instance the perimeter of c in figure 2.1 is equal
to 12 and its area is equal to 6.

figure 2.1: a 2D polyomino

Our aim is to investigate the set Mn of the polyominoes of Cn having a minimal perimeter.
We say that a polyomino c has minimal perimeter (or simply is minimal) if it belongs to
the set M|c|.

Proposition 2.1. A polyomino c has minimal perimeter if and only if there does not
exist a rectangle of area greater than or equal to |c| having a perimeter smaller than P (c).

Proof. The perimeter of a polyomino is greater than or equal to the perimeter of its smallest
surrounding rectangle; there is equality if and only if the polyomino is convex. �

figure 2.2: the sets M1, M2, M3, M4
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This characterization of minimal polyominoes gives a very little insight into the possible
shapes of minimal polyominoes. Figure 2.2 shows the sets Mn for small values of n. Convex
polyominoes have been enumerated according to their perimeter [6] and to their perimeter
and area [4]. The perimeter and area generating function of convex polyominoes contains
implicitly some information on the number of minimal polyominoes.

Let us introduce some notations related to polyominoes. For the sake of clarity, we
need to work here with instances of the polyominoes having a definite position on the
lattice Z2 i.e. we temporarily remove the indistinguishability modulo translations. Let c
be a polyomino. By c(x1, x2) we denote the unique polyomino obtained by translating c
in such a way that

min{ y1 : ∃y2 (y1, y2) ∈ c(x1, x2) } = x1,

min{ y2 : ∃y1 (y1, y2) ∈ c(x1, x2) } = x2.

c(0, 0)

c(−3,−3)
figure 2.3: translation

When dealing with polyominoes up to translations, we normally work with the polyomi-
noes c(0, 0), for any c in C.

The lengths and the bars. Let c be a polyomino.
We define its horizontal and vertical lengths l1(c) and l2(c) by

l1(c) = 1 + max{ x1 ∈ Z : ∃x2 ∈ Z (x1, x2) ∈ c },
l2(c) = 1 + max{ x2 ∈ Z : ∃x1 ∈ Z (x1, x2) ∈ c }.

In particular, for a connected polyomino, l1(c) = card { x1 ∈ Z : ∃x2 ∈ Z (x1, x2) ∈ c }.
We define the horizontal and vertical bars b1(c, l) and b2(c, l) for l in Z by

b1(c, l) = { (x1, x2) ∈ c : x2 = l }, b2(c, l) = { (x1, x2) ∈ c : x1 = l }.
The bars are one dimensional sections of the polyomino. An horizontal bar will also be
called a row and a vertical bar a column. The extreme bars b∗1(c) and b∗2(c) are the bars
associated with the lengths l2(c) and l1(c) i.e.

b∗1(c) = b1(c, l2(c) − 1), b∗2(c) = b2(c, l1(c) − 1).
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b2(c, 1)

figure 2.4: a bar

Addition of polyominoes. We define an operator +1 from C × C to C by

∀c, d ∈ C c +1 d = c(0, 0) ∪ d(l1(c), 0).

c

d c +1 d

figure 2.5: operator +1

Similarly the operator +2 : C × C → C is defined by c +2 d = c(0, 0) ∪ d(0, l2(c)). More
generally, for an integer i, we set

c +i
1 d = c(0, 0) ∪ d(l1(c), i), c +i

2 d = c(0, 0) ∪ d(i, l2(c)).

c

d c +2
1 d

figure 2.6: operator +i
1

Sometimes we will use the operator + without specifying the direction: it will mean that
the direction is in fact indifferent i.e. the statements hold for both operators +1 and +2.
Finally, we define two operators on C × C with values in P(C), the subsets of C, by

c ⊕1 d = { c +i
1 d : l2(d) + i ≤ l2(c), i ≥ 0 }, c ⊕2 d = { c +i

2 d : l1(d) + i ≤ l1(c), i ≥ 0 }.
Notice that c⊕1d (respectively c⊕2d) is empty whenever l2(c) < l2(d) (resp. l1(c) < l1(d)).
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The basic polyominoes. We will concentrate mainly on particular simple shapes. Let us
first consider the rectangles. The rectangle of horizontal length l1 and of vertical length l2
is denoted by l1 × l2. A square is a rectangle l1 × l2 with l1 = l2. A quasisquare is a
rectangle l1 × l2 with |l1 − l2| ≤ 1. The basic polyominoes are those obtained by adding a
bar to a rectangle (the length of the bar being smaller than the length of the side of the
rectangle on which it is added). More precisely the set B of basic polyominoes is

B = { l1 × l2 +1 1 × k : 0 ≤ k < l2 } ∪ { l1 × l2 +2 k × 1 : 0 ≤ k < l1 }.

figure 2.7: basic polyominoes

When we add a bar k × 1 or 1 × k to a rectangle l1 × l2, we will sometimes shorten the
notation by writing only k, the direction of the bar being then parallel to the side of the
rectangle on which it is added. For instance l1 × l2 +1 k will mean l1 × l2 +1 1 × k.
We are now ready to state the first main result of this section.

Theorem 2.2. For any n, the set Mn of the polyominoes of area n having a minimal
perimeter contains a basic polyomino of the form

(l + ε) × l +2 k × 1 where ε ∈ {0, 1}, 0 ≤ k < l + ε, n = l(l + ε) + k.

Remark. Notice that this statement also says that any integer n may be decomposed
as n = l(l + ε) + k, which is a purely arithmetical fact.

Proof. We choose an arbitrary polyomino c belonging to Mn (which is not empty!) and
we apply to c a sequence of transformations in order to obtain a polyomino of the desired
shape. The point is that the transformations never increase the perimeter of a polyomino
nor change its area. Thus the perimeter remains constant during the whole sequence and
the final polyomino still belongs to Mn. We first describe separately each transformation.

Projections p1 and p2. The projections are defined for any polyomino. Let c be a
polyomino. The vertical projection p2 consists in letting all the unit squares of c fall down
vertically (along the direction of e2, in the sense of −e2) on a fixed horizontal line as shown
on figure 2.8.
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figure 2.8: vertical projection p2

The horizontal projection p1 is defined in the same way, working with the vector e1: we
push horizontally all the unit squares towards the left against a fixed vertical line (see
figure 2.9).

figure 2.9: horizontal projection p1

Clearly, the projections do not change the area. They are projections in the sense that
p1 ◦ p1 = p1, p2 ◦ p2 = p2. They never increase the perimeter. Consider for instance
the vertical projection p2. Focusing on two adjacent vertical bars, we see that the effect
of the projection is to increase the number of vertical edges belonging simultaneously to
both bars. Moreover, the projection p2 decreases the number of horizontal edges of a bar
which belong to only one unit square: after projection, this number is equal to 2. The
set F = p2 ◦ p1(C) of all projected polyominoes is the set of Ferrers diagrams. Ferrers
diagrams are convex polyominoes so that for c in F we have P (c) = 2(l1(c) + l2(c)).

Filling fill(2 → 1). These transformations are defined on the set F of Ferrers diagrams.
Let c belong to F . The filling fill(2 → 1) proceeds as follows. While there remains a row
below the top row (i.e. the extreme bar b∗1(c)) which is strictly shorter than the length of
the base row (that is the l1–length of c), we remove the rightmost unit square of the top
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row (i.e. the square (|b∗1(c)| − 1, l2(c) − 1) and we put it into the leftmost empty cell of
the lowest incomplete row. The mechanism ends whenever there is a full rectangle below
the top row (see figure 2.10). More precisely, let l∗ = min{ l : l < l2(c) : |b1(c, l)| < l1(c) }.
If l∗ < l2(c) − 1 we take the square (|b∗1(c)| − 1, l2(c) − 1) and we put it at (|b1(c, l∗)|, l∗).
We do this until l∗ equals l2(c)− 1 (there is a rectangle below the top row) or l∗ is infinite
(c is a rectangle).

figure 2.10: filling(2 → 1)

Clearly, the filling does not change the area and never increase the perimeter. It ends with
a basic polyomino (the addition of a rectangle and a bar).

Dividing. The domain of dividing is the set V of the basic vertical polyominoes

V = { l1 × l2 +2 k × 1 : 0 ≤ k < l1 ≤ l2 }.

figure 2.11: dividing
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Let c = l1 × l2 +2 k × 1 with k < l1 ≤ l2 be an element of V . Let l2 − l1 = 2q + ε be the
euclidean division of l2 − l1 by 2. The divided polyomino is then (see figure 2.11)

dividing(c) = (l1 × l1 +2 l1 × q +2 k × 1) +1 (q + ε) × l1.

