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Abstract
A stapled sequence is a set of consecutive positive integers such

that no one of them is relatively prime with all of the others. The
problem of existence and construction of stapled sequences of length
N was extensively studied for over 60 years by Pillai, Evans, Brauer,
Harborth, Erdös and others.

Sivasankaranarayana, Szekeres and Pillai proved that no stapled
sequences exist for any N < 17. We give a new simple proof of this
fact.

There exist several proofs that stapled sequences exist for any
N ≥ 17. We show that existence of stapled sequences is equivalent to
existence of stapling coverings of a sequence of N consecutive natural
numbers by prime arithmetic progressions such that each progression
has at least two common elements with the sequence and discuss prop-
erties of stapling coverings. We introduce the concept of efficiency of
stapling coverings and develop algorithms that produce efficient sta-
pling coverings. Using the result by Erdös, we show that the greatest
prime number used in stapling coverings of length N can be made
o(N).
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1 Introduction

Consider the following problem: for a given N , does there exist a sequence SN
of N successive natural numbers such that no element is relatively prime with
all the others? (We call such sequences stapled.) This problem was originally
suggested by Szekeres [4] and by Pillai [13]. It was extensively studied for
over half a century by Erdös, Pillai, Evans, Brauer, Harborth and others.
Sivasankaranarayana, Szekeres and Pillai proved that no stapled sequences
exist for anyN < 17 [5]. A simpler proof of this fact is presented in this paper.
Pillai [13], Brauer [1], Harborth [10, 11] and Evans[2] proved that for any N ≥
17 there exist stapled sequences of length N , i.e. sequences of consecutive
natural numbers, where each element has a common divisor 1 < d ≤ N with
the product of all the other elements of the sequence. As shown below, this
problem is equivalent to the problem of covering finite sequences of natural
numbers by arithmetic progressions with prime differences. The concept of
efficiency of such coverings is introduced in this paper and constructions
producing efficient stapling coverings are presented.

While Evans’ solution [2] is considered the most elegant proof of the exis-
tence of stapling coverings for N > 16, Brauer’s solution [1] is seemingly the
most efficient one suggested before this paper. Below we describe algorithms
that produce significantly more efficient coverings than those by Brauer. It
is also shown that the greatest prime number used in a in stapling covering
can be made smaller than δN , for any δ > 0, if N is sufficiently large.

2 Definitions

Definition 2.1. A sequence of successive natural numbers (SSN) SN of length
N is called a stapled sequence if for any s ∈ SN ∃s′ ∈ SN , s

′ 6= s, such
that the greatest common divisor (s, s′) > 1.

Definition 2.2. An arithmetic progression A
ap
p = {ap + kp | k ∈ �} (ap ∈

�p) is called a prime congruence if p is prime. (The upper index ap will
be omitted whenever it is not essential).

Denote by pi the i-th prime number.

Definition 2.3. Consider a set of congruences WI = {Api} (I = {i} ⊆ �).
The set T = T (SN ,WI) = {Vi | i ∈ I} where Vi = SN

⋂
Api is called a tiling

of SN by WI . If all pi are distinct primes, T is a prime tiling.
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Obviously, U = U(SN ,WI) =
⋃
i∈I

(SN
⋂
Api) ⊆ SN .

Definition 2.4. A tiling T = T (SN ,WI) is complete if U = SN . A com-
plete tiling is called also a covering of SN by WI .

Definition 2.5. If in a prime covering T (SN ,WI)

| SN
⋂

Api |≥ 2, for any i ∈ I (2.1)

T is called a stapling covering of SN by WI .
If | SN

⋂
Api |≥ n, for any i ∈ I, n ≥ 2, T is called an n-stapling

covering of SN by WI .

Definition 2.6. Consider SN = (s1, s2, . . . , sN ) and a prime tiling T (SN ,WI).
If sri ∈ Api the number ri is called indicator of Api in SN . If hi = h(pi) is
the least number such that shi ∈ Api , hi is the first indicator of Api in SN .
If sr ∈ Ap we say that Ap (or, simply, p) covers sr.

Obviously, a tiling of SN is uniquely determined by the set of its first
indicators {hi | i ∈ I}.

Definition 2.7. Two SSN’s SN and S ′N are equivalent with respect to WI

(SN ∼ S ′N (resp WI)), if for any i ∈ I, hi = h′i, where shi ∈ SN , sh′i ∈ S
′
N .

