Improved Coverings of a Square with Six and Eight Equal Circles
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Abstract

In a recent article [19], Tarnai and Gaspar used computer simulations to find thin
coverings of a square with up to ten equal circles. We will give improved coverings
with six and eight circles and a new, thin covering with eleven circles, found by the
use of simulated annealing. Furthermore, we present a combinatorial method for
constructing lower bounds for the optimal covering radius.

AMS Subject Classification: Primary 52C15

1 Introduction

The classical problem of packing equal circles in a square has been very popular in the
literature. Since the sixties at least twenty articles have been published containing either
proofs of densest packings or improvements on previous dense packings, see [2] for a partial
overview.

Densest packings in a square are now known for up to 20 circles [8, 13, 15, 16, 17, 18,
21, 22] and for 25 and 36 circles [5, 23]. The computer-aided proof method of Peikert et
al. has been extended recently up to n = 26 [11, 12]. For more values than one would
probably ever want to know about, extremely good packings have been found, most of
which are likely to be optimal, see [3, 7, 10].

The “dual” problem of determining thinnest coverings of a square has remained sin-
gularly devoid of attention so far. Apart from an article by Verblunsky [20], which gives
a lower bound for the covering radius, there is only one recent article [19] in which Tar-
nai and Gdspar construct “locally optimal” circle coverings of the square with up to 10
circles. They use an engineering approach where the covering problem is transformed
into the construction of an extremal bipartite graph. This graph is optimized by using a
computer simulation of an equivalent shrinking bar model. No proofs of optimality are
given, though. Their configurations for up to five circles and for seven circles are indeed
optimal. These cases are treated in [4], as well as generalizations to a rectangle. For
loosest coverings of an equilateral triangle with up to six circles, see [9]. We will show here
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that the configurations with six and eight circles as given by Tarnai and Géspar are not
optimal by presenting better coverings. Finally, we will give a new covering with eleven
circles. The configurations were found by means of simulated annealing.

The paper runs as follows. Section 2 briefly discusses the methods that we used to
obtain new coverings. In Section 3 the new coverings are presented. Also, in Section 4
we will demonstrate how simple combinatorial arguments can be used to obtain relevant
lower bounds for the radius of the circles in a thinnest covering.

2 The annealing approach

To obtain an approximate solution to our covering problem via simulated annealing [1, 6]
we place a uniform grid over the unit square. During the optimization process this grid is
gradually refined. As configurations we take all the assignments of the n circle centers to
grid points. The cost function is chosen as the corresponding covering radius, i.e., as the
smallest number r such that the n circles with the above centers and with radius r cover
the unit square. Below we shall describe how r is determined.

The algorithm starts off from an arbitrary initial configuration. In each iteration a new
configuration is generated by slightly perturbing the current configuration. This is done
by randomly choosing one of the n centers and displacing it over a small distance. The
difference in cost is compared with an acceptance criterion which accepts all improvements
but also admits, in a limited way, deteriorations in cost.

Initially, the acceptance criterion is taken such that deteriorations are accepted with
a high probability. In this way the optimization process may be prevented from getting
stuck in a local optimum. As the optimization process proceeds, the acceptance criterion
is modified such that the probability for accepting deteriorations decreases. At the end of
the process this probability tends to zero. The process comes to a halt when - during a
prescribed number of iterations - no further improvement of the best value found so far
occurs.

Let us now describe how to determine the covering radius r of a given configuration.
Let U denote the unit square and P = {p;|1 < i < n} the set of circle centers. Consider
the Voronoi tessellation of U [14], i.e., the “partition” of U into cells obtained by assigning
to each center p the set V(p) defined as the closure of the set of points of U which are
closer to p than to any other center. Clearly, each cell V(p) is a closed convex polyhedral
set. Let L denote the set consisting of all perpendicular bisectors of p;p; (pi,p; € P,1 # 7),
augmented with the four lines that define the boundary of U/. The boundary of each cell
V(p) is defined by lines from L. Let S denote the set of all intersections in U of any pair
of lines from L. The covering radius is then given by

r=max max d(p,s
pEP s€SnV (p) (P, s),
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where d denotes the euclidean distance. Evidently, we may rewrite this in the computa-
tionally more manageable form

r = max min d(p, s).
s€S peP (p7 )
In our program the latter formula is used only once, namely for the initial configuration.
From then on, r is calculated incrementally, where we take advantage of the fact that only
one out of n centers is moved in generating a new configuration.

3 New coverings

The techniques described in the previous section were used to generate thin coverings.
These coverings suffer from a discretization effect of the numerical method, so generally
they can still be improved by analytical methods. Once the topology of the covering has
been determined, it is possible to find a polynomial equation that has the optimal radius
as a root. The degree of the polynomial may be very high. In this way we have been able
to improve the best existing coverings with six and eight circles.

3.1 Six circles

An obvious, but excellent covering of the unit square with six circles is obtained by dividing
the square into six equal rectangles of dimensions % by %, and covering each small rectangle
by a circle of radius v/13/12 = 0.3004626062. .. as is shown in Fig. 1.

r = 0.300462. ..

Figure 1: Obvious covering of a square with six equal circles.
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Although this covering may appear to be a reasonable candidate for the thinnest
covering it is not optimal. Tarnai and Gdspdr [19] recently succeeded in finding a superior
covering shown in Fig. 2a with a covering radius of 0.2989506811 ...

r = 0.298950. .. r=0.298727 ...

Figure 2: Covering with six equal circles by Tarnai and Gaspdr, and the
improved covering. The dotted line segments are of length r.

This is not the end of the story, because our annealing approach turned up an even
better configuration. The covering shown in Fig. 2b has a different topology than the
covering found by Tarnai and Gaspar, and the covering radius is also slightly better:
0.2987270622 . .. The covering of Tarnai and Géaspar has an axis of symmetry, whereas our
covering is point symmetric.