We check easily that the dividing does not change the area nor the perimeter. In fact, the
rectangle surrounding dividing(c) is a quasisquare of perimeter 2(2l1 + 2q + ε + 1k 6=0) =
2(l1 + l2 + 1k 6=0) = P (c).

The sequence of transformations. The whole sequence of transformations is depicted
in figure 2.12. Let us start with a polyomino c belonging to Mn. We first apply the
projections p1 and p2. Let d = p2 ◦ p1(c). We consider two cases according whether d is
”vertical” or ”horizontal”. Let s∆ be the symmetry with respect to the diagonal x1 = x2.

• If l1(d) ≤ l2(d) we set e = d.
• If l1(d) > l2(d) we set e = s∆(d).

Now we have l1(e) ≤ l2(e). Next we apply the filling fill(2 → 1) to e and we obtain a
polyomino f . Since the perimeter cannot decrease, the polyomino f is necessarily a basic
”vertical” polyomino. Therefore we can apply the dividing to f . Let g = dividing(f).
Finally let h = fill(2 → 1)(g). Since the perimeter has not decreased during this last
filling, h is a basic ”vertical” polyomino. Because of the previous dividing operation, its
associated rectangle is in fact a quasisquare. Thus h has the desired shape. �

c

d

e with l1(e) ≤ l2(e)

f

g

h

p2 ◦ p1

s∆ or nothing

filling(2 → 1)

dividing

filling(2 → 1)

figure 2.12: the sequence of transformations
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c d e = f

gh

figure 2.13: an example

Figure 2.13 shows the action of the sequence of transformations. Notice that the starting
polyomino c is not minimal: it has been chosen so to emphasize the role of the projections.

Lemma 2.3. For each integer n there exists a unique 3–tuple (l, k, ε) such that

ε ∈ {0, 1}, 0 ≤ k < l + ε and n = l(l + ε) + k.

Proof. Fix a value of l. When ε and k vary in {0, 1}×{0 · · · l+ε−1} the quantity l(l+ε)+k
takes exactly all the values in {l2 · · · (l+1)2−1}. Thus the decomposition exists. Moreover l
is unique, necessarily equal to b√nc. We remark finally that k is the remainder of the
euclidean division of n by l + ε. �

Corollary 2.4. The polyomino obtained at the end of the sequence of transformations
does not depend on the polyomino initially chosen in the set Mn.

Throughout the section, the decomposition of an integer n given by lemma 2.3 will
be called ”the decomposition” of the integer, without further detail. We can now easily
compute the minimal perimeter.

Corollary 2.5. The minimal perimeter of a polyomino of area n is

min {P (c) : c ∈ Cn } =
{

4l + 2 if l2 + 1 ≤ n ≤ l(l + 1)
4l + 4 if l2 + l + 1 ≤ n ≤ (l + 1)2

where (l, k, ε) is the unique 3–tuple satisfying n = l(l + ε) + k, ε ∈ {0, 1}, k < l + ε.
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The canonical, standard and principal polyominoes. Lemma 2.3 and corollary 2.4
allow us to define a canonical polyomino mn belonging to Mn. Let n = l(l + ε) + k be the
decomposition of n. We set

mn =
{

l × l +1 1 × k if ε = 0
(l + 1) × l +2 k × 1 if ε = 1

This polyomino mn is called the canonical polyomino of area n.

figure 2.14: the canonical polyominoes m28, m23

For c a polyomino, we denote by c its equivalence class modulo the planar isometries which
leave the integer lattice Z2 invariant, that is modulo the symmetries s∆ (with respect to
the diagonal ∆), s1 (with respect to the axis orthogonal to e1), s2 (with respect to the axis
perpendicular to e2). By c12 we denote the equivalence class modulo the two symmetries s1

and s2. If A is a subset of C, we put

A =
⋃
c∈A

c, A
12

=
⋃
c∈A

c12.

The set Sn of the standard polyominoes is

Sn =
{

l × l ⊕1 1 × k if ε = 0
(l + 1) × l ⊕2 k × 1 if ε = 1

The set M̃n of the principal polyominoes is

M̃n = l × (l + ε) ⊕1 1 × k
⋃

l × (l + ε) ⊕2 k × 1.

The sets Sn and M̃n coincide only when ε is zero. Clearly {mn} ⊂ Sn ⊂ M̃n ⊂ Mn. Figure
2.15 shows that the inclusions may be strict.

figure 2.15: elements of {m13}, S13 \ {m13}, M̃13 \ S13, M13 \ M̃13

In general, the set Mn is much larger than M̃n. It turns out that it is not the case for
specific values of n. This is the content of the second main result of this section.
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Theorem 2.6. The set of minimal polyominoes Mn coincides with the set of principal

polyominoes M̃n if and only if the integer n is of the form l2 or l(l+1)−1, l(l+1), (l+1)2−1.

Proof. First note that Mn = M̃n implies that k ∈ {0, l + ε − 1}. If k 6= 0, then the
polyomino (l + ε − 1) × 1 +−1

2 (l + ε) × (l − 1) +2 (k + 1) × 1 belongs to Mn. Moreover if
k 6= l + ε − 1, this polyomino is not in the set M̃n. Thus if Mn is equal to M̃n then k = 0
or k = l + ε − 1 and the integer n is of the form l(l + ε) or l(l + ε) − 1.

figure 2.16: two elements of M23

Conversely, we will examine for these particular values of n the possible actions of the
sequence of transformations. That is, we will seek the antecedents of the final polyomino
obtained at the end of the sequence. The main idea is that we started the sequence of
transformations with a polyomino belonging to Mn so that the perimeter of the polyomino
cannot change throughout the whole sequence.
• n = l2. We have fill(2 → 1)−1(l × l) ∩ Mn = { l × l } (if the filling has emptied a row
to yield a square, there must have been a decrease of perimeter). Moreover,

dividing−1(l × l) ∩ Mn = { l × l }, (p2op1)−1(l × l) ∩ Mn = { l × l }.
Thus Ml2 = { l × l }.
• n = l(l + 1) − 1 = l2 + l − 1. We have

fill(2 → 1)−1(l × l +2 (l − 1) × 1) = { l × l +2 (l − 1) × 1 }
dividing−1(l × l +2 (l − 1) × 1) = { l × l +2 (l − 1) × 1 },

s−1
∆ (l × l +2 (l − 1) × 1) = { l × l +1 1 × (l − 1) },

and also (p2op1)−1({ l × l +2 (l − 1) × 1, l × l +1 1 × (l − 1) }) ∩ Mn = M̃l2+l−1 so that
finally Ml(l+1)−1 = M̃l(l+1)−1.
• n = l(l + 1). This case is similar to the previous one.
• n = (l + 1)2 − 1 = l(l + 1) + l. We have

fill(2 → 1)−1(l × (l + 1) +2 l × 1) = { l × (l + 1) +2 l × 1 }
dividing−1(l × (l + 1) +2 l × 1) = { l × (l + 1) +2 l × 1 },

(s∆ ◦ p1 ◦ p2)−1(l × (l + 1) +2 l × 1) = M̃(l+1)2−1.

We have thus checked that Mn = M̃n for all these values of n. �
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Corollary 2.7. The set Mn is reduced to {mn } if and only if n is of the form l2.
The set Mn coincides with Sn if and only if n is of the form l2 or l(l + 1) − 1, l(l + 1), in
which case Sn = mn.

Moves through the minimal polyominoes. We are interested in moving through the
polyominoes by adding or removing one unit square at a time. How far is it possible to
travel in this way through the minimal polyominoes?
Let us define three matrices q, q−, q+ indexed by C × C. First

∀c, d ∈ C q−(c, d) =
{

1 if d ⊂ c and |c \ d| = 1
0 otherwise

that is, q−(c, d) = 1 if d may be obtained by removing a unit square from c, and q−(c, d) = 0
otherwise. Next, we put q+(c, d) = q−(d, c), that is q+(c, d) = 1 if d may be obtained by
adding a unit square to c, and q+(c, d) = 0 otherwise. Finally we set q(c, d) = q−(c, d) +
q+(c, d) so that q(c, d) = 1 if the polyominoes differ by a unit square, and q(c, d) = 0
otherwise. Two polyominoes c, d are said to communicate if q(c, d) = 1. If Y is a subset
of C and c is a polyomino, we set q(c, Y ) = 1 if c communicates with at least one element
of Y and q(c, Y ) = 0 otherwise. The quantities q−(c, Y ), q+(c, Y ) are defined similarly.