Example
The shortest, and, seemingly, the first known example of a stapled se-

quence is the sequence of length N = 17 which starts with s1 = 2184 and
ends with s17 = 2200 (we denote it by S = [2184, 2200]). Let us use this
example to illustrate the notation in Defs. 2.1 to 2.7.

The stapling covering of this sequence is given by a set of congruences
WI = {A0

pi
}, where I = {1, 2, 3, 4, 5, 6}, p1 = 2, p2 = 3, p3 = 5, p4 = 7,

p5 = 11, p6 = 13. The first indicators are as follows: h1 = h(2) = 1 (which
means that s1 = 2184 is divisible by 2: s1 = 2184 ∈ A0

2); h2 = h(3) = 1
(s1 ∈ A0

3); h3 = h(5) = 2 (s2 = 2185 ∈ A0
5); h4 = h(7) = 1 (s1 ∈ A0

7);
h5 = h(11) = 6 (s6 ∈ A0

11); h6 = h(13) = 1 (s1 ∈ A0
13).

This stapled sequence is equivalent to the sequence [2184+30030k, 2200+
30030k], k ∈ �, with respect to the same set of congruences, where 30030 is
the least common multiple of 2,3,5,7,11,13.

The same set of first indicators provides stapling covering for any SSN
of length N , but, of course, with shifted prime congruences. In particular,
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stapling covering for the sequence [1,17] is given by A1
2, A

1
3, A

2
5, A

1
7, A

6
11, A

1
13

as shown below

si 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
p1 2 2 2 2 2 2 2 2 2
p2 3 3 3 3 3 3
p3 5 5 5 5
p4 7 7 7
p5 11 11
p6 13 13

3 Properties of Stapled Sequences

Denote by W 0
I a set of prime congruences A0

pi
, such that A0

pi
= kpi, k ∈ �,

i ∈ I, i.e. such that api = 0, i ∈ I. Obviously, if T (S0
N ,W

0
I ) is a stapling

covering, then S0
N is a stapled sequence.

Lemma 3.1. If S0
N is a stapled SSN and T (S0

N ,W
0
I ) is the corresponding

stapling covering, there exists stapling covering T ([1, N ],WI) such that shI =
hi = h0

i for any i ∈ I.

The example given at the end of the Sec. 2 illustrates this lemma. The
position of the first term divisible by pi in a stapled sequence is equal to
the first indicator (i.e. to the “shift” api) of Api in the stapling covering for
[1, N ].

Lemma 3.2. If T (SN ,WI) is a stapling covering, then there exists a stapled
SSN S0

N of length N .

Lemmata 3.1 and 3.2 show that the existence of a stapling covering of
the sequence [1, N ] = (1, 2, . . . , N) is the necessary and sufficient condition
for the existence of a stapled sequence of length N .

If T ([1, N ],WI) is a stapling covering with a set of first indicators {hi},
i ∈ I, then a stapled sequence of length N is SN = (M + 1, . . . ,M + N),
where M satisfies equations:

M + hi ≡ 0 mod pi

.
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Lemma 3.3. SN ∼ S ′N (resp WI) iff s′k ≡ sk ( mod
∏
i∈I

pi) , for all k ∈

[1, N ] = (1, 2, . . . , N ), sk ∈ SN , s′k ∈ S ′N .

Proofs of Lemmata 3.1, 3.2 and 3.3 are given in Appendix A.
Lemmata 3.2 and 3.3 show, in particular, that if for a given N there exists

one stapled sequence, then there exist infinitely many of them.
Note, that if there exists a stapling covering T (SN ,WI), then there exists

its “mirror image”, i.e. stapling covering T ′(SN ,W ′
I) such that if sr ∈ Ap in

T then sN−r+1 ∈ Ap in T ′.

Lemma 3.4. A covering T (SN ,WI) and its “mirror image” T ′(SN ,W ′
I) are

always different.

Proof. Let us show that a covering cannot be symmetric, i.e. cannot be
identical with its mirror image. Indeed, if N is even then s 1

2
N and s 1

2
N+1

cannot be covered by the same primes thus breaking symmetry. If N is odd
and the stapling covering is symmetric, then s 1

2
(N+1) must be covered by all

Ap ∈ WI , where p is odd. Indeed, if both sr and sN−r+1 are covered by
an odd prime p, then sN−r+1 − sr = N + 1 − 2r = 2kp, k ∈ �. Hence,
s 1

2
(N+1)−sr = 1

2
(N+1−2r) = kp, and s 1

2
(N+1) is covered by p. Then s1

2
(N−1)

and s 1
2

(N−3) are not covered by any odd p. But only one of these numbers
can be covered by 2. Thus, symmetric coverings are impossible, which proves
the lemma.

