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the electronic journal of combinatorics 3 (1996), #R28 2of the 8 vertices of a trigonal dodecahedron in which the vertices are of two types, 4-valentand 5-valent, and such that adjacent vertices have di�erent colours. The additional featurehere is that excluded colourings may be constructed in di�erent ways from sets of forbiddensub-colourings.We end by writing down a general algorithm for enumerating inventories of patternswhich exclude an arbitrary number of sub-colourings that are speci�ed using an arbitrarypartition of the set of colours.2 Pattern enumerationWe �rst recall some of our notation and results from [4] and [5]. Enumeration by stabilizerclass using tables of marks is also discussed in detail in Chapter 3 of [1].Denote by LG and PG the subgroup lattice and the poset of conjugacy classes [H] ofsubgroups of a group G. Let A be a commutative algebra over the rationals. The incidencealgebra AIA(LG) has a subalgebra ACA(LG) of conjugacy functions satisfyingf(H;K) = f(g�1Hg; g�1Kg) for all H;K � G and g 2 G:There is an algebra homomorphism from ACA(LG) to AIA(PG) which maps f to �f where�f([H]; [K]) = XK02K f(H;K 0):Let � be the zeta function on LG with inverse the M�obius function �, and let 
 bethe conjugacy diagonal function de�ned by 
(K) = jGj = jKj j[K]j. The mark function� 2 AIA(PG), where �([H]; [K]) is the number of left cosets in (G=K) �xed under leftmultiplication by H, has a factorisation � = ��
. When a total ordering of the classes [K]has been chosen, compatible with the partial order on PG, the marks form an upper trian-gular matrixM(�), known as the table of marks of G, whose inverse is the Burnside matrixM(��1).Given a diagonal conjugacy function � on LG we obtain �� from � and � where� = ���; � = 
�1�
; �� = ��1��: (1)The values �(H;K) may be calculated successively, working downwards from K using theintervals [H;K], by the formulae�(K;K) = �(K); XH�J�K �(H;J) = 0 when H 6= K: (2)In the case K = G, �� ([H]; [G]) = �(H;G)=
(H): (3)We now summarise the basic ingredients of generalised Red�eld/P�olya enumeration (see,for example, [1], Chapter 2, or [5], Section 5). Let G be a subgroup of the symmetric group Sn



the electronic journal of combinatorics 3 (1996), #R28 3and let A = �`
Q where �` is the ring of symmetric polynomials in a set of indeterminates�` = f�1; �2; : : : ; �`g, generated by the power sums pd =Pì=1 �di . When we wish to considertwo sorts of indeterminates, we write �` = f�1; : : : ; �j; �1; : : : ; �kg, j + k = `, and we denoteby qd; rd the power sums in �i; �i respectively, so that pd = qd + rd for all d � 1.Let V be a G-set and w : V ! A a weight function. The weight of a subset U � V isde�ned to be w(U) =Pu2U w(u). For g 2 G and H � G we denote the weights of the �xedpoint subsets FixV (g) and FixV (H) by w(V; g) and w(V;H) respectively. If 
 is a transversalfor the set of orbits V=G and w is constant on each orbit, the inventory of V is w(
). Eachg 2 G determines a partition �g = (nmn : : : 2m21m1) of n, in which the parts are the lengthsof the disjoint cycles, and hence a symmetric functionpg = pmnn : : : pm22 pm11 = w(V; g) 2 �`;the combined weight of all the elements �xed by g. The Cauchy-Frobenius Lemma statesthat w(
) = 1jGjXg2G pg:Similarly, each subgroup H of G determines a partition �H = (�1; �2; : : : ; �h) ` n, in whichthe parts are the lengths of the orbits, and hence a symmetric functionpH = p�1p�2 : : : p�h = w(V;H) 2 �`;the weight of all the elements �xed by H.De�ning �p 2 ACA(LG); H 7! pH , we obtain by (1)��p = ��1�p� 2 AIA(PG):(The matrixM( ��p) is the transition matrix between �-operations and �-operations of degreen in a �-ring (see [5], Corollary 5.2).)Let V[H ] be the subset of V whose elements have stabilizer class [H] and let 
[H] be atransversal for V[H ]=G. The [H]-inventories w(
[H ]) of V may be obtained by multiplying thevector whose elements are the values of �p by the Burnside matrix ([1], Section 3.3). Sincethis vector forms the �nal column of the matrix M(��), these inventories are the entries��p([H]; [G]) in the last column of M(��p).Now let X be an n-element G-set, let C = fc1; c2; : : : ; c`g be a set of colours and letwC : C ! A; ci 7! �i be a weight function on the colours. The set V = CX of colourings ofX has weight function w : V !A; � 7!Yx2X wC(�(x)):P�olya's fundamental theorem states that the inventory of V is the cycle indexCyc(G; p1; p2; : : : ; pn) = 1jGjXg2G pg 2 A:



the electronic journal of combinatorics 3 (1996), #R28 43 Williamson's exampleGiven a set X = f1; 2; : : : ; 8g of 8 beads on a circular necklace, consider the set V0 = CXof colourings of the beads using a set of colours C = A [ B; A = fa1; a2; : : : ; ajg; B =fb1; b2; : : : ; bkg; A \B = ;. The dihedral group D16 acts as the group of symmetries of theuncoloured necklace and has cycle index, expressed as a polynomial in j = jAj; k = jBj:Cyc(D16; fj; kg) = j8 + j7k + 4j6k2 + 5j5k3 + 8j4k4 + 5j3k5 + 4j2k6 + jk7 + k8:There are 30 patterns when j = k = 1; 987 patterns when j = 2 and k = 1; and 7680patterns when j = k = 2.
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IC 02 C2 C 002K 0 C4 K 00D08 C8 D008D16
(p81 � 4p32p21 � 5p42 + 4p4p22 + 4p24)=16(p42 � 2p4p22 � p24 + 2p8)=8(p32p21 � p4p22)=2 (p42 � p24)=2(p4p22 � p24)=2 0 (p24 � p8)=20 0p8

(18)(2312)(422)(42)
(18)(24)(42)(8)(p24 � p8)=2

��������������������������Figure 1: Subgroup Lattice of D16 and values ��p([H]; [D16]).A Hasse diagram for the subgroup lattice of D16 is shown in Figure 1, where horizontaldashed lines join the subgroups in a conjugacy class [H]. The class [C 02] , (resp. [C 002 ] )contains those re
ections whose axis does (resp. does not) pass through a pair of beads.Dotted lines partition the lattice of D16 into subposets in which the subgroups have constant



the electronic journal of combinatorics 3 (1996), #R28 5orbit type �H ` 8. The poset formed by these regions is isomorphic to the subposet f�H jH �D16g of the poset of all partitions of 8. Values ��p([H]; [D16]) are shown for each conjugacyclass [H]. Note that ��p([H]; [D16) = 0 when the subgroups in [H] are not maximal in thesubposet of type �H.Summing over all subgroup classes, we obtain the cycle index:XH�D16 ��p([H]; [D16]) = Cyc(D16; p1; : : : ; p8) = 116(p81 + 4p32p21 + 5p42 + 2p24 + 4p8):When � is an arbitrary diagonal function, constant on these subposets, the non-zerovalues of �� ([H]; [D16]) are given in Table 1.H ��([H]; [D16])D16 �(D16)D08 (�(D08) ��(D16))=2K 00 (�(K 00)��(D16))=2K 0 (�(K 0)��(D08))=2C 002 (�(C 002 )��(K 00))=2C 02 (�(C 02)��(K 0))=2C2 (�(C2)� 2�(K 0)� 2�(K 00) + �(D08) + 2�(D16))=8I (�(I)��(C2)� 4�(C 02)� 4�(C 002 ) + 4�(K 0) + 4�(K 00))=16Table 1: Values of �� for arbitrary �.Williamson's problem was to determine the number of patterns which do not contain ana-rooted tree, namely a coloured subpattern of the form marked in Figure 2.��!!aaLL��!!aaLL�� � ����� ��@@ � 2 A; � 2 B; � 2 C = A [BFigure 2: A necklace containing an a-rooted tree.In the case ` = 2; � = f�; �g, rewriting the ��p([H]; [D16]) we obtain symmetric functionsin � and � as listed in Table 2. The 30 monomials correspond to the 30 colourings of thenecklace with the set fa; bg. Just 13 of these have no a-rooted tree ([6], Figure 4).Let P = fP1; P2; : : : ; P8g be the set of properties such that � 2 V0 satis�es Pi if � containsan a-rooted tree with bead i as root. For Q � P letVQ = f� 2 V0 j � satis�es Pi for all Pi 2 Qg:



the electronic journal of combinatorics 3 (1996), #R28 6(8) D16 �8 + �8(42) D08 �4�4(42) K 00 �4�4(422) K 0 �6�2 + �2�6(24) C 002 2(�6�2 + �2�6) + 2�4�4(2312) C 02 (�7� + ��7) + (�6�2 + �2�6) + 3(�5�3 + �3�5) + 2�4�4(18) I 2(�5�3 + �3�5) + 2�4�4Table 2: Non-zero values of ��p([H]; [D16]) when ` = 2 (30 terms).We represent the elements of VQ by colourings having a marked a-rooted tree at each beadi for which Pi 2 Q. If Vf is the set of colourings with no a-rooted tree then, using theprinciple of inclusion-exclusion, we de�ne �f 2 ACA(LG) by�f(H) = w(Vf ;H) = XQ�P (�1)jQj w(VQ;H): (4)If a colouring � contains e a-rooted trees, then � belongs to 2e of the subsets VQ and, if �xedby H, contributes (1�1)e = 0 to the sum (4). Only 47 of the 256 subsets VQ are non-empty.For example, VfP1;P4g = ; since properties P1 and P4 require beads 1 and 4 to be colouredwith both A and B.The �rst stage of the solution is to produce a complete set of marked template patterns Ttcontaining all possible arrangements of one or more a-rooted trees, modulo the group action.Such templates may be considered as patterns using fa; b; cg as the set of colours: beads inthe marked trees are coloured a (for the root) or b, the remaining beads are coloured c. Insimple cases the templates can be found by inspection. In general, Williamson's multilineartechniques ([6], Section 2) may be used to construct them.
��!!aaLL��!!aaLL T4�� � ����� aa ��!!aaLL��!!aaLL T5�� � �����aa a ��!!aaLL��!!aaLL T6�� � �����a aa ��!!aaLL��!!aaLL T7�� � �����a a aa��!!aaLL��!!aaLL T0�� � ����� ��!!aaLL��!!aaLL T1�� � ����� a ��!!aaLL��!!aaLL T2�� � ����� aa ��!!aaLL��!!aaLL T3�� � �����a aFigure 3: The 8 template patterns Tt.The 8 templates for our example are shown in Figure 3, where �; �; � denote vertices