Definition 2.8. A corner of a polyomino c is a unit square of c having at least two edges
belonging to the boundary of c.

Proposition 2.9. Let l1, l2 be two integers such that the rectangle l1 × l2 is minimal.
Let l1l2 = l(l + ε) + k be the decomposition of l1l2. Any polyomino obtained by removing
successively m < k corners from l1 × l2 is minimal.

Proof. The removal of a corner cannot increase the perimeter of a polyomino. The perime-
ter of the canonical polyomino of area l1l2−m (with m < k) is 2(2l+ ε)+2 = 2(l1 + l2), so
that a polyomino obtained after the removal of m < k corners from l1 × l2 is minimal. �

Proposition 2.10. (characterization of the minimal polyominoes)
A minimal polyomino is either a minimal rectangle or can be obtained by removing suc-
cessively m corners from a minimal rectangle l1 × l2, where m < k, l1l2 = l(l + ε) + k.

Proof. The polyominoes of the above list are minimal by proposition 2.9. Conversely, let c
belong to Mn. The smallest rectangle l1× l2 surrounding c is minimal (by proposition 2.1).
Let l1l2 = l(l+ε)+k be the decomposition of l1l2. Either n = l(l+ε) and c is a quasisquare
or l(l+ε) < n ≤ l1l2, so that c can be obtained by removing m < k corners from l1×l2. �

The next lemmas describe the way we can move starting from a canonical polyomino mn.

Lemma 2.11. Let ι be a planar isometry. For any n not of the form l2 or l(l+1), ι(mn+1)
is the unique polyomino of Mn+1 which communicates with ι(mn).
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Lemma 2.12. For n of the form l2 or l(l + 1), we have

{ c ∈ Mn−1 : q−(Mn, c) = 1 } = Sn−1,

{ c ∈ Mn+1 : q+(Mn, c) = 1 } = M̃n+1.

Lemma 2.13. For n not of the form l2 or l(l + 1), we have

{ c ∈ Mn−1 : q−(Sn, c) = 1 } ⊃ Sn−1,

{ c ∈ Mn+1 : q+(Sn, c) = 1 } = Sn+1,

{ c ∈ Mn−1 : q−(M̃n \ Sn, c) = 1 } ⊃ M̃n−1 \ Sn−1,

{ c ∈ Mn+1 : q+(M̃n \ Sn, c) = 1 } = M̃n+1 \ Sn+1.

Lemma 2.14. The rectangle l × (l + 2) is minimal but cannot grow and stay minimal.
More precisely, we have q+(l × (l + 2), Ml(l+2)+1) = 0.

Proposition 2.15. Except the quasisquares, no rectangle can grow and stay minimal.

Proof. Let l1 × l2 = l1 × (l1 + r) be a minimal rectangle. Such a rectangle can grow
and stay minimal if and only if the decomposition of l1 × l2 is l1(l1 + r) = m(m + ε),
and 2l1 + r = 2m + ε. Thus l21 + rl1 − m(m + ε) = 0. Solving this equation, we get
2l1 = −r +

√
r2 + 4m(m + ε) whence 2m + ε =

√
(2m + ε)2 + r2 − ε2, implying finally

r = 0 or r = 1. �

Definition 2.16. A sequence cn, · · · , cm of polyominoes is increasing if q+(cj , cj+1) = 1
for all j in {n · · ·m − 1}.
Lemma 2.17. Suppose n = l(l+1). Let c belong to Sn and suppose there is an increasing
sequence of minimal polyominoes cn, · · · , cm such that cn = c. Either cn+1 belongs to Sn+1

or m is strictly less than (l + 1)2; in the latter case, none of the polyominoes cn+1, · · · , cm

is standard, and they are all principal.

Proof. Suppose cn+1 is not standard i.e. cn+1 6∈ Sn+1. Thus, we have cn+1 = ι((l + 1) ×
l +i

1 1 × 1) for some isometry ι and for some i, 0 ≤ i ≤ l − 1. Necessarily, for all k smaller
than max(l−1, m−n), cn+k = ι((l+1)× l)+i

1 1×k for some i, 0 ≤ i ≤ l−k. None of these
polyominoes is standard. Moreover lemma 2.14 implies that m ≤ n + l = (l + 1)2 − 1. �

We next state a straightforward consequence of lemma 2.17.

Corollary 2.18. Let c0, · · · , cn be an increasing sequence of minimal polyominoes start-
ing from the empty polyomino (c0 = ∅). If cn is a standard polyomino (i.e. belongs to Sn)
then all the polyominoes of the sequence are standard (i.e. cj ∈ Sj for all j ≤ n).

We eventually sum up several facts of interest in the next propositions.
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Proposition 2.19. The principal polyominoes can be completely shrunk through the

principal polyominoes: for any integer n and for any principal polyomino c in M̃n, there
exists an increasing sequence c0, · · · , cn of principal polyominoes such that c0 = ∅, cn = c.

Proposition 2.20. The standard polyominoes can be grown or shrunk arbitrarily far
through the standard polyominoes: for any integers m ≤ n and for any standard poly-
omino c in Sm, there exists an increasing sequence c0, · · · , cn of standard polyominoes such
that c0 = ∅, cm = c.

Proposition 2.21. The infinite sequence S0, · · · , Sn, · · · of the sets of standard poly-
ominoes is the greatest sequence of subsets of the infinite sequence M0, · · · , Mn, · · · of the
sets of minimal polyominoes enjoying the properties stated in proposition 2.20.

Proof. Let S′
0, · · · , S′

n, · · · be a sequence included in M0, · · · , Mn, · · · for which proposi-
tion 2.20 holds. Suppose there exists n such that S′

n 6⊂ Sn. Let c belong to S′
n \ Sn.

Let l1 × l2 be the smallest rectangle surrounding c. A growing sequence of minimal poly-
ominoes starting from c necessarily reaches l1 × l2. By proposition 2.15, this rectangle can
grow and stay minimal if and only if it is a quasisquare. Thus l1 × l2 has to be a qua-
sisquare. Suppose for instance l1× l2 = l× (l+1) (the other cases are similar). Since c can
be obtained by growing the empty polyomino through minimal polyominoes, it contains
necessarily the square l2 i.e. l2 ⊂ c ⊂ l(l + 1). It follows that c is standard. �

Shrinking or growing a rectangle. We finally investigate the following problem. What
is the best way to shrink or to grow a rectangle?
Let l1, l2, k be positive integers. We define

M(l1 × l2,−k) = { c ∈ Cl1l2−k : c ⊂ l1 × l2, P (c) minimal }.
More precisely, a polyomino c belongs to M(l1 × l2,−k) if and only if

c ∈ Cl1l2−k, c ⊂ l1 × l2, P (c) = min{P (d) : d ∈ Cl1l2−k, d ⊂ l1 × l2 }.
Similarly, we define

M(l1 × l2, k) = { c ∈ Cl1l2+k : l1 × l2 ⊂ c, P (c) minimal } ,

i.e. a polyomino c belongs to M(l1 × l2, k) if and only if

c ∈ Cl1l2+k, l1 × l2 ⊂ c, P (c) = min{P (d) : d ∈ Cl1l2+k, l1 × l2 ⊂ d }.
A natural way to remove (add) k squares (for k < l1, k < l2) is to remove (add) a bar on
a side of the rectangle; thus we define

S(l1 × l2,−k) = (l1 − 1) × l2 ⊕1 1 × (l2 − k)
12 ⋃

l1 × (l2 − 1) ⊕2 (l1 − k) × 1
12

,

S(l1 × l2, k) = { l1 × l2 ⊕2 k × 1, l1 × l2 ⊕1 1 × k }12
.
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figure 2.17: the set M(6 × 4,−1)

Figure 2.17 shows the set M(6 × 4,−1). Figure 2.18 shows the set M(5 × 5,−2) which
contains the set S23. In these cases, we see that M(6× 4,−1) = S(6× 4,−1) but this does
not occur in general : for instance M(5 × 5,−2) ) S(5 × 5,−2).

figure 2.18: the set M(5 × 5,−2) ) S23
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Proposition 2.22. Let l1, l2, k be positive integers such that k < l1, k < l2.
The set M(l1 × l2,−k) is the set of the polyominoes obtained by removing successively k
corners from l1 × l2. In particular, S(l1 × l2,−k) is included in M(l1 × l2,−k).