Corollary 3.5. The number of different stapling coverings of length N is
always even.

Proof. Follows immediatedly from Lemma 3.4.

Lemma 3.6. If S2N is a stapled SSN, then there exist S2N+1 and S2N−1

which are also stapled.

Proof. • If there exists stapled S2N , it means that there exists a stapling
covering T ([1, 2N ],WI). If h(2) = 1, then 2N + 1 ∈ A2, and the lemma is
proved. If h(2) = 2, then consider W ′

I = {A′pi} where for each A′pi h
′
i =

hi + 1( mod pi). These progressions form a stapling covering of the sequence
(2, . . . , 2N + 1). Since, obviously, 1 ∈ A′2, ([1, 2N + 1],WI) is a stapling
covering, and a stapled S2N+1 exists.
• Without loss of generality assume that in ([1, 2N ],WI) h(2) = 1. (If

h(2) = 2, consider the “mirror image” of the sequence). Then 2N is covered
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by Ap, where p is an odd prime. If p < N , | [1, 2N − 1]
⋂
Ap |≥ 2. If p ≥ N ,

the only r ∈ Ap, r 6= 2N is odd and, hence, r ∈ A2 and Ap can be removed
from WI . Thus, the number 2N can be deleted without violating the stapling
condition, and stapled S2N−1 exists.

Lemma 3.7. If S2N−1 is a stapled SSN and 2N-1 is prime, there exists S2N

which is also stapled.

Proof. Consider a stapling covering T ([1, 2N − 1],WI). Then a stapling cov-
ering of [1, 2N ] is given by W ′

I , where W ′
I = WI

⋃
{A2N−1}, h(2N − 1) = 1.

Thus, a stapled S2N exists.

Theorem 3.8. There exist no stapled SSN of lengths N ≤ 16.

In other words, any SSN of length N ≤ 16 includes a member relatively
prime with all other members.

Proof. It follows from Lemmata 3.6 and 3.7 that it is sufficient to prove the
theorem for N = 15 and N = 9.

For N = 15, note that if there exists a stapling covering of [1,15] where
a2 = 2, h(2) = 2, then there exists a stapling covering of [2,16] with a2 = 2,
h(2) = 1. Thus it is sufficient to show that no such stapling covering of [2,16]
exists.

Suppose first that a3 = 3. Then each of A5, A7, A11 can cover only one
of the numbers 5,7,11,13, and A13 can cover none. Thus, a3 = 5 or a3 = 7.
Because of “mirror image” symmetry, it is enough to consider a3 = 5. Now,
3,7,9,13,15 remain to be covered, and A5 must cover two of them. Hence
a5 = 3. Then neither 7 nor 9 can be covered by A11 or A13, and both of them
cannot be covered simultaneously by A7, thereby making stapling covering
impossible. Thus no stapling covering of length 15 exists.

For N = 9 it is readily seen that A2 can cover either four or five numbers.
If A2 covers four numbers, then A3, A5 and A7 can cover not more than two
numbers, one number, and one number, respectively, out of five remaining
numbers, thus, leaving one number not covered. If A2 covers five numbers,
then the only way to cover two numbers with A3 is to choose h(3) = 2.
However, since A7 cannot cover 4 or 6, again one number is left not covered.
Thus, stapling coverings do not exist for N = 9, which completes the proof.
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For N = 17 there exist only two different stapling coverings which are
mirror images of each other. One is given by first indicators (1,2,1,3,1,4) (i.e.,
h1 = h(2) = 1, h2 = h(3) = 2, . . . , h6 = h(13) = 4). The other is given by
(1,1,2,1,6,1) (Cf. example in Sec. 2). It follows then, by Lemmata 3.6 and
3.7, that stapling coverings exist for 17 ≤ N ≤ 21. It is remarkable that,
as computer calculations show, it is possible to extend the stapling covering
given by (1,2,1,3,1,4) to the right in order to construct stapling coverings
up to N ≤ 4 · 107, and, most probably, for all larger N . More exactly, the
procedure is the following. We start with stapling covering for S17 ∈ [1, 17]
given by the set of prime congruences with first indicators (1,2,1,3,1,4). At
each step we go from SN = [1, N ] to SN+1 = [1, N+1] and check whether the
last number N + 1 is covered by at least one of the prime congruences used
in the stapling covering of SN . If this is not so, we use the smallest unused
prime number p < N + 1 to cover N + 1 and add the prime congruence Ap

to the set WI . This approach, however, does not work if one starts with the
set of congruences given by first indicators (1,1,2,1,6,1): this set cannot be
extended for N = 25.