the electronic journal of combinatorics 3 (1996), #R28 7coloured a; b; c respectively. Since an a-rooted tree is uniquely determined by the locationof its root, we mark each tree by placing an a next to the root bead. Denoting by �t thenumber of a-rooted trees in Tt, we have �0 = 0; �1 = 1; �2 = �3 = �4 = 2; �5 = �6 = 3 and�7 = 4.The stabilizer classes for these templates are given in Table 3.Template T0 T1 T2 T3 T4 T5 T6 T7Size of orbit 1 8 8 8 4 8 8 2Stabilizer class D16 C 02 C 002 C 02 K 0 C 02 C 02 D08Table 3: Stabilizers of the templates.For  a template colouring in Tt, partition X into subsets X a;X b;X c of beads coloureda; b; c respectively. A marked colouring of type Tt is obtained by recolouring the beadsin X a;X b;X c with colours from A;B;C respectively. If Vt denotes the set of markedcolourings of type Tt then jVtj = jTtj jjX aj kjX bj `jX c j:Since these template colourings include exactly the 47 non-empty VQ, equation (4) may berewritten as �f(H) = 7Xt=0 (�1)�t w(Vt;H): (5)In our example jV1j = 8jk2`5 so when j = k = 1 there are 256 colourings with a singlemarked a-rooted tree. These colourings form 30 marked patterns and in Figure 4 we give atransversal for V1=D16, where � indicates di�erent markings of the same colouring. (It is acoincidence that V0=D16 contains 30 patterns and V1=D16 contains 30 marked patterns.)Rede�ne the weight of each colour bywC : C ! A; ai 7! �i (1 � i � j); bi 7! �i (1 � i � k):Let 
t be a transversal for the patterns Vt=D16. For each class [H] we require the [H]-inventory w(
t) as a polynomial in the power sums pd; qd and rd. Let X=H = fO1; : : : ; Ohgand let the orbit Oi contain di beads. Let V be the set of marked colourings of type Ttobtained from  2 Tt. Just as pH is a product of power sums, one for each orbit, so thetotal weight w(V ;H) of colourings �xed by H is a product of h factors. If Oi contains abead coloured a and a bead coloured b then FixV (H) is empty and w(V ;H) = 0. If Oicontains only vertices inX c then Oi contributes a factor pdi = (qdi+rdi). If Oi only containsvertices from X a[X c (resp. X b[X c) then Oi contributes qdi (resp. rdi). We thus obtain�t 2 AIA(PG) where �t([H]) = w(Vt;H) =X 2Ttw(V ;H) 2 A: (6)
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��!!aaLL��!!aaLL C 02�� � �����a � ��!!aaLL��!!aaLL C 02�� � �����a ��!!aaLL��!!aaLL K 0�� � �����a � ��!!aaLL��!!aaLL K 0�� � ����� a ��!!aaLL��!!aaLL C 02�� � �����a��!!aaLL��!!aaLL C 02�� � �����a � ��!!aaLL��!!aaLL C 02�� � �����a � ��!!aaLL��!!aaLL C 02�� � ����� a ��!!aaLL��!!aaLL C 002�� � �����a � ��!!aaLL��!!aaLL C 002�� � �����a��!!aaLL��!!aaLL C 02�� � �����a � ��!!aaLL��!!aaLL C 02�� � �����a � ��!!aaLL��!!aaLL C 02�� � �����a ��!!aaLL��!!aaLL I�� � �����a ��!!aaLL��!!aaLL I�� � �����a��!!aaLL��!!aaLL I�� � �����a ��!!aaLL��!!aaLL D08�� � �����a � ��!!aaLL��!!aaLL D08�� � �����a � ��!!aaLL��!!aaLL D08�� � ����� a � ��!!aaLL��!!aaLL D08�� � ����� a��!!aaLL��!!aaLL C 002�� � �����a � ��!!aaLL��!!aaLL C 002�� � �����a ��!!aaLL��!!aaLL I�� � �����a � ��!!aaLL��!!aaLL I�� � �����a ��!!aaLL��!!aaLL C 02�� � �����a��!!aaLL��!!aaLL C 02�� � �����a ��!!aaLL��!!aaLL C 02�� � �����a ��!!aaLL��!!aaLL I�� � �����a ��!!aaLL��!!aaLL C 02�� � �����a � ��!!aaLL��!!aaLL C 02�� � ����� a

Figure 4: The 30 marked patterns of type T1 and their stabilizer classes.