Proof. Such an operation leaves the perimeter unchanged. Moreover, the perimeter of a
polyomino of M(l1× l2,−k) is necessarily 2(l1 + l2) since there remains at least one square
in each row and each column of the rectangle after the removal of k squares. �

Proposition 2.23. Let l1, l2, k be positive integers such that k < l1, k < l2.
The set M(l1 × l2, k) is equal to the set S(l1 × l2, k).

Proof. The perimeter of a polyomino of M(l1×l2, k) is greater than or equal to 2(l1+l2)+2
(since it contains l1 × l2). The polyominoes of S(l1 × l2, k) have this perimeter, so that the
minimal perimeter is exactly 2(l1 + l2)+2 and S(l1 × l2, k) ⊂ M(l1 × l2, k). Obviously, the
polyominoes of S(l1 × l2, k) are the only ones satisfying the requirements. �
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3. The three dimensional case

We denote by (e1, e2, e3) the canonical basis of the integer lattice Z3. A unit cube is a
cube of volume one, whose center belongs to Z3 and whose vertices belong to the dual lattice
(Z+ 1/2)3. We do not distinguish between a unit cube and its center: thus (x1, x2, x3)
denotes the unit cube of center (x1, x2, x3). A three dimensional polyomino is a finite union
of unit cubes. It is defined up to a translation. We denote by Cn the set of the polyominoes
of volume n and by C the set of all polyominoes. The area A(c) of a polyomino c is the
number of two dimensional unit squares belonging to the boundary of only one unit cube
of c. Notice that the area is an even integer.

figure 3.1: a 3D polyomino

We wish to investigate the set Mn of the polyominoes of Cn having a minimal area. A
polyomino c is said to be minimal if it belongs to the set M|c|. Figure 3.2 shows elements
of the sets Mn for small values of n.

figure 3.2: the sets M1, · · · ,M8
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When n becomes larger, the structure of Mn becomes very complex:

figure 3.3: some elements of M30

For the sake of clarity, we need to work here with instances of the polyominoes having a
definite position on the lattice Z3 i.e. we temporarily remove the indistinguishability mod-
ulo translations. Let c be a polyomino. By c(x1, x2, x3) we denote the unique polyomino
obtained by translating c in such a way that

min{ y1 : ∃ (y2, y3) (y1, y2, y3) ∈ c(x1, x2, x3) } = x1,

min{ y2 : ∃ (y1, y3) (y1, y2, y3) ∈ c(x1, x2, x3) } = x2,

min{ y3 : ∃ (y1, y2) (y1, y2, y3) ∈ c(x1, x2, x3) } = x3.

When we deal with polyominoes up to translations, we normally work with the polyomi-
noes c(0, 0, 0), for any c in C.

The lengths, the bars and the slices. Let c be a polyomino.
We define its lengths j1(c), j2(c), j3(c) along each axis by

j1(c) = 1 + max{ x1 ∈ Z : ∃ (x2, x3) (x1, x2, x3) ∈ c },
j2(c) = 1 + max{ x2 ∈ Z : ∃ (x1, x3) (x1, x2, x3) ∈ c },
j3(c) = 1 + max{ x3 ∈ Z : ∃ (x1, x2) (x1, x2, x3) ∈ c }.
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For a connected polyomino, we have j1(c) = card { x1 ∈ Z : ∃ (x2, x3) (x1, x2, x3) ∈ c }.
A three dimensional polyomino is said to be planar with normal vector ei if its ji–length is
equal to one. Such a polyomino might effectively be seen as a two dimensional polyomino
by transforming its unit cubes into unit squares (and keeping the orientation induced in
the plane by the vector ei). Conversely, given a vector ei of the basis, we may see any two
dimensional polyomino as a planar three dimensional polyomino with normal vector ei.
We simply transform the unit squares into unit cubes and rotate the polyomino so that its
normal vector becomes ei. This trick will be used several times in the sequel. Let α, β be
two integers. We define the bars b1(c, α, β), b2(c, α, β), b3(c, α, β) by

b1(c, α, β) = { (x1, x2, x3) ∈ c : (x2, x3) = (α, β) },
b2(c, α, β) = { (x1, x2, x3) ∈ c : (x1, x3) = (α, β) },
b3(c, α, β) = { (x1, x2, x3) ∈ c : (x1, x2) = (α, β) }.

Let γ be an integer. We define the slices s1(c, γ), s2(c, γ), s3(c, γ) by

s1(c, γ) = { (x1, x2, x3) ∈ c : x1 = γ },
s2(c, γ) = { (x1, x2, x3) ∈ c : x2 = γ },
s3(c, γ) = { (x1, x2, x3) ∈ c : x3 = γ }.

e1

e2

e3

figure 3.4: the bar b1(c, 2, 7) and the slice s2(c, 4)
The bars (respectively the slices) are one (resp. two) dimensional sections of the polyomino.
The extreme slices s∗1(c), s∗2(c), s∗3(c) are the slices associated to the lengths j1(c), j2(c), j3(c)

s∗1(c) = s1(c, j1(c) − 1), s∗2(c) = s2(c, j2(c) − 1), s∗3(c) = s3(c, j3(c) − 1).

Addition of polyominoes. We define an operator +1 from C × (C ∪ C) to C (we recall
that C is the set of two dimensional polyominoes). First, on C × C, we set

∀c, d ∈ C c +1 d = c(0, 0, 0) ∪ d(j1(c), 0, 0).
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Let now c belong to C and d belong to C (that is, d is a two dimensional polyomino). We
define the three dimensional polyomino c+1d as follows. First, we transform d into a planar
three dimensional polyomino d′ by replacing its squares by unit cubes. We rotate d′ so
that its normal unit vector becomes e1 (as if the two dimensional polyomino d was initially
included in the plane (e2, e3)). Then we use the previous definition to set c +1 d = c +1 d′.
The operators +2 and +3 from C×(C∪C) to C are defined similarly. For instance, on C×C,
we set c +2 d = c(0, 0, 0) ∪ d(0, j2(c), 0) and c +3 d = c(0, 0, 0) ∪ d(0, 0, j3(c)).
More generally, given two integers α and β, we put for c, d in C

c +1 (α, β) d = c(0, 0, 0) ∪ d(j1(c), α, β),

c +2 (α, β) d = c(0, 0, 0) ∪ d(α, j2(c), β),

c +3 (α, β) d = c(0, 0, 0) ∪ d(α, β, j3(c)).

In the case d is a two dimensional polyomino, c +i (α, β) d is defined analogously, working
with the translated polyomino d(α, β) (this is a translation into the plane containing d).
Sometimes we will use the operator + without specifying the direction: it will mean that
this direction is in fact indifferent i.e. the statements hold for +1, +2, +3 simultaneously.
Finally we define three operators ⊕1, ⊕2, ⊕3 from C × (C ∪C) to P(C), the set of subsets
of C, by

c ⊕1 d = { c +1 (α, β) d : j2(d) + α ≤ j2(c), j3(d) + β ≤ j3(c), α ≥ 0, β ≥ 0 },
c ⊕2 d = { c +2 (α, β) d : j1(d) + α ≤ j1(c), j3(d) + β ≤ j3(c), α ≥ 0, β ≥ 0 },
c ⊕3 d = { c +3 (α, β) d : j1(d) + α ≤ j1(c), j2(d) + β ≤ j2(c), α ≥ 0, β ≥ 0 }.

Notice that c⊕1 d (respectively c⊕2 d, c⊕3 d) is empty whenever j2(d) > j2(c) or j3(d) >
j3(c) (resp. j1(d) > j1(c) or j3(d) > j3(c), j1(d) > j1(c) or j2(d) > j2(c)).

The basic polyominoes. We describe here some simple shapes of polyominoes of par-
ticular interest. Let j1, j2, j3 be three integers. By j1×j2×j3 we denote the parallelepiped
whose lengths (with respect to the axis e1, e2, e3) are j1, j2, j3. A parallelepiped j1×j2×j3
is a cube if j1 = j2 = j3. It is a quasicube if |j1 − j2| ≤ 1, |j2 − j3| ≤ 1, |j3 − j1| ≤ 1.
Thus the quasicubes are the parallelepipeds (j + ε1) × (j + ε2) × (j + ε3) where the εi’s
belong to {0, 1}. The basic three dimensional polyominoes are the polyominoes obtained
by adding a two dimensional basic polyomino (i.e. an element of B) to a parallelepiped.
More precisely, the set B of the basic polyominoes is

B = { j1 × j2 × j3 +1 d : d ∈ B, d ⊂ j2 × j3 } ∪ { j1 × j2 × j3 +2 d : d ∈ B, d ⊂ j1 × j3 }
∪ { j1 × j2 × j3 +3 d : d ∈ B, d ⊂ j1 × j2 }.

