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Abstract

We consider patterns of colourings of (G-sets where certain forbidden sub-colourings
are excluded. An algorithm is developed for the calculation of inventories of patterns
with a prescribed stabilizer class.

1 Introduction

The theory of pattern enumeration is concerned with a finite group G acting as the group of
symmetries of a set X, a set of colours (', and the action of G on the set CX of colourings
of X. By a pattern we mean the G-orbit of a colouring.

Williamson [6] used a combination of the inclusion - exclusion rule with Redfield/Pdlya
theory to enumerate patterns of colourings which do not contain colourings of specified
subsets of X using chosen subsets of C'. The aim of this note is to enumerate the subset of
these patterns which are stabilized by a chosen conjugacy class of subgroups of G.

We use two examples to illustrate the main features of the method. Firstly we discuss a
particular example used by Williamson which involves the enumeration of patterns of 8-bead
necklaces that do not include particular sub-colourings called a-rooted trees. A second exam-
ple is taken from the counting of isomers in chemical enumeration. We consider colourings

1991 Mathematics Subject Classification: 05A15, 05E05.

Keywords: pattern enumeration, inventory, subgroup lattice, isomer.



THE ELECTRONIC JOURNAL OF COMBINATORICS 3 (1996), #R28 2

of the 8 vertices of a trigonal dodecahedron in which the vertices are of two types, 4-valent
and 5-valent, and such that adjacent vertices have different colours. The additional feature
here is that excluded colourings may be constructed in different ways from sets of forbidden
sub-colourings.

We end by writing down a general algorithm for enumerating inventories of patterns
which exclude an arbitrary number of sub-colourings that are specified using an arbitrary
partition of the set of colours.

2 Pattern enumeration

We first recall some of our notation and results from [4] and [5]. Enumeration by stabilizer
class using tables of marks is also discussed in detail in Chapter 3 of [1].

Denote by L and Py the subgroup lattice and the poset of conjugacy classes [H] of
subgroups of a group G. Let A be a commutative algebra over the rationals. The incidence

algebra Al A(L¢) has a subalgebra AC A(Lg) of conjugacy functions satisfying

f(H,K) = f(g"'Hg,g""'Kg) for all H, K < G and g € G.

There is an algebra homomorphism from ACA(L¢) to AIA(Pg) which maps f to f where

J(HLIK) = ) J(HK').

K'eK

Let ( be the zeta function on Lg with inverse the Mobius function p, and let v be
the conjugacy diagonal function defined by v(K) = |G|/ |K||[K]|. The mark function
¢ € AIA(Pq), where ¢([H],[K]) is the number of left cosets in (G//K) fixed under left
multiplication by H, has a factorisation ¢ = (y. When a total ordering of the classes [K]
has been chosen, compatible with the partial order on Pg, the marks form an upper trian-
gular matrix M(¢), known as the table of marks of G, whose inverse is the Burnside matrix
M)

Given a diagonal conjugacy function A on L5 we obtain 7 from « and 7 where

a=pA(, T=7"tay, T=¢ 1Ag. (1)

The values o H, K') may be calculated successively, working downwards from K using the
intervals [H, K], by the formulae

oK, K)=A(K), Y a(H,J) = 0when H # K. (2)

In the case K = G,
#([H],[G]) = o(H,G) /7 (H), (3)

We now summarise the basic ingredients of generalised Redfield/Pélya enumeration (see,
for example, [1], Chapter 2, or [5], Section 5). Let GG be a subgroup of the symmetric group 5,
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and let A = A, ® Q where Ay is the ring of symmetric polynomials in a set of indeterminates
= ={&,&, ..., &}, generated by the power sums p; = Ele ¢4, When we wish to consider
two sorts of indeterminates, we write =, = {n1,...,7;,01,...,0k}, j + k = {, and we denote
by qq, r4 the power sums in n;, 6; respectively, so that p; = g5 + ryq for all d > 1.