In fact, as shown below, stapling coverings exist for all N ≥ 17.

4 Efficient Stapling Coverings

An interesting characteristic of stapling covering is the ratio of the number
| I | of primes used for the covering to the total number π(N) of primes not
exceeding N .

Definition 4.1. The expense ε(T ) of a stapling covering T (SN ,WI) is the

ratio ε(T ) = |I|
π(N )

.
Stapling coverings with expense substantially smaller than 1 are called

efficient.

Another related characteristic is cutoff.

Definition 4.2. The cutoff u(T ) of a stapling covering T (SN ,WI) is the
ratio of the greatest prime pi, i ∈ I to N .

It is easy to see that the coverings with the small cutoff are efficient. It is
an interesting open problem though to show that efficient stapling coverings
can always be transformed into coverings of small cutoff.
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It is worth to note that the simple approach described in the Sec. 3
yields rather efficient stapling coverings for large N . The expense ε(T ) de-

creases with N from π(N)−1
π(N )

= 6
7

for N = 17 to approximately 0.62 for

N = 4 · 107. However, if N is sufficiently large, stapling coverings with sub-
stantialy smaller expense and cutoff become possible. The construction given
by Brauer [1] uses a sequence of integers SN which is symmetric with respect
to zero and achieves u(T ) = 1/2. The use of symmetry, however, may be
inconvenient in some related problems. Therefore, we provide a construction
that yields u(T ) = 1/2 without use of symmetry.

Lemma 4.1. Consider the set Q = {2s3t | s, t ∈ �, 2s3t ≤ N}.
Then | Q |≤ 1

2
log2 N (log3 N − 1) for any N ≥ 9.

Proof of Lemma 4.1 is given in Appendix B.

Theorem 4.2. There exists a stapling covering T = T (SN ,WI) for all N
such that

π(bN
2
c) − π(bN

4
c) ≥ log2 N · log3 N (4.1)

The covering has the property that pi ≤ N
2

for all i ∈ I and lim
N→∞

ε(T ) ≤ 3
8
.

Proof. Let pi be the i-th prime number: p1 = 2, p2 = 3, etc. Consider the
following procedure of covering the sequence SN = (1, 2, . . . , N).

1. hi = pi for all pi ≤ N
4

, pi 6= 2, 3.

2. h1 = h(2) = 1.

3. Denote:

P1 = {pi | 2pi ≡ 1 ( mod 3), N
4
< pi ≤ N

2
}

P2 = {pi | 2pi ≡ 2 ( mod 3), N
4
< pi ≤ N

2
}

D1 = {22k | k ∈ �, 2k ≤ log2 N}
D2 = {22k−1 | k ∈ �, 2k − 1 ≤ log2 N}

Choose

h2 = h(3) =

{
1, if | P1 | + | D1 |≥| P2 | + | D2 |
2, otherwise
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4. hi = pi, if h(3) = 1 and pi ∈ P2, or if h(3) = 2 and pi ∈ P1.

5. Denote: Q = {2s3t | s, t ∈ �, 2s3t ≤ N}
If h(3) = 1, use members of P1 to cover as many as possible members
of D2

⋃
Q.

If h(3) = 2, use members of P2 to cover as many as possible members
of D1

⋃
Q.

(It will be shown below that under condition (4.1) it is possible to cover
all members of D2

⋃
Q or D1

⋃
Q, respectively).

Note that since p ≤ N
2

if p ∈ P1 or p ∈ P2, | SN
⋂
Ap |≥ 2 for any choice

of h(p). As a result, we obtain a prime tiling T (SN ,WI), which satisfies
the stapling condition (2.1). In this tiling, A2 covers all odd numbers, A3

covers all even numbers belonging to 2P1

⋃
D1, if h(3) = 1, or to 2P2

⋃
D2,

if h(3) = 2. All other even numbers, except members of D2

⋃
Q, if h(3) = 1,

or D1

⋃
Q, if h(3) = 2, are covered by “unmoved” prime numbers for which

hi = pi. It remains to show that the set P1 (respectively, P2) is large enough
to cover all members of D2

⋃
Q (respectively, D1

⋃
Q).