(where B is the set of two dimensional basic polyominoes). We are now in position to state
the first main result concerning the three dimensional minimal polyominoes.
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Theorem 3.1. For any integer n, the set Mn of the minimal polyominoes of volume n
contains a basic polyomino of the form j × (j + δ) × (j + θ) +3 (l × (l + ε) +2 k) (i.e. the
addition of a quasicube, a quasisquare and a bar) where ε, δ, θ ∈ {0, 1}, 0 ≤ k < l + ε,
l(l + ε) + k < (j + δ)(j + θ), n = j(j + δ)(j + θ) + l(l + ε) + k.

Remark. This statement asserts also the existence of a decomposition of any integer n
as n = j(j + δ)(j + θ) + l(l + ε) + k where j, l, k, δ, θ, ε satisfy the above conditions.

Remark. The corresponding generalization in any dimension has been proved by Neves [8].
However, our method of proof will allow us to get quite easily the corresponding uniqueness
statement (theorem 3.5 below).

Proof. The proof is done in the same spirit as the corresponding two dimensional proof.
We choose a polyomino belonging to Mn and we apply to it a sequence of transformations
which regularize the shape of the polyomino until we get a polyomino of the desired form.
These transformations leave the volume unchanged and never increase the area, so that
the area is constant during the whole process and the final polyomino is still in Mn. We
first describe separately each transformation.

Projections p1, p2, p3. These transformations are defined on the set C of all the poly-
ominoes. Let c belong to C. The projection p3 consists in letting all the unit cubes
of c fall (in the sense of −e3) on a fixed plane orthogonal to e3, as shown on figure 3.5.

figure 3.5: projection p3

The projections p1 and p2 are defined similarly, using the vectors e1 and e2 instead of e3.
The projections satisfy pi ◦pi = pi, 1 ≤ i ≤ 3. Moreover they do not change the volume nor
increase the area. A formal proof would rely on a tedious induction and would consist in
counting the number of cubes in contact before and after the projections. It is obvious that
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the number of horizontal contacts is maximal after application of p3. Moreover the number
of vertical contacts between two adjacent columns is also maximal after application of p3.
The set G = p3 ◦ p2 ◦ p1(C) of all projected polyominoes is the set of plane partitions [1].

Slice–remodelling (sli-rem). This transformation is applied to a polyomino belong-
ing to the set G of plane partitions. Let c belong to G. We cut c into slices accord-
ing to the direction of e3 i.e. we consider all its intersections with the planes of equa-
tions x3 = γ, which are the slices s3(c, γ). Such a slice s3(c, γ) may be seen as a two
dimensional polyomino of area |s3(c, γ)| (we simply transform the unit cubes of s3(c, γ)
into unit squares). We then replace s3(c, γ) by the associated two dimensional canoni-
cal polyomino m|s3(c,γ)| (in which all the unit squares have been transformed into unit
cubes), the orientation being specified by (e1, e2). We finally stack up all these new
slices i.e. we build the polyomino sli–rem(c) = m|s3(c,0)| +3 m|s3(c,1)| +3 · · · +3 m|s∗

3(c)|.

figure 3.6: slice–remodelling
The slice–remodelling does not change the volume nor increase the area. In fact, the
number of horizontal contacts between two slices is maximal (equal to the number of
cubes of the smallest slice) if the two slices are associated to two dimensional canonical
polyominoes. Moreover the image of sli–rem is included in G = p3 ◦ p2 ◦ p1(C).

Cube–moving. This transformation moves individually cubes of the polyomino. Let c
belong to G. Let (x1, x2, x3) be the empty cell of smallest coordinate for the (e3, e1, e2)
lexicographical order such that there are three cubes at (x1 − 1, x2, x3), (x1, x2 − 1, x3),
(x1, x2, x3 − 1). The cell (x1, x2, x3) is the cell where a cube of c will be moved. In
case x3 = j3(c) − 1 the cube–moving does nothing. Suppose x3 < j3(c) − 1. We now
define the unit cube of c which is to be moved. We consider the extremal section s∗3(c) as
a two dimensional polyomino. As such, it is a Ferrers diagram i.e. it belongs to the set F
(see the two dimensional projections). The extreme bars b∗1(s

∗
3(c)) and b∗2(s

∗
3(c)) are well

defined as well as the lengths l1(s∗3(c)), l2(s∗3(c)). We omit c and s∗3(c) in these notations
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and write b∗1, b
∗
2, l1, l2 in the following lines. Several cases arise according to the lengths of

these bars.
• If |b∗1| < |b∗2| we move (|b∗1| − 1, l2 − 1, j3 − 1).
• If |b∗1| > |b∗2| we move (l1 − 1, |b∗2| − 1, j3 − 1).
• If |b∗1| = |b∗2| and l1 ≤ l2 we move (|b∗2| − 1, l2 − 1, j3 − 1).
• If |b∗1| = |b∗2| and l1 > l2 we move (l1 − 1, |b∗1| − 1, j3 − 1).

We repeat this elementary operation until exhaustion of any possibility (that is, until the
smallest empty cell belongs to the extreme slice s∗3). The procedure necessarily ends since
the number of available empty cells below the extreme slice s∗3 decreases.

figure 3.7: cube–moving

The cube–moving does not change the volume nor increase the area.

Example. Suppose we apply the cube–moving to a polyomino c belonging to sli–rem(G):
thus each two dimensional section s3(c, γ) of c is a canonical two dimensional polyomino.
Putting n(x3) = |s3(c, x3)| we have n(0) ≥ · · · ≥ n(j3(c) − 1). In this situation, the
elementary cube–moving operation amounts to take the only cube belonging to s∗3(c) so
that s∗3(c) becomes mn(j3(c)−1)−1 and to put it at the smallest empty cell (x1, x2, x3) such
that there are three cubes at (x1 − 1, x2, x3), (x1, x2 − 1, x3), (x1, x2, x3 − 1). Notice that
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the section s3(c, x3) = mn(x3) then becomes mn(x3)+1 so that the polyomino still belongs
to sli–rem(G). When the cube–moving ends, we obtain a polyomino such that

∃ r ≥ 0, n(0) = · · · = n(r), ∀i, r < i < j3 − 1, n(i) is a quasisquare,

and all the slices along e3 are two dimensional canonical polyominoes. Figure 3.8 shows
the typical shape of the polyominoes we obtain after having completed the cube–moving.

figure 3.8: after cube–moving

Bar–moving. The bar–moving transformation is defined on the set cube–moving(G).
This transformation moves bars of the polyomino. Let c belong to cube–moving(G). The
bar to be moved is one of the two extreme bars b∗1 or b∗2 of the extreme slice s∗3. We first
define the bar b which is to be moved.

• if |b∗1| < |b∗2| we choose b = b∗1.
• if |b∗1| > |b∗2| we choose b = b∗2.
• if |b∗1| = |b∗2| and l1 ≤ l2 we choose b = b∗2.
• if |b∗1| = |b∗2| and l1 > l2 we choose b = b∗1.

Notice that the cube chosen to start the cube–moving operation would belong to this
bar b. We next search for an appropriate place to move b. Let b′1 be the smallest empty
bar b1(c, x2, x3) for the (e3, e2) lexicographical order such that the two bars b1(c, x2−1, x3)
and b1(c, x2, x3 − 1) have a length greater than or equal to the length of the bar b. We
define b′2 similarly, using the vectors (e3, e1). We define b′3 using the vectors (e1, e2) (thus
b′3 is a vertical bar) and we impose the additional condition that |b′3| is strictly less than
j3(c). Notice that these bars might not exist. If none of these bars exist, the bar–moving
does nothing. If only the bar b′3 exists we move b to b′3. If only one bar among b′1, b

′
2 exists,

we move b to this bar. Suppose finally that both bars b′1 and b′2 do exist. Let x3(b′1), x3(b′2)
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be the e3–coordinate of the bars b′1, b
′
2 (the bars b′1, b

′
2 are one dimensional sections of c

along the vectors e1 and e2). Several cases arise according to these coordinates and, in
case of equality, according to the lengths of the s3–section of c.