Let V be a G-set and w : V — A a weight function. The weight of a subset U C V is
defined to be w(U) = > ., w(u). For g € G and H < G we denote the weights of the fixed
point subsets Fixy (g) and Fixy (H) by w(V, g) and w(V, H) respectively. If Q is a transversal
for the set of orbits V/(G and w is constant on each orbit, the inventory of V' is w(Q). Each
g € G determines a partition m, = (™" ...2721™) of n, in which the parts are the lengths
of the disjoint cycles, and hence a symmetric function

Py = ot opytplt = w(Vig) € Ay,

the combined weight of all the elements fixed by g. The Cauchy-Frobenius Lemma states

that |
w(f) = el Zpg-
] g€G
Similarly, each subgroup H of (¢ determines a partition 7y = (w1, 72,...,m;) F n, in which

the parts are the lengths of the orbits, and hence a symmetric function
PH = PryPry « - P, = W(V, H) € Ay,

the weight of all the elements fixed by H.
Defining A, € ACA(Lg), H — pg, we obtain by (1)

7, = ¢7'A 0 € ATA(Pg).

(The matrix M(7,) is the transition matrix between [-operations and A-operations of degree
n in a J-ring (see [5], Corollary 5.2).)

Let Vig) be the subset of V' whose elements have stabilizer class [H] and let Q) be a
transversal for Viz/G. The [H]-inventories w({z) of V may be obtained by multiplying the
vector whose elements are the values of A, by the Burnside matrix ([1], Section 3.3). Since
this vector forms the final column of the matrix M(A¢), these inventories are the entries
7,([H],[G]) in the last column of M(7,).

Now let X be an n-element G-set, let C' = {c¢1,¢2,...,¢} be a set of colours and let
we 2 C — A, ¢; — & be a weight function on the colours. The set V = C¥ of colourings of
X has weight function

w:V > A y— H we(x(x)).

reX

Pélya’s fundamental theorem states that the inventory of V' is the cycle index

1
Cyc(G; p1ip2,---opn) = @Zpg € A

geG
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3 Williamson’s example

Given a set X = {1,2,...,8} of 8 beads on a circular necklace, consider the set V5 = CX
of colourings of the beads using a set of colours C = AU B, A = {ay,as,...,a;}, B =
{b1,by,...,bx}, AN B = (. The dihedral group D4 acts as the group of symmetries of the
uncoloured necklace and has cycle index, expressed as a polynomial in j = |A|, k = |B]|:

Cyc(Dyg, {7, k}) = 754 5k + 45°K% 4+ 557k + 85 k" + 552k + 452k° + jk" + k5.

There are 30 patterns when 5 = k& = 1; 987 patterns when 57 = 2 and £ = 1; and 7680
patterns when j = k& = 2.

(4%)

(Pi —ps)/Q

(42%)

(pap3 — ]9_421)/2

(2°1%)

3.2 2
sl .

(1%)

(p3 — 2pap3 — pi + 2ps)/8

7 (Pf — 4p3pi — 5py + Apap; + 4p3) /16

Figure 1: Subgroup Lattice of Dyg and values 7,([H],[D1¢))-

A Hasse diagram for the subgroup lattice of Dig 1s shown in Figure 1, where horizontal
dashed lines join the subgroups in a conjugacy class [H]. The class [C)], (resp. [CY])
contains those reflections whose axis does (resp. does not) pass through a pair of beads.
Dotted lines partition the lattice of Dy into subposets in which the subgroups have constant
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orbit type g = 8. The poset formed by these regions is isomorphic to the subposet {7y |H <
Dig} of the poset of all partitions of 8. Values 7,([H],[D1¢]) are shown for each conjugacy
class [H]. Note that 7,([H],[Dis) = 0 when the subgroups in [H] are not maximal in the
subposet of type my.

Summing over all subgroup classes, we obtain the cycle index:

1
> A(H][Dig]) = Cyc(Dig: pi,---.ps) = Tg (Y +4papi + 53 + 25 + 4ps).
H<Dqe

When A is an arbitrary diagonal function, constant on these subposets, the non-zero

values of 7([H], [D1g]) are given in Table 1.

H %([H]v [DIG])
D16 A(D16)
Dy | (A(Dg) = A(Dsg)) /2
K" | (A(K") — A(D1s))/2
K' | (A(K") — A(Dg))/2
C5 | (A(CY) = A(K™))/2
Cy | (A(C3) = A(KY)) /2
Cy | (A(Cy) = 2A(K") = 2A(K") + A(D}) + 2A(D1s))/8
I | (A(]) = A(Cy) —4A(CH) — AA(CH) + AA(K") + 4A(K"))/16

Table 1: Values of 7 for arbitrary A.

Williamson’s problem was to determine the number of patterns which do not contain an
a-rooted tree, namely a coloured subpattern of the form marked in Figure 2.

ocA, e B, xec(C=AUB

Figure 2: A necklace containing an a-rooted tree.