Without loss of generality, assume that h(3) = 1 and, thus | P1 | + | D1 |≥
| P2 | + | D2 |. Then | P1 | − | D2 |≥| P2 | − | D1 |. Since | P1 | + | P2 |=
π(bN

2
c)− π(bN

4
c), and | D1 | + | D2 |= blog2 Nc , it follows that

| P1 | − | D2 |≥
1

2
[π(bN

2
c)− π(bN

4
c)− log2 N ] (4.2)

By lemma 4.1,

| Q |≤ log2 N(log3 N − 1)

2
(4.3)

Now, taking into account (4.1), (4.2) and (4.3), we obtain:

| P1 |≥
1

2
[π(bN

2
c)− π(bN

4
c)− log2 N ]+ | D2 |

≥ 1

2
(log2 N log3 N − log2 N)+ | D2 |≥| Q | + | D2 |=| D2

⋃
Q | (4.4)

Thus, condition (4.1) guarantees that the obtained prime tiling is a sta-
pling covering. Since

1

2
[π(bN

2
c)− π(bN

4
c)− log2 N ] ≥ N

4 lnN
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(cf. [12]), condition (4.1) is fulfilled for sufficiently large N . Furthermore,
for large N the expense approaches 3

8
. Indeed, using the Prime Number

Theorem ([12], p.36), we obtain

ε(T ) = |I|
π(N )
≤ 1

π(N)
[π(bN

4
c) + 1

2
(π(bN

2
c)−

π(bN
4
c) + log2 N log3 N)] = 3

8
+ ln 2

2 lnN
+O( ln3N

N
) (4.5)

It follows from the Prime Number Theorem that inequality (4.1) is ful-
filled for all sufficienly large N . Computer test shows that (4.1) is valid for
all N ≥ 2098 and the above algorithm works for all N ≥ 1618.

Corollary 4.3. Stapled sequences of natural numbers exist for all N ≥ 17.

Proof. Follows from the results of Sec. 3 and Theorem 4.2.

The construction given in the Theorem 4.2 can be amended by choosing
properly indicators for other small prime numbers in order to lower expense
and cutoff. However, the same goal can be achieved easier by use of symmetry
(somewhat similar to Brauer’s approach).

Lemma 4.4. Let

G = {x | x = ±2s3t5v, | x |≤ N

2
; s∈�; t, v∈� ∪ 0; x≡2( mod 3)} (4.6)

Then

| G |< 1

3
log2

N

2
log3

N
√

5

2
log5

5N

2
+ 1 (4.7)

Proof of Lemma 4.4 is given in Appendix C.

Theorem 4.5. There exists a stapling covering T = T (SN ,WI) for all N
such that

π(bN
4
c)− π(bN

8
c) ≥ 4

3
log2

N

2
· log3

N
√

5

2
· log5

5N

2
(4.8)

which has the property that pi ≤ N
4

for any i ∈ I and lim
N→∞

ε(T ) ≤ 7
32

.
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Proof. Let p be a prime number, p ≤ N . Consider the following procedure
of covering the sequence

SN = (−bN − 1

2
c,−bN − 1

2
c+ 1, . . . ,−1, 0, 1, . . . , bN

2
c). (4.9)

1. Choose: a2 = 1; a3 = 1.

2. Denote:

P = {p | N
8
< p ≤ N

4
}

Ra5 = {p | {2p,−2p} ⊂ A1
3 ∪ Aa5

5 ,
N
8
< p ≤ N

4
}

Since for any p either 2p or −2p is covered by A1
3, and the other element

of the pair {2p,−2p} belongs to one of the sets Ra5 (a5 = 1, 2, 3, 4),⋃
a5

Ra5 = P , and, therefore, there exists a5 = b, such that

| Rb |≥
1

4
| P |= 1

4
[π(bN

4
c)− π(bN

8
c)] (4.10)

Choose a5 = b;

Note that now all primes belonging to Rb are free, that is, all their
multiples belonging to SN are covered by other prime congruences.
Therefore these primes can be shifted to cover other numbers.