the electronic journal of combinatorics 3 (1996), #R28 9Reversing the order of summation in PH 02[H ]P 2Tt w(V ;H 0), we obtain an alternativeformula �t([H]) = jTtjj[H]j XH 02[H ] w(V ;H 0); (7)which is more convenient when the size of [H] is small compared with that of Tt. Since �t isa conjugacy function we may de�ne ��t = ��1�t� and so ��t([H]; [D16]) is the inventory w(
t).Equations (4) and (5) de�ne a conjugacy function �f where �f (H) is the total weightof the colourings which are free of a-rooted trees. The corresponding ��f is given by a similarinclusion-exclusion formula:��f = ��1�f� = ��1 7Xt=0 (�1)�t�t� = 7Xt=0 (�1)�t��1�t� = 7Xt=0 (�1)�t��t:and w(
f;[H ]) = ��f ([H]; [D16]) where 
f is a transversal for patterns with no a-rooted tree.H �f(H)D16;D008 ; C8 p8D08; C4 p24 � 2q4r4K 00 p24K 0 p4p22 � 2p2q2r4 + q22r4 � q4r22C 002 p42 � 2p2q2r22C 02 p32p21 � 2p22p1q1r2 � 2p2p1q2r2r1 + p2q21r22 � p21q2r22 + 2p1q2q1r22+2q2q1r22r1 + q22r2r21 � q2q21r22C2 p42 � 4p2q2r22 + 2q22r22I p81 � 8p51q1r21 + 12p21q21r41 + 8p31q21r31 � 8p1q31r41 � 8q31r51 + 2q41r41Table 4: Weights of colourings with no a-rooted tree.The values of �f are given in Table 4 and may be substituted in Table 1 to give the[H]-inventories for 
f . The �rst four of these contain relatively few terms:��f ([D16]; [D16]) = p8 = ��81 + ��81��f ([D08]; [D16]) = (p24 � p8)=2 � q4r4 = ��41�42 + ��41�42��f ([K 00]; [D16]) = (p24 � p8)=2 = ��41�42 + ��41�41 + ��41�42��f ([K 0]; [D16]) = q4(q22 � q4)=2 + q4q2r2 + r4(r22 � r4)=2= ��61�22 + ��41�22�23 + ��61�21 + ��41�22�21 + ��61�22 + ��41�22�234 The trigonal dodecahedronIn [2] and [3] Lloyd has applied Red�eld/P�olya methods to the enumeration of chemicalisomers. In this situation the G-set X = f1; : : : ; 8g is a molecule whose elements are termedsites, and these sites are 'coloured' with ligands which are groupings of one or more atoms.
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Figure 5: The trigonal dodecahedron.There are chemical compounds which have eight ligands situated at the vertices of atrigonal dodecahedron (see Figure 5). The rotation group of the polyhedron contains threehalf-turns about mutually perpendicular axes, and the full rotation group is isomorphic tothe dihedral group D8 with elements(), (13)(24)(57)(68), (12)(34)(58)(67), (14)(23)(56)(78),(13)(68), (24)(57), (1432)(5876), (1234)(5678).Since four of the sites are 4-valent and the remainder 5-valent, we colour f1; 2; 3; 4g with aset of ligands A and f5; 6; 7; 8g with a second set B. The appropriate cycle index is thereforeCyc(D8; fqi; ri j 1 � i � 4g) = 18(q41r41 + 2q2q21r2r21 + 3q22r22 + 2q4r4):We suppose, as before, that jAj = j; jBj = k, and consider the enumeration of non-adjacent colourings � : colourings such that no two adjacent sites contain the same ligand.In this example the set of properties is P = fP13; P24; P56; P67; P78; P58g where � satis�es Pihif sites i and h contain the same ligand. First we restrict to the subset PA = fP13; P24g, andcall � A-adjacent if �(1) = �(3) or �(2) = �(4). Then we apply the restriction to the squaref5; 6; 7; 8g, using PB = fP56; P67; P78; P58g.The only adjacent pairs of sites coloured with A are f1; 3g and f2; 4g. Fix ai 2 A andpartition A as faig [ �Ai. There are only four types of marked template pattern, colouringX with fai; ah; a; bg, as shown in Figure 6.The inclusion-exclusion formula for the weight of the set Af of colourings which are notA-adjacent is �Af = �0 � jXi=1 �1i + jXi=1 �2i +Xi 6=h �2ih:
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T0�� � �� � �� HHH����������� aa a ab b bb T1i�� � �� � �� HHH�����������aia ai ab b bb T2ii�� � �� � �� HHH�����������aiai ai aib b bb T2ih�� � �� � �� HHH�����������aiah ai ahb b bbFigure 6: A-adjacent templates.The individual w(Vt;H) need not be symmetric functions, but become so under summation,as in jXi=1 w(V2ih;K) =Xi 6=h �2i �2hr22 = 12(q22 � q4)r22:The only non-zero weights and [H]-enumerators are shown in Table 5.[H] �Af (H) ��Af ([H]; [D16])C 002 (q22 � q4)r22 (q22 � q4)r22=2I (q21 � q2)2r41 ((q21 � q2)2r41 � 2(q22 � q4)r22)=8Table 5: Enumerators of non-A-adjacent patterns.Now consider colourings in which adjacent sites among f5; 6; 7; 8g contain di�erent ligandsbut with no restriction on f1; 2; 3; 4g. The marked templates are shown in Figure 7.T3i�� � �� � �� HHH����������� aa a abi bi bb T4i�� � �� � �� HHH����������� aa a abi bi bbi T5ih�� � �� � �� HHH����������� aa a abi bi bhbh T5ii�� � �� � �� HHH����������� aa a abi bi bibiFigure 7: B-adjacent templates.Because each site belongs to two adjacent pairs it is not the case, as in Williamson'sexample, that distinct Q;Q0 � P always give rise to di�erent marked templates. In factsubsets