In the case ( =2, = = {n, 0}, rewriting the 7,([H], [D1s]) we obtain symmetric functions
in 7 and 6 as listed in Table 2. The 30 monomials correspond to the 30 colourings of the
necklace with the set {a,b}. Just 13 of these have no a-rooted tree ([6], Figure 4).

Let P = {Py, P5,..., Ps} be the set of properties such that y € V4 satisfies P; if x contains
an a-rooted tree with bead ¢ as root. For () C P let

Vo = {x € Vo | x satisfies P, for all P, € Q}.
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(8) | Dis | n°+0°
42 D/ 404
242; [{?/ 2404
(422) [XH 776(92 + 772(96
(2%) | G5 | 2(5°0% + *0°) + 2010
(215 | Co | 070+ 007) + (%0 + 0*0°) o+ 3(°0° +0°0°) + 206"
(1%) I 20°60° + n°0°) + 2n*0

Table 2: Non-zero values of 7,([H],[D1g]) when ¢ = 2 (30 terms).

We represent the elements of Vi by colourings having a marked a-rooted tree at each bead
¢ for which P, € ). If V; is the set of colourings with no a-rooted tree then, using the
principle of inclusion-exclusion, we define Ay € ACA(Lq) by

Af(H) = w(Vi, H) = ) (=1)*Tw(Vo, H). (4)
QcP

If a colouring x contains e a-rooted trees, then x belongs to 2¢ of the subsets Vg and, if fixed
by H, contributes (1 —1)¢ = 0 to the sum (4). Only 47 of the 256 subsets Vj are non-empty.
For example, Vip, p,; = 0 since properties P, and P, require beads 1 and 4 to be coloured
with both A and B.

The first stage of the solution is to produce a complete set of marked template patterns T;
containing all possible arrangements of one or more a-rooted trees, modulo the group action.
Such templates may be considered as patterns using {a,b, ¢} as the set of colours: beads in
the marked trees are coloured a (for the root) or b, the remaining beads are coloured ¢. In
simple cases the templates can be found by inspection. In general, Williamson’s multilinear
techniques ([6], Section 2) may be used to construct them.

a
a

a a a

a

a oeo a a
a S
a a a
Figure 3: The 8 template patterns T;.

The 8 templates for our example are shown in Figure 3, where o, e, * denote vertices
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coloured a, b, ¢ respectively. Since an a-rooted tree is uniquely determined by the location
of its root, we mark each tree by placing an a next to the root bead. Denoting by 14 the
number of a-rooted trees in T}, we have vy =0, 1y =1, 1, =13 =14 =2, 5 =15 = 3 and
U7 = 4.

The stabilizer classes for these templates are given in Table 3.

Tem P late TO T1 T2 T3 T4 T5 T6 T7
Size of orbit 1 8 8 8 4 8 8 2
Stabilizer class | D C, CY C, K' C}, C} Dy

Table 3: Stabilizers of the templates.

For v a template colouring in Ty, partition X into subsets Xy,, Xyp, Xy of beads coloured
a,b, ¢ respectively. A marked colouring of type T} is obtained by recolouring the beads
in Xyq, Xyp, Xye with colours from A, B, C respectively. If V; denotes the set of marked

colourings of type T; then
|Vt| — |Tt|j|X¢}a| L Xwol plXyel

Since these template colourings include exactly the 47 non-empty Vp, equation (4) may be
rewritten as

7
Ap(H) =Y (=1) w(Vi, H). (5)

=0
In our example |Vi| = 8jk*(* so when j = k& = 1 there are 256 colourings with a single
marked a-rooted tree. These colourings form 30 marked patterns and in Figure 4 we give a
transversal for V1/Dyg, where ~ indicates different markings of the same colouring. (It is a
coincidence that V/Dye contains 30 patterns and V;/Die contains 30 marked patterns.)

Redefine the weight of each colour by

we:C—= A a;—=n (1 <e<yg), bi—0; (1 <i¢<k).