3. Let

H = {x | x = ±2s3t5v; s, t, v ∈ � ∪ 0; | x |≤ N/2; x /∈ A1
2 ∪A1

3 ∪Ab
5}

Members of H remain not covered after 2, 3, and 5 have been shifted.
Fortunately, this set is rather small: it is not difficult to show that

| H |≤| G | −1 for any N ≥ 16 (4.11)

Hence, by lemma 4.4,

| H |< 1

3
log2

N

2
· log3

N
√

5

2
· log5

5N

2
(4.12)
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Since π(N) ∼ N
lnN

, by the Prime Number Theorem, for sufficiently
large N ,

| Rb |≥
1

4
[π(bN

4
c)− π(bN

8
c)] ≥ 1

3
log2

N

2
· log3

N
√

5

2
· log5

5N

2
>| H |

(4.13)

4. Choose D ⊆ Rb such that | D |=| H | and let f : D→ H be a bijection.
Take ap = q, where q = f(p), if p ∈ D, and ap = 0 for all p ≤ N

4
,

p /∈ D ∪ {2, 3, 5}.
As a result, we have obtained a stapling covering of the sequence SN
(4.9) which uses only prime numbers p ≤ N

4
.

Since

lim
N→∞

| H |
π(N)

= 0, lim
N→∞

| Rb |
π(N )

≥ 1

32
, and lim

N→∞

π(N
4

)

π(N)
=

1

4
,

it follows that lim
N→∞

ε(N) ≤ 7
32

.

As seen from 4.13 this algorithm works for all N such that

π(bN
4
c)− π(bN

8
c) ≥ 4

3
log2

N

2
· log3

N
√

5

2
· log5

5N

2
(4.14)

The constructions given in Theorems 4.2, 4.5 can generate exponentially
large (in N) number of different stapling coverings.

In the first draft of this paper the author conjectured, that for any δ >
0 there exist stapling coverings that do not use moduli greater than δN .
According to P. Erdös [7] this is indeed true and follows from his theorem in
[6]. We quote the theorem here:

Theorem 4.6. For a certain positive constant c2, we can find c2pn log pn/(log log pn)2

consecutive integers so that no one of them is relatively prime to the product
p1p2 · · · pn, i.e. each of these integers is divisible by at least one of the primes
p1, p2, · · · , pn.
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(Here log stands for the natural logarithm).

Using this fact it can be readily proved that our conjecture holds, i.e. the
following theorem is true:

Theorem 4.7. For every δ > 0 there exists N(δ) such that for any N >
N(δ) there is a stapled sequence of length N which has a stapling covering
with the largest modulus less than δN .

Proof. Let pm be the smallest prime such that

(ln ln pm)2

c2 ln pm
≤ δ

2
(4.15)

Denote

bc2pm ln pm
(ln ln pm)2

c = N(δ) (4.16)

Let N > N (δ), and pn be the smallest prime such that

c2pn ln pn
(ln ln pn)2

≥ N (4.17)

Then, pn > pm, and, therefore, pn−1 ≥ pm. Since
(ln ln pi)

2

c2 ln pi
decreases

monotonically as pi grows, it follows from (4.15) that

(ln ln pn−1)2

c2 ln pn−1

≤ δ

2
(4.18)

Hence, by (4.17),

pn−1 ≤
δN

2

.
As well known, pn < 2pn−1. Thus, pn < δN .
It follows from (4.17) and theorem 4.6 that there exists a sequence SN

of N consecutive natural numbers such that each of them is divisible by at
least one of the primes p1, p2, . . . , pn. Thus, SN is a stapled sequence with
the cutoff u < δ.
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This result, however, does not provide an efficient algorithm for construct-
ing such a sequence.

In fact, it is possible, by a slight modification of the proof (namely, choos-

ing pm such that (ln ln pm)3

c2 ln pm
≤ δ

2
), to prove that pn ≤ O( N

ln lnN
).

Corollary 4.8. For any n ∈ � there exists N(n) such that for any N >
N(n) there exists an n-stapling covering.

Proof. Take δ = 1
n
. Then the result follows from Theorem 4.7.

Theorem 4.7 provides a basis for a stronger and more general result ob-
tained in [8].

5 Open Problems

The concepts of stapled sequences and stapling coverings introduced and
discussed above lead to some unsolved problems, as follows.

1. What is the exact relationship of cutoff and expense? Can we find a
function f(ε) = min

ε(T )=ε
u(T ) and an algorithm that allows us to transform

a stapling covering of a given expense into a stapling covering with the
cutoff u(T ) = f (ε)?

2. Do there exist constructions for efficient stapling coverings of any cutoff
u(T ) > 0 that start working for reasonable values of N? For example,
the construction obtained using Erdös’ result, even for u(T ) = 0.5,
starts working only for values of N > 101000. The algorithm in this
paper provides such construction for the values of u(T ) = 7

32
+ ε that

starts working for N of order of 104, but its generalization for any
u(T ) > 0 seems to be cumbersome.
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Appendix

A Proofs of Lemmata 3.1, 3.2, 3.3.