the electronic journal of combinatorics 3 (1996), #R28 12fP56; P78g; fP67; P58g;fP56; P67; P78g; fP56; P67; P58g; fP56; P78; P58g; fP67; P78; P58g;fP56; P67; P78; P58gall give rise to marked templates T5ii. Thus, when converting the general inclusion-exclusionformula (4) to a formula involving the �t, the coe�cient of �5ii is 2� 4 + 1 = �1. The fullformula is: �Bf = �0 � kXi=1 �3i + kXi=1 �4i +Xi 6=h �5ih � kXi=1 �5ii:The only non-zero weights are�Bf (K) = �Bf (C2) = q22(r22 � r4),�Bf (C 0002 ) = q2q21(r2r21 � 2r3r1 + r4),�Bf (I) = q41(r41 � 4r2r21 + 4r3r1 + 2r22 � 3r4),where the subgroups in class [C 0002 ] are generated by the re
ections in the planes 1; 3; 6; 8 and2; 4; 5; 7 and K is their join. The non-zero [H]-enumerators for B-adjacent free patterns are��Bf ([K]; [D8]) = �Bf (K)=2;��Bf ([C 0002 ]; [D8]) = (�Bf (C 0002 )��Bf (K))=2;��Bf ([I]; [D8]) = (�Bf (I)� 2�Bf (C 0002 ) + �Bf (K))=8:In order to deal with non-adjacent colourings, we should need to consider all possibleadjacencies, leading to a total of 20 marked templates. We omit the details.5 The general algorithmThe following algorithm applies to an enumeration problem interpreted as the counting ofpatterns of valid colourings having a chosen stabilizer class [H] in a group G. Colouringsare invalid if they satisfy one or more of a set P = fP1; P2; : : : ; P�g of forbidden properties.These properties may be expressed in terms of a partition =A1=A2= : : : =A�= of a set ofcolours C. If Ai = fai1; ai2; : : : ; aijig and P�i=1 ji = `, take � to be a set of ` indeterminatesf�ih j 1 � i � �; 1 � h � jig and let wc : C ! A; aih 7! �ih, be the corresponding weightfunction. Denote by qid the power sum Pjih=1 �dih and by Vf the set of valid colourings.Algorithm 5.11. Use Williamson's multilinear techniques to obtain a complete set of marked templatepatterns Tt coloured with a set of colours fc1; c2; : : : ; c�g.2. For each template Tt and for each [H] � [K] � [G] determine, using formulae (6) and(7), the weights �t([K]) = w(Vt;K) as polynomials in the qid.



the electronic journal of combinatorics 3 (1996), #R28 133. Determine the total weight �f ([K]) of colourings in Vf �xed by K by rewriting theinclusion-exclusion formula (4) for the � properties as a signed sum of the �t([K]).4. Calculate values of �f = ��f� and ��f = ��1�f� using equations (2) and (3), workingdown from [G] over the interval [ [H]; [G] ] of PG.Theorem 5.2 The polynomial ��f ([H]; [G]) is the [H]-inventory for patterns of valid colour-ings. When this polynomial is expressed as a polynomial in the indeterminates �ih, thecoe�cient of Q �dihih is the number of patterns in which colour aih is used dih times.References[1] Kerber, A., Algebraic combinatorics via �nite group actions, (Bibliographisches In-stitut Wissenschaftsverlag, Mannheim, 1991).[2] Lloyd, E.K., Red�eld's papers and their relevance to counting isomers and isomeriza-tions, Discrete Applied Math. 19 (1988) 289-304.[3] Lloyd, E.K., Marks of permutation groups and isomer enumeration, J. Math. Chem-istry 11 (1992) 207-222.[4] Morris, I. and Wensley, C.D. Adams operations and �-operations in �-rings,Discrete Math. 50 (1984) 253-270.[5] Morris, I. and Wensley, C.D., Cycle indices and subgroup lattices, Discrete Math.118 (1993) 173-195.[6] Williamson, S.G., The combinatorial analysis of patterns and the principle ofinclusion-exclusion, Discrete Math. 1 (1972) 357-388.