Let €, be a transversal for the patterns V;/Djg. For each class [H] we require the [H]-
inventory w({);) as a polynomial in the power sums py, g4 and rq. Let X/H = {Oy,...,0.}
and let the orbit O; contain d; beads. Let Vj be the set of marked colourings of type T}
obtained from ¥ € T;. Just as py is a product of power sums, one for each orbit, so the
total weight w(Vy, H) of colourings fixed by H is a product of h factors. If O; contains a
bead coloured a and a bead coloured b then Fixy, (H) is empty and w(Vy, H) = 0. If O;
contains only vertices in Xy. then O; contributes a factor pyg, = (qq, +74,). If O; only contains
vertices from Xy, U Xy, (resp. Xyp U Xy ) then O; contributes ¢4, (resp. r4,). We thus obtain
Ay € ATA(Pg) where

A([H]) = w(Vy, H) = Z w(Vy, H) € A. (6)
PETy
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Figure 4: The 30 marked patterns of type T} and their stabilizer classes.
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Reversing the order of summation in EH,E[H] ZweTt w(Vy, H'), we obtain an alternative
formula

A(IHD = i 3wVt M)
H'e[H]
which is more convenient when the size of [H] is small compared with that of T;. Since A, is
a conjugacy function we may define 7, = ¢~'A;¢ and so 7([H], [D1¢)) is the inventory w(;).
Equations (4) and (5) define a conjugacy function Ay where A;(H) is the total weight
of the colourings which are free of a-rooted trees. The corresponding 7; is given by a similar
inclusion-exclusion formula:

7 7 7
=T =0T Y (F1) A =Y ()T A =D (-

and w(Qy ) = 7¢([H], [D1]) where Q0 is a transversal for patterns with no a-rooted tree.

H As(H)

Dy, Dé’, Cs Ps

Dg, Cy P — 2qary
K" P
K’ Paps — 2p2qarsa + @374 — Qa3
Cy p% - 2p2Q27"2
s Papi — 2}72}71(]17“2 - 2}?2}71(]27“27“1 + pagiry — pigars 4 2p1gaqurs
+2qu17“27“1 + g3rar — qaqirs

Cy pz - 4}?2(]27“2 + 2(]27“2
I — 8piquri + 12pigirt + 8pigirt — 8pigirt — 8qiry + 2qimy

Table 4: Weights of colourings with no a-rooted tree.

The values of Ay are given in Table 4 and may be substituted in Table 1 to give the
[H]-inventories for ;. The first four of these contain relatively few terms:

7i([Del, [Dis]) = ps = Inf + 267

Fr([DE), [Di]) = (3 = ps)/2 — qura = Ty + 2010,
F([K"], [Di]) = (3 —ps)/2 = Sopiny + Xm0y + 2010,
%f([[(/]v [D16]) = q4(‘]2 - %)/2 + qaqars + 7“4(7“2 - 7“4)/2

= S 4 SpinZn? 4 LnS0% + Nntn20? + $0°02 + 264620

4 The trigonal dodecahedron

In [2] and [3] Lloyd has applied Redfield/Pdlya methods to the enumeration of chemical
isomers. In this situation the G-set X = {1,...,8} is a molecule whose elements are termed
sites, and these sites are 'coloured’ with ligands which are groupings of one or more atoms.
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Figure 5: The trigonal dodecahedron.

There are chemical compounds which have eight ligands situated at the vertices of a
trigonal dodecahedron (see Figure 5). The rotation group of the polyhedron contains three
half-turns about mutually perpendicular axes, and the full rotation group is isomorphic to
the dihedral group Ds with elements

0. (13)(24)(57)(68), (12)(34)(58)(67), (14)(23)(56)(78),
(13)(68), (24)(57), (1432)(5876), (1234)(5678).

Since four of the sites are 4-valent and the remainder 5-valent, we colour {1,2,3,4} with a
set of ligands A and {5,6,7,8} with a second set B. The appropriate cycle index is therefore

, 1
Cyc(Ds, {qi,ri | 1 <i<4}) = g(Qfo + 2¢2qi277 + 34375 + 2q474).

We suppose, as before, that |A| = j, |B| = k, and consider the enumeration of non-
adjacent colourings y : colourings such that no two adjacent sites contain the same ligand.
In this example the set of properties is P = {Pi3, Pay, Pss, Psr, Prs, Pss} where y satisfies Py,
if sites ¢ and h contain the same ligand. First we restrict to the subset Py = {Pi3, Pas}, and
call x A-adjacent if x(1) = x(3) or x(2) = x(4). Then we apply the restriction to the square
{5,6,7,8}, using Pg = { Ps¢, Por, Prs, Pss}.