• If x3(b′1) < x3(b′2) we move b to b′1.
• If x3(b′1) > x3(b′2) we move b to b′2.
• If x3(b′1) = x3(b′2) and l1(s3(c, x3)) < l2(s3(c, x3)) we move b to b′1.
• If x3(b′1) = x3(b′2) and l1(s3(c, x3)) ≥ l2(s3(c, x3)) we move b to b′2.

figure 3.9: bar–moving

The choices of the empty bar and of the bar which is moved are done in such a way that
bar–moving◦cube–moving◦sli–rem(G) is included in sli–rem(G). As usual, the bar–moving
does not alter the volume nor increase the area.

Filling. The transformation filling(e3) is the application, until exhaustion of any possi-
bility, of the transformation bar–moving◦ cube–moving. Thus it is applied to polyominoes
belonging to the set G. The transformations filling(e1) and filling(e2) are defined in the
same way: we just make a circular permutation of the axis so that e1 or e2 becomes the
third vector of the basis and we apply the same scheme. When filling(e3) is completed, we
obtain a polyomino of the form j1 × j2 × j3 +1 c +2 d +3 e where e is a two dimensional
polyomino of F and c, d are either empty or they are rectangles such that no bar–moving
operation can take place. In case the starting polyomino belongs to sli–rem(G), we ob-
tain a polyomino of the form (j + ε) × j × j3 +2 d +3 e where e is a two dimensional
canonical polyomino, and d is a rectangle such that no bar–moving from e is possible.
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figure 3.10: filling(e3)

Trividing. This transformation is defined for a polyomino c of the form c = (j + ε)× j ×
j3⊕3 d where ε ∈ {0, 1}, j3 > j +ε, and d is a non empty two dimensional polyomino which
is included in the quasisquare (j+ε)×j (d might be equal to (j+ε)×j). We decompose j3
as j3 = j +ε+3a+δ+θ where δ, θ are in {0, 1} and δ ≤ θ. This decomposition is obviously
unique.

figure 3.11: trividing

The trivided polyomino trivided(c) is then

(j + ε)× j × (j + ε) +1 (a + ε′)× j × (j + ε) +2 (j + ε)× (a + ε′′)× j +3 (j + ε)× j × a +3 d
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where (ε′, ε′′) = (θ, δ) if ε = 0 and (ε′, ε′′) = (δ, θ) if ε = 1.
Considering separately each case, we have:
• If ε = 0, trivided(c) = j × j × j +1 (a + θ) × j × j +2 j × (a + δ) × j +3 j × j × a +3 d.
• If ε = 1, trivided(c) = (j + 1) × j × (j + 1) +1 (a + δ) × j × (j + 1) +2 (j + 1) × (a +
θ) × j +3 (j + 1) × j × a +3 d.
Once more, the trividing does not alter the volume and does not increase the area.

Swivelling. The swivelling is defined for a polyomino c of the form c = j1 × j2 × j3 +i d
where 1 ≤ i ≤ 3 and d is a two dimensional polyomino which is included in the rectangle j1×
j2. The aim of the swivelling is to move d on the side j1 × j2 of the parallelepiped. Thus
swivelling(c) = j1 × j2 × j3 +3 d.

figure 3.12: swivelling

The sequence of transformations. We start with a polyomino c of Mn. We first
apply the three projections p1, p2, p3. Let c1 = p3 ◦ p2 ◦ p1(c). We next apply a ro-
tation to c1 to obtain a polyomino c2 such that j3(c2) ≥ j1(c2) and j3(c2) ≥ j2(c2).
We next apply the slice–remodelling and get a polyomino c3. We then apply the filling
filling(e3) and obtain a polyomino c4 of the form c4 = (j + ε) × j × j3 +2 d +3 e. If d
is empty, we set c5 = c4. If not, we apply the filling filling(e2), obtaining a polyomino
c′4 = (j + ε) × j × (j3 + 1) +2 d′ where d′ is included in the quasisquare (j + ε) × j (if
the result of the filling was different, the area would necessarily have decreased) and we
then set c5 = swivelling(c′4). In both cases, we have now a polyomino c5 of the form
c5 = (j + ε) × j × j3 +3 e. We replace e by the corresponding two dimensional canonical
polyomino m|e|, obtaining a polyomino c6 (this amounts to apply the slice–remodelling).
We apply the trividing to c6 and obtain c7 = trividing(c6). We end the sequence by
a filling filling(e3): c8 = filling(e3)(c7). We claim that c8 has the desired shape. �
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c

c1

c2 with j3(c2) ≥ max(j1(c2), j2(c2))

c3

c4 = (j + ε) × j × j3 +2 d +3 e

c′4

c5 = (j + ε) × j × j3 +3 e

c6

c7

c8

d = ∅

nothing

p3 ◦ p2 ◦ p1

rotation

slice–remodelling

filling(e3)

d 6= ∅, fill(e2)

swivelling

slice–remodelling

trividing

filling(e3)

figure 3.13: the sequence of transformations
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rotation sli–rem

trividing

fill(e3)

p2 p3 ◦ p1

fill(e3)

swivel fill(e2)

figure 3.14: two examples
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Lemma 3.2. For each integer n there exists a unique 6–tuple (j, l, k, δ, θ, ε) such that
δ, θ, ε ∈ {0, 1}, δ ≤ θ, k < l+ε, l(l+ε)+k < (j+δ)(j+θ) and n = j(j+δ)(j+θ)+l(l+ε)+k.

Corollary 3.3. The polyomino obtained at the end of the sequence of transformations
does not depend on the polyomino initially chosen in the set Mn.

Throughout the sequel, we will refer to this decomposition as ”the decomposition” of
the integer n, without further detail. We thus have a method for computing the minimal
area of a polyomino of volume n.

Corollary 3.4. The minimal area of a polyomino of volume n is

min {A(c) : c ∈ Cn } = 2(j(j + δ) + j(j + θ) + (j + δ)(j + θ)) + 2(2l + ε) + 2×1{k>0}

where n = j(j + δ)(j + θ) + l(l + ε) + k is the decomposition of n given by lemma 3.2.

The canonical, standard and principal polyominoes. Lemma 3.2 and corollary 3.3
allow us to define a canonical polyomino mn belonging to Mn.
Let n = j(j+δ)(j+θ)+ l(l+ε)+k be the decomposition of n. We put r = l(l+ε)+k. The
canonical polyomino mn is obtained by adding the two dimensional canonical polyomino mr

to the right side of a right quasicube of volume j(j + δ)(j + θ).
• If δ = θ = 0 we set mn = j × j × j +1 mr.
• If δ = 0, θ = 1 we set mn = (j + 1) × j × j +2 mr.
• If δ = θ = 1 we set mn = (j + 1) × (j + 1) × j +3 mr.

figure 3.15: the canonical polyominoes m194,m230,m266

We may give a general formula:

mn = (j + θ) × (j + δ) × j +1+δ+θ

(
(l + ε) × l +1+ε k

)
.

The polyomino mn is called the canonical polyomino of volume n.
For c a polyomino, we denote by c its equivalence class modulo the spatial isometries which
leave the integer lattice Z3 invariant. By c123 we denote the equivalence class modulo the
three symmetries s1, s2, s3 with respect to the planes (e2, e3), (e1, e3), (e1, e2). If A is a
subset of C, we put

A =
⋃
c∈A

c, A
123

=
⋃
c∈A

c123.
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The set Sn of the standard polyominoes is

Sn = (j + θ) × (j + δ) × j ⊕1+δ+θ (l + ε) × l ⊕1+ε k

and the set M̃n of the principal polyominoes is

M̃n =
⋃

t=1,2,3
u=1,2

(j + θ) × (j + δ) × j ⊕t (l + ε) × l ⊕u k

figure 3.16: polyominoes in {m112}, S112 \ {m112}.

figure 3.17: polyominoes in M̃112 \ S112, M112 \ M̃112.

The sets Sn and M̃n coincide if δ = θ = ε = 0. Moreover we have

{mn} ⊂ Sn ⊂ M̃n ⊂ Mn.

However, the inclusions might be strict, as shown by the examples of figures 3.16, 3.17.

Theorem 3.5. The set Mn of minimal polyominoes of volume n coincides with the

set M̃n of principal polyominoes if and only if n is of the form quasicube+quasisquare

j3 j3 + l2 j3 + l(l + 1)
j2(j + 1) j2(j + 1) + l2 j2(j + 1) + l(l + 1)
j(j + 1)2 j(j + 1)2 + l2 j(j + 1)2 + l(l + 1)
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(where 1 ≤ l < j) or quasicube minus one j3 − 1, j2(j + 1) − 1, j(j + 1)2 − 1.