Lemma 3.1. If S0
N is a stapled SSN and T (S0

N ,W
0
I ) is the corresponding

stapling covering, there exists stapling covering T ([1, N ],WI) such that shi =
hi = h0

i for any i ∈ I, shi ∈ [1, N ].

Proof. Let S0
N = (s0

1, s
0
2, . . . , s

0
N), h0

i be the first indicator of A0
pi

in S0
N .

Since T (S0
N ,W

0
I ) is a stapling covering, s0

h0
i+pi
∈ S0

N , hence h0
i + pi ≤ N .

Consider now WI = {Api}, where Api = {h0
i + mpi},m ∈ �. Obviously

h0
i ∈ Api, h0

i + pi ∈ Api and h0
i + pi ≤ N for any i ∈ I. Moreover, since for

any k ∈ [1, N ] there exists A0
pi

such that s0
k = s0

ri
∈ A0

pi
, it follows that k =

ri ∈ Api . Thus T ([1, N ],WI) is a stapling covering and shi = hi = h0
i , i ∈ I

are the first indicators.
Lemma 3.2. If T (SN ,WI) is a stapling covering, then there exists a

stapled SSN S0
N of length N .

Proof. Let Api = {api +mpi}, where api ∈ �pi , m ∈ �, i ∈ I . Take number
M ∈ �, such that M ≡ −api ( mod pi) for any i ∈ I. Such a number exists
according to the Chinese Remainder Theorem. Let s0

k = sk+M (k ∈ [1, N ])
and define S0

N as S0
N = (s0

1, s
0
2, . . . , s

0
N ). Obviously, if sk ∈ Api, then s0

k ∈ A0
pi

for any k ∈ [1, N ] and for any i ∈ I . Hence, T (S0
N ,W

0
I ) is a stapling covering

and hi = h0
i for any i ∈ I. Thus, S0

N is a stapled SSN of length N .

Lemma 3.3. SN ∼ S′N (resp WI) iff s′k ≡ sk ( mod
∏
i∈I

pi) , ∀k ∈

[1, N ] = (1, 2, . . . , N ), sk ∈ SN , s′k ∈ S ′N .

Proof. If s′k ≡ sk ( mod
∏
i∈I

pi) , then, obviously, sk ∈ Api iff s′k ∈ Api.

Thus, hi = h′i for any i ∈ I. Conversely, if hi = h′i for any i ∈ I, then
shi ≡ s′hi( mod pi) for any i ∈ I . Since sk − shi = s′k − s′hi = k − hi for any



the electronic journal of combinatorics 3 (1996), #R33 17

k ∈ [1, N ], it follows that s′k ≡ sk( mod pi) for any i ∈ I , and, therefore,

s′k ≡ sk( mod
∏
i∈I

pi).

B Proof of Lemma 4.1.

Lemma 4.1. Consider the set Q = {2s3t | s, t ∈ �, 2s3t ≤ N}.
Then | Q |≤ 1

2
log2 N (log3 N − 1) for any N ≥ 9.

Proof Obviously,

| Q |=
v∑

k=1

blog2

N

3k
c, (B.1)

where v = blog3 Nc
Let

log2

N

3k
− blog2

N

3k
c = ε, (B.2)

and

log2

N

3k+1
− blog2

N

3k+1
c = δ, (B.3)

where 0 ≤ ε < 1, 0 ≤ δ < 1.
Suppose 2m ≤ N

3k
< 2m+1.

Then

log2

N

3k2m
= ε,

and

δ = log2

N

3k+12m−h
= ε− log2 3 + h,

where h is an integer such that 0 ≤ δ < 1. Hence, if ε ∈ [0, log2 3− 1), then
h = 2; if ε ∈ [log2 3− 1, 1), h = 1. Thus

δ =

{
2 + ε− log2 3, 0 ≤ ε < log2 3− 1
1 + ε− log2 3, log2 3− 1 ≤ ε < 1

(B.4)
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It is easy to infer from (B.4) that min
0≤ε<1

(ε+ δ) = 2− log2 3.