The only adjacent pairs of sites coloured with A are {1,3} and {2,4}. Fix a; € A and
partition A as {a;} U A;. There are only four types of marked template pattern, colouring
X with {a;, ap,a,b}, as shown in Figure 6.

The inclusion-exclusion formula for the weight of the set Ay of colourings which are not

J J
Auy=80= ) A+ Apt ) Ay
=1 =1

i#h

A-adjacent is
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TQH T22h

Figure 6: A-adjacent templates.

The individual w(V;, H) need not be symmetric functions, but become so under summation,

as in 4
J
Y wVain, K) =Y uinirs = 5(a3 — qa)r3
i=1 i#h

The only non-zero weights and [H]-enumerators are shown in Table 5.

1] | A4, (H) a, ([H], [D16])
Cy (a3 — qu)rs (qz — qa)75 /2
I (=)’ | (g — @)™t —2(q5 — qu)r3)/8

Table 5: Enumerators of non-A-adjacent patterns.

Now consider colourings in which adjacent sites among {5, 6,7, 8} contain different ligands
but with no restriction on {1,2,3,4}. The marked templates are shown in Figure 7.

b.a\a o bi.a@\oa b b .a i bie e
a@/Oa a@/Oa a@/oa 9/@

I Tii Tsip, Ts:i

Figure 7: B-adjacent templates.

Because each site belongs to two adjacent pairs it is not the case, as in Williamson’s
example, that distinct ),Q" C P always give rise to different marked templates. In fact
subsets
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{Ps6, Prs}, {Per, Pss},
{P567P677 P78}7 {P567P677P58}7 {P567P787P58}7 {P677 P787P58}7
{P567P677 P787P58}

all give rise to marked templates T5;. Thus, when converting the general inclusion-exclusion
formula (4) to a formula involving the A, the coefficient of As;; is 2 —4 +1 = —1. The full
formula is:

k k k
Ap, = Ag — Z Az + ZAM + ZA5ih - ZA5ii-
=1 =1 i£h =1
The only non-zero weights are
ABf([() = ABf(CQ) = q%(r% - 7“4),
Ap,(CY) = q2q3 (rari — 2rary + 14),
Ap.(I) = qi(r] —4ryri +4rsry + 2r3 — 3ry),

where the subgroups in class [C}'] are generated by the reflections in the planes 1,3,6,8 and
2,4,5,7 and K is their join. The non-zero [H]-enumerators for B-adjacent free patterns are

75, ([K],[Ds]) = Ap(K)/2,
78, ([C"]: [Ds]) = (AB,(CY) — Ap(K))/2,
%Bf([[]7[D8]) = (ABf([)_QABf(Cg/)—I_ABf(I())/&

In order to deal with non-adjacent colourings, we should need to consider all possible
adjacencies, leading to a total of 20 marked templates. We omit the details.

5 The general algorithm

The following algorithm applies to an enumeration problem interpreted as the counting of
patterns of valid colourings having a chosen stabilizer class [H] in a group . Colourings
are invalid if they satisfy one or more of a set P = {P;, P,,..., P\} of forbidden properties.
These properties may be expressed in terms of a partition [A;/As/.../A./ of a set of
colours C. If A; = {ai1, aiz,...,ay,} and Y, j; = {, take = to be a set of ¢ indeterminates
i |1 <1<k, 1 <h<yg}andlet w.: C — A, a;, — ny, be the corresponding weight
function. Denote by g;q the power sum Y 7' n% and by V; the set of valid colourings.

Algorithm 5.1

1. Use Williamson’s multilinear techniques to obtain a complete set of marked template
patterns T} coloured with a set of colours {¢y, ¢, ..., ¢}

2. For each template T} and for each [H] < [K] < [(] determine, using formulae (6) and
(7), the weights A,([K]) = w(V;, K) as polynomials in the ¢;q.
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Determine the total weight Af([K]) of colourings in V; fixed by K by rewriting the
inclusion-exclusion formula (4) for the A properties as a signed sum of the A([K]).

Calculate values of oy = uA;(¢ and 7 = ¢~'A ;¢ using equations (2) and (3), working
down from [(7] over the interval | [H],[G] ] of Pq.

Theorem 5.2 The polynomial 7¢([H],[G]) is the [H]-inventory for patterns of valid colour-

ings.

When this polynomial is expressed as a polynomial in the indeterminates n;,, the

coefficient oanflfjh is the number of patterns in which colour a;, is used d;; times.
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