Proof. Suppose first that Mn is equal to M̃n. This means that, modulo spatial isometries
and moves of the two dimensional polyomino l × (l + ε) + k on one side of the quasicube
j × (j + δ)× (j + θ), or moves of the bar k × 1 along one side of the quasisquare l× (l + ε)
the set Mn is reduced to the six polyominoes

(j + θ) × (j + δ) × j +1 (l + ε) × l +1 k , (j + θ) × (j + δ) × j +1 (l + ε) × l +2 k
(j + θ) × (j + δ) × j +2 (l + ε) × l +1 k , (j + θ) × (j + δ) × j +2 (l + ε) × l +2 k
(j + θ) × (j + δ) × j +3 (l + ε) × l +1 k , (j + θ) × (j + δ) × j +3 (l + ε) × l +2 k

(which are isometric when δ = θ = ε = 0). The corresponding two dimensional result
implies that k = 0 or k = l + ε − 1. For k = 0 we obtain the quasicubes plus the
quasisquares. Suppose k = l + ε− 1. If (l + ε)(l +1) is not equal to (j + θ)(j + δ), then the
polyomino ((j +θ−1)× (j +δ)+1 (j +δ−1))+3 (j +θ)× (j +δ)× (j−1)+3 (l+ ε)× (l+1)
belongs to the set Mn and is not principal. Thus (l+ε)(l+1) necessarily equals (j+θ)(j+δ)
so that n = (j + θ)(j + δ)(j + 1) − 1 is a quasicube minus one.

figure 3.18: an element of M195

Conversely, we examine for these particular values of n the possible actions of the sequence
of transformations. That is, we seek the antecedents of the final polyomino obtained at
the end of the sequence of transformations. The main idea is that we started the sequence
of transformations with a polyomino belonging to Mn so that the area of the polyomino
cannot change throughout the whole sequence. We first notice that for all these shapes
the last filling fill(e3) between c7 and c8 had necessarily no effect. When n is of the form
j3 or j3 + l2, j3 + l(l+1), the transformation between c6 and c7 was also effectless; when n
is of the form j2(j +1) or j2(j +1)+ l2, j2(j +1)+ l(l+1) or j(j +1)2, j(j +1)2 + l2, j(j +
1)2+l(l+1), the trividing could have swivelled l2, l(l+1) from one face to another, yielding
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a principal polyomino of M̃n. Moreover, for all these values of n, we have

∀i ∈ {1, 2, 3} fill(ei)−1(M̃n) ∩ Mn = M̃n

i.e. the antecedents of a principal polyomino through a filling operation which are minimal
are also principal. Finally we check that the same is true for the slice–remodelling: its only
possible effect when the final shape is principal is to have swivelled or rotated l×l or l×(l+1)
from one face to another, or to have applied an isometry to the cube j3,j2(j +1),j(j +1)2.
The same kind of results hold concerning the first two transformations i.e. the projections
between c and c1 and the rotation between c1 and c2. Putting these facts together, we
see that for the values of n listed in the theorem, the sets of the minimal antecedents
through the sequence of transformations of the canonical polyomino coincides with the set
of principal polyominoes. �

As a by–product, we obtain the following results.

Corollary 3.6. The set Mn is reduced to {mn} if and only if n is of the form j3.
The set Mn is equal to Sn if and only if n is of the form j3 or j2(j + 1), j(j + 1)2 or
j3 − 1, j2(j + 1) − 1, j(j + 1)2 − 1 (in which case Sn = mn), or j3 + l2, j3 + l(l + 1).

We were not able to prove or disprove results characterizing the three dimensional min-
imal polyominoes, comparable to propositions 2.1 and 2.10. We propose two conjectures
instead.

Conjecture 3.7. If a polyomino is minimal then its smallest surrounding parallelepiped
is also minimal.

Definition 3.8. A corner of a polyomino c is a unit cube of c having at least three sides
belonging to the boundary of c.

Conjecture 3.9. All the minimal polyominoes can be obtained by removing successively
m corners from a minimal parallelepiped j1 × j2 × j3, in such a way that the number
of bars removed from the parallelepiped is maximal, where m < l(l + ε) + k, j1j2j3 =
j(j + δ)(j + θ) + l(l + ε) + k.

Moves through the minimal polyominoes. We are interested in moving through the
polyominoes by adding or removing one unit cube at a time. How far is it possible to
travel in this way through the minimal polyominoes?
Let us define three matrices q, q−, q+ indexed by C × C. First

∀c, d ∈ C q−(c, d) =
{

1 if d ⊂ c and |c \ d| = 1
0 otherwise

that is, q−(c, d) = 1 if d may be obtained by removing a unit cube from c, and q−(c, d) = 0
otherwise. Next, we put q+(c, d) = q−(d, c), that is q+(c, d) = 1 if d may be obtained by
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adding a unit cube to c and q+(c, d) = 0 otherwise. Finally we set q(c, d) = q−(c, d) +
q+(c, d) so that q(c, d) = 1 if the polyominoes differ by a unit cube, and q(c, d) = 0
otherwise. Two polyominoes c, d are said to communicate if q(c, d) = 1. If Y is a subset
of C and c is a polyomino, we set q(c, Y ) = 1 if c communicates with at least one element
of Y and q(c, Y ) = 0 otherwise. The quantities q−(c, Y ), q+(c, Y ) are defined similarly.
The next lemmas describe the way we can move starting from a canonical polyomino mn.

Lemma 3.10. Let ι be a spatial isometry. For any n which is not a quasicube plus a
quasisquare, that is not of the form

j3 + l2 or j3 + l(l + 1), j2(j + 1) + l2, j2(j + 1) + l(l + 1), j(j + 1)2 + l2, j(j + 1)2 + l(l + 1)

(where l < j), ι(mn+1) is the unique polyomino of Mn+1 which communicates with ι(mn).

Lemma 3.11. For n a quasicube i.e. of the form j3 or j2(j + 1), j(j + 1)2, we have

{ c ∈ Mn−1 : q−(Mn, c) = 1 } = Sn−1,

{ c ∈ Mn+1 : q+(Mn, c) = 1 } = M̃n+1.

Lemma 3.12. For n a quasicube plus a quasisquare i.e. of the form j(j+δ)(j+θ)+l(l+ε)
(where 0 < l(l + ε) < (j + δ)(j + θ)) we have

{ c ∈ Mn−1 : q−(M̃n \ Sn, c) = 1 } ⊃ M̃n−1 \ Sn−1,

{ c ∈ Mn−1 : q−(Sn, c) = 1 } ⊃ Sn−1,

{ c ∈ Mn+1 : q+(Mn, c) = 1 } = M̃n+1.

Lemma 3.13. For the remaining integers i.e. the values of n which are not a quasicube
or a quasicube plus a quasisquare we have

{ c ∈ Mn−1 : q−(Sn, c) = 1 } ⊃ Sn−1,

{ c ∈ Mn+1 : q+(Sn, c) = 1 } = Sn+1,

{ c ∈ Mn−1 : q−(M̃n \ Sn, c) = 1 } ⊃ M̃n−1 \ Sn−1,

{ c ∈ Mn+1 : q+(M̃n \ Sn, c) = 1 } = M̃n+1 \ Sn+1.

Lemma 3.14. Suppose that j × (j + δ)× (j + θ)+ l× (l + r), r ≥ 2 is minimal. It cannot
be grown through the minimal polyominoes.
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Lemma 3.15. The parallelepipeds j×j×(j+2), j×(j+1)×(j+2) cannot grow through
the minimal polyominoes.

Lemma 3.16. Suppose n is not of the form j2(j +1) or j(j +1)2, j3 + l(l+1), j2(j +1)+
l(l + 1), j(j + 1)2 + l(l + 1). Then

{ c ∈ Mn+1 : q(Sn, c) = 1 } = Sn+1,

{ c ∈ Mn+1 : q+(M̃n \ Sn, c) = 1 } = M̃n+1 \ Sn+1.

Definition 3.17. A sequence cn, · · · , cm of polyominoes is increasing if q+(cj , cj+1) = 1
for all j in {n · · ·m − 1}.
Lemma 3.18. Suppose n is of the form j3+l(l+1) or j2(j+1)+l(l+1), j(j+1)2+l(l+1)
(where 0 < l < j). Let c belong to Sn and suppose there is an increasing sequence of
minimal polyominoes cn, · · · , cm such that cn = c. Either cn+1 belongs to Sn+1 or m is
less than n + l; in this last case, none of the polyominoes cn+1, · · · , cm is standard, and
they are all principal.