3.2 Eight circles

The covering of the unit square with eight circles found by Tarnai and Gaspar is shown
in Fig 3a. It has a covering radius of 0.2605481431 ... and has one axis of symmetry.

Using our simulated annealing approach we have found a covering which is infinites-
imally better, see Fig. 3b. The configuration has two axes of symmetry. The covering
radius is the smallest positive root of the following irreducible polynomial:

16 — 4487 + 531272 — 424007> + 2753687 — 11495207° + 1983264r° + 145490477 —

96083597% + 4097941677 — 15641979671° — 859396967 + 152064736472 —
1614074304713 — 2118065856714 + 41659420167'° — 2036100697676+
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r=0.260548 . .. r = 0.260300. ..

Figure 3: Covering of a square with eight equal circles found by
Tarnai and Gaspar, and the improved covering.

4868389785677 4+ 6009233817678 — 2663350272007 + 2500087091272+
495949447168r21 — 104762015744r%? — 58320696115272 — 187925004288724+
974294876160r%° — 6998615654472% — 6349130659847r%7 + 30984162508872%,

The numerical value of the root is » = 0.2603001058 ... The polynomial was constructed
in the following way. First, we note that due to symmetry it is sufficient to determine
five vertices of the pentagon that lies in a quarter of the unit square. Together with
the covering radius this makes six unknowns. Unfortunately, the geometric restrictions
give only five quadratic equations in these unknowns, so we have to use the fact that
the covering radius must also be minimal within the above constraints. We introduce
the derivatives of the unknowns with respect to one of the coordinates as new variables
and differentiate the original equations. This yields eleven quadratic equations in eleven
unknowns. By determining a Grébner basis, this set can be reduced to the above equation
for r only.

3.3 Eleven circles

The best covering that we have found with eleven circles is shown in Fig. 4. The covering
radius is 0.2125160164 ... The covering has two axes of symmetry. Following the best of
traditions we of course conjecture this configuration to be optimal.
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r=10.212516...

Figure 4: Covering of a square with eleven equal circles.

4 Combinatorial methods for finding lower bounds

Whereas upper bounds for the optimal covering radius ¢, can be obtained by “simply”
providing good coverings, good lower bounds are more difficult to find. One way to
construct a lower bound is as follows. Suppose that we have a covering of the unit square
with n circles of radius ¢,. As the square can be used to tile the plane, we obtain a global
circle covering of the plane with a covering density of wnc2. Verblunsky [20] has shown
that this density is larger than or equal to 27 /+/27, the density of the regular hexagonal
covering. This results in the following inequality.

41
S V2ryn’

We will now describe a simple way, based on the pigeon hole principle, to find lower
bounds for the optimal covering radius, using the results for densest circle packings. If we
have » + 1 points in a square that is covered by n equal discs, then two points must be in
the same disc. The smallest distance between the points is therefore a lower bound for the
diameter of the discs. If the points are distributed such that the smallest distance between
the points is maximal, we obtain a lower bound that is optimal for this approach. The
maximum separation distance d, of n points in the unit square is related to the densest
packing radius r, of the unit square in the following way:

Cp > Uy -

B 2r,
1 =2r,

n
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The lower bounds resulting from the exact results that are known for the packing problem
(see the references in the Introduction) are shown in the following table.

upper lower bounds

bound
n Cp dn+1/2 R2n+1 Un
1 10.707106 | 0.707106 | 0.707106 | 0.620403
2 | 0.559016 | 0.517638 | 0.559016 | 0.438691
3 | 0.503891 | 0.500000 | 0.500000 | 0.358189
4 1 0.353553 | 0.353553 | 0.353553 | 0.310201
5 10.326160 | 0.300462 | 0.310339 | 0.277452
6 | 0.298727 | 0.267949 | 0.290225 | 0.253278
7 10.274291 | 0.258819 | 0.260118 | 0.234490
8 1 0.260300 | 0.250000 | 0.250000 | 0.219345
9 | 0.230636 | 0.210639 | 0.216175 | 0.206801
10 | 0.218233 | 0.199103 | 0.204365 | 0.196188
11 | 0.212516 | 0.194365 | 0.195845 | 0.187058

A possible refinement of the previous argument would be as follows. If we take 2n 4 1
points, then one of the discs must cover at least three points. This will also give a lower
bound for the covering radius. We need, however, to determine configurations of 2n + 1
points that maximize the radius Rgy,4+1 of the smallest disc that covers three of these
points. The smallest circle that covers a triangle is either the circumscribed circle, or the
circle that has the longest edge as diameter. If the triangle has edge lengths a, b and ¢,
where a > b, ¢, then the radius of this circle is given by

abe

if 2 bP 42,
Smas o T
a
— else.
2
Here, s is the semicircumference,
at+b+ec
=

Placing pairs of points on the positions of the n 4+ 1 points in the maximum separation
configuration shows that the corresponding radius satisfies Ry,11 > Ropto > dpt1/2, so
the lower bound obtained in this way will not be inferior to the previous bounds. An
interesting question is, therefore, whether this approach can in fact improve the lower
bounds found by the previous method, bearing in mind that there are no exact results
available for Ry, 1. We have found good configurations by using a multiple starting non-
linear optimization, and the results are shown in the Table. It turns out that improvement
is possible in almost all cases, and that the method actually yields a proof for n = 1,2
and 4.
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It should be noted that the values under ¢, in the Table are upper bounds that are
only known to be sharp for n < 7, and that most of the values under Rg,41 are numerical
values that may still be improved slightly. This, and the extension of the method to four
points per circle and higher will be subject of further study.
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