Therefore,

v∑
k=1

(log2

N

3k
− blog2

N

3k
c) ≥ bv

2
c(2− log2 3) (B.5)

On the other hand,

v∑
k=1

log2

N

3k
= v(log2 N −

v + 1

2
log2 3)

Denote: log3 N − v = α. Then

v∑
k=1

log2

N

3k
=

1

2
log2 N log3 N −

1

2
log2 N + (

α

2
− α2

2
) log2 3 (B.6)

But 1
2

log2 3α(1− α) ≤ 1
8

log2 3. Hence,

v∑
k=1

log2

N

3k
≤ 1

2
log2 N (log3 N − 1) +

1

8
log2 3 (B.7)

From (B.5) and (B.7), we obtain:

v∑
k=1

blog2

N

3k
c ≤ 1

2
log2 N(log3 N − 1)− bv

2
c(2− log2 3) +

1

8
log2 3 (B.8)

Finally, for v ≥ 2, i.e. for N ≥ 9, it follows that

| Q |≤ log2 N(log3 N − 1)

2
(B.9)

which proves Lemma 4.1.
Further analysis of expressions (B.5) and (B.6) allows us to obtain a

stronger inequality:

| Q |≤
{

1
2
[log2 N(log3 N − 2) + log3 2− log2 3] if blog3 Nc is even

1
2
[log2 N(log3 N − 2) + log3 2− log2 3] + 1 if blog3 Nc is odd
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C Proof of Lemma 4.4.

Lemma 4.4 Let

G = {x | x = ±2s3t5v, | x |≤ N

2
; s∈�; t, v∈� ∪ 0; x 6≡1 ( mod 3)} (C.1)

Then

| G |< 1

3
log2

N

2
log3

N
√

5

2
log5

5N

2
+ 1 (C.2)

Proof Denote Z(n) = {±2s3t | 2s3t ≤ n;n, s, t ∈ �} ∪ Y (n), where
Y (n) = {y | y = ±2s, | y |≤ n, s ∈ �, y ≡ 2( mod 3)}.

Since exactly one of two numbers, 2s or−2s, belongs to Y (n), |Y (n) | = b log2 n c.
By Lemma 4.1,

| Z(n) |≤ log2 n(log3 n− 1) + blog2 nc ≤ log2 n log3 n (C.3)

By Lemma 4.1, (C.3) is valid for n ≥ 9. However, direct checking shows that
(C.3) is valid for all n ≥ 3. For n = 2, |Z(2)| − log2 2 log3 2 = 1− log3 2.

Obviously,

| G |=
w∑
k=0

| Z(b N

2 · 5k c) |≤
w∑
k=0

log2

N

2 · 5k log3

N

2 · 5k + 1− log3 2, (C.4)

where w = blog5
N
2
c.

Consider the integral∫ log5
N
2

0

log2 5 log3 5(log5

N

2
− x)2 dx =

1

3
log2

N

2
log3

N

2
log5

N

2
(C.5)

On the other hand,∫ log5
N
2

0

log2 5 log3 5(log5

N

2
− x)2 dx =

w∑
k=0

∫ k

k−1

N

2
log2 5 log3 5(log5

N

2
− x)2 dx+

∫ log5
N
2

w

log2 5 log3 5(log5

N

2
− x)2 dx =

w∑
k=0

[log2

N

2 · 5k log3

N

2 · 5k + log2 5 log3

N

2 · 5k

+
1

3
log2 5 log3 5 +

1

3
log2 5 log3 5(log5

N

2
− w)3 (C.6)
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It follows from (C.3),(C.4), and (C.6), that

| G | ≤ 1

3
log2

N

2
log3

N

2
log5

N

2
+ log2

N

2
log3

N

2
− w(log3

N

2
− w + 1

2
log3 5) log2 5

−w
3

log2 5 log3 5− 1

3
log2 5 log3 5(log5

N

2
− w)3 + 1− log3 2 (C.7)

Denote log5
N
2
− w = β; 0 ≤ β < 1. Then

| G | ≤ 1

3
log2

N

2
log3

N

2
log5

N

2
+

1

2
log2

N

2
log3

N

2
+

1

6
log2

N

2
log3 5−

log2 5 log3 5(
1

6
β − 1

2
β2 +

1

3
β3) + 1− log3 2 (C.8)

It is easy to show that

min
0≤β<1

(
1

6
β − 1

2
β2 +

1

3
β3) = − 1

36
√

3
(C.9)

Thus

| G | ≤ 1

3
log2

N

2
log3

N
√

5

2
log5

5N

2
+

log2 5 log3 5

36
√

3
+ 1− log3 2

<
1

3
log2

N

2
log3

N
√

5

2
log5

5N

2
+ 1, (C.10)

which proves Lemma 4.4.