Lemma 3.19. Suppose n is a quasicube of the form j2(j + 1) (respectively j(j + 1)2).
Let c belong to Sn and suppose there is an increasing sequence of minimal polyomi-
noes cn, · · · , cm such that cn = c. Either cn+1 belongs to Sn+1 or m is less than n + j2

(resp. n + j(j + 1)); in this last case, none of the polyominoes cn+1, · · · , cm is standard,
and they are all principal.

The next propositions sum up several results which are consequences of the preceding
lemmas together with theorem 3.1 and corollary 3.6.

Proposition 3.20. Let n be an integer between the two cubes j3, (j + 1)3 and let c be

a principal polyomino belonging to M̃n which is not standard i.e. it does not belong
to Sn. Suppose there exists an increasing sequence of minimal polyominoes cn, · · · , cm

such that cn = c. Then necessarily m < (j + 1)3 and none of the polyominoes cn, · · · , cm

is standard.

Proposition 3.21. Let c0, · · · , cn be an increasing sequence of minimal polyominoes
starting from the empty polyomino (c0 = ∅). If cn is a standard polyomino (i.e. belongs
to Sn) then all the polyominoes of the sequence are standard (i.e. cj ∈ Sj for all j ≤ n).

Proposition 3.22. The principal polyominoes can be completely shrunk through the

principal polyominoes: for any integer n and for any principal polyomino c in M̃n, there
exists an increasing sequence c0, · · · , cn of principal polyominoes such that c0 = ∅, cn = c.
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Proposition 3.23. The standard polyominoes can be grown or shrunk arbitrarily far
through the standard polyominoes: for any integers m ≤ n and for any standard poly-
omino c in Sm, there exists an increasing sequence c0, · · · , cn of standard polyominoes such
that c0 = ∅, cm = c.

Proposition 3.24. The infinite sequence S0, · · · ,Sn, · · · of the sets of standard polyomi-
noes is the greatest infinite sequence of subsets of the sequence M0, · · · ,Mn, · · · of the
sets of minimal polyominoes enjoying the properties stated in proposition 3.23.

Proof. Let S′
0, · · · ,S′

n, · · · be a sequence included in M0, · · · ,Mn, · · · for which proposi-
tion 3.23 holds. Suppose there exists n such that S′

n 6⊂ Sn. Let n be the smallest such index
and let c belong to S′

n \Sn. There exists d in S′
n−1 ⊂ Sn−1 such that q+(d, c) = 1. Hence c

is principal. Several cases arise: if n = j(j + δ)(j + θ) + l(l + 1) + k (with (l, k) 6= (0, 0)),
the corresponding two dimensional proposition 2.21 together with lemma 3.18 imply the
result; if n = j(j + δ)(j + θ), we have necessarily (δ, θ) 6= (0, 0) (otherwise c would be
standard) and lemma 3.19 shows that c cannot be grown indefinitely through the minimal
polyominoes. �

Shrinking or growing a parallelepiped. We investigate next the best way to shrink or
to grow a parallelepiped plus a rectangle. Let c be either a parallelepiped or a parallelepiped
plus a rectangle and let k be a positive integer. We define

M(c,−k) = { d ∈ C|c|−k : d ⊂ c, A(d) minimal } ,

i.e. a polyomino d belongs to M(c,−k) if and only if

d ∈ C|c|−k, d ⊂ c, A(d) = min{A(d′) : d′ ∈ C|c|−k, d′ ⊂ c }.

Similarly, we define

M(c, k) = { d ∈ C|c|+k : c ⊂ d, A(d) minimal } ,

i.e. a polyomino d belongs to M(c, k) if and only if

d ∈ C|c|+k, c ⊂ d, A(d) = min{A(d′) : d′ ∈ C|c|+k, c ⊂ d′ }.

A natural way to remove (add) r cubes (for r < j1j2, r < j2j3, r < j1j3) is to remove (add)
the cubes on only one side of the parallelepiped.

Proposition 3.25. Let j1, j2, j3, r be positive integers such that r < j1j2, r < j2j3, r <
j3j1. The set M(j1 × j2 × j3,−r) is the set of the polyominoes obtained by removing
from j1 × j2 × j3 as many bars as possible, and then removing a succession of corners (see
definition 3.8) until reaching the volume j1j2j3 − r.
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Corollary 3.26. Let j1, j2, j3, r be positive integers such that r < j1j2, r < j2j3, r < j3j1.
A polyomino obtained from j1 × j2 × j3 by the successive removal of r cubes, in such a
way that each cube removal takes place on a bar of minimal length of the polyomino is in
the set M(j1 × j2 × j3,−r).

Corollary 3.27. Suppose j1 × j2 is the side of j1 × j2 × j3 of smallest area.
If j1j2 − r ≤ j2

1 and r ≤ j1j2, then j1 × j2 × (j3 − 1) ⊕ mj1j2−r ⊂ M(j1 × j2 × j3,−r).
If j1j2 − r > j2

1 , then j1 × j2 × (j3 − 1) ⊕ (j1 × q + s) ⊂ M(j1 × j2 × j3,−r), where
j1j2 − r = j1q + s, 0 ≤ s < j1.

Proposition 3.28. Let j1, j2, j3, r be positive integers such that r ≤ min(j2
1 , j2

2 , j2
3). The

best way to add r cubes to the parallelepiped j1×j2×j3 is to add a minimal two dimensional
polyomino of Mr on one side of the parallelepiped. Equivalently, we have

M(j1 × j2 × j3, r) = { j1 × j2 × j3 ⊕i d, 1 ≤ i ≤ 3, d ∈ Mr }123
.

In particular, j1 × j2 × j3 ⊕ mr ⊂ M(j1 × j2 × j3, r).

Proof. Let c belong to M(j1 × j2 × j3, r). Let d be the polyomino obtained by removing
from c the slices s1(c, j), j ≥ j1(c) or j < 0. Let c1 be a two dimensional polyomino formed
by the union of all these slices laid out in Z2 in such a way that no two of them intersect.
We have A(c) ≥ A(d) + P (c1) (here P is the two dimensional perimeter). Let e be the
polyomino obtained by removing from d all the slices s2(d, j), j ≥ j2(c) or j < 0. Let c2

be a two dimensional polyomino formed by the union of all these slices laid out in Z2 in
such a way that no two of them intersect. We have A(d) ≥ A(e)+P (c2). Removing all the
slices s3(e, j), j ≥ j3(c) or j < 0 from e, we obtain the parallelepiped j1 × j2 × j3. Let c3

be a two dimensional polyomino formed by the disjoint union of all these slices. Clearly,
A(e) ≥ A(j1 × j2 × j3) + P (c3). We have A(c) ≥ A(j1 × j2 × j3) + P (c1) + P (c2) + P (c3).
It follows that A(c) ≥ A(j1 × j2 × j3)+P (c4) where c4 is a polyomino which is the disjoint
union of c1, c2, c3. Yet c4 has area r, so that P (c4) ≥ P (mr); since A(j1 × j2 × j3 ⊕mr) =
A(j1 × j2 × j3) + P (mr) we see that the area of an element of M(j1 × j2 × j3, r) is exactly
A(j1 × j2 × j3) + P (mr); in particular c4 must be a minimal two dimensional polyomino:
thus c4 belongs to Mr and c is necessarily in

{ j1 × j2 × j3 ⊕i d, 1 ≤ i ≤ 3, d ∈ Mr }123
.

Conversely, this set is clearly included in M(j1 × j2 × j3, r). �

We finally state the results describing the best ways of growing and shrinking a par-
allelepiped plus a rectangle. Let j1, j2, j3, l1, l2, r be integers. We consider a polyomino c
of the set j1 × j2 × j3 ⊕ l1 × l2. We suppose that the rectangle is added on a compati-
ble side of the parallelepiped (i.e. l1 × l2 is included in this side). We suppose also that
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r < min(l1, l2) ≤ min(j1, j2, j3). As before, we let

M(c,−r) = { d ∈ C|c|−r : d ⊂ c, A(d) minimal },
M(c, r) = { d ∈ C|c|+r : c ⊂ d, A(d) minimal }.

Proposition 3.29. The set M(c,−r) is the set of the polyominoes obtained by removing
successively r corners from c. The set M(c, r) is equal to the set of the polyominoes
obtained by adding a bar of length r against a compatible side of the rectangle l1 × l2 (in
such a way that l1 × l2 ⊕ r fits into the side of the parallelepiped).
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