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Abstract. For any odd prime power q we first construct a certain non-linear
binary code C(q, 2) having (q2 − q)/2 codewords of length q and weight (q − 1)/2
each, for which the Hamming distance between any two distinct codewords is in the
range [q/2 − 3

√
q/2, q/2 + 3

√
q/2] that is, ‘almost constant’. Moreover, we prove

that C(q, 2) is distance-invariant. Several variations and improvements on this
theme are then pursued. Thus, we produce other classes of binary codes C(q, n),
n ≥ 3, of length q that have ‘almost constant’ weights and distances, and which,
for fixed n and big q, have asymptotically qn/n codewords. Then we prove the
possibility of extending our codes by adding the complements of their codewords.
Also, by using results on Artin L−series, it is shown that the distribution of the 0’s
and 1’s in the codewords we constructed is quasi-random. Our construction uses
character sums associated with the quadratic character χ of Fqn in which the range
of summation is Fq. Relations with the duals of the double error correcting BCH
codes and the duals of the Melas codes are also discussed.

1991 AMS Subject Classification :
Primary 11T71
Secondary 11T23, 94B27

Typeset by AMS-TEX



��� ��������	� 
������ �
 ����	�����	�� �������� � �� 2

1. Introduction

In the present paper we shall first construct, for any odd prime power q, a
nonlinear constant weight code C(q, 2) with (q2−q)/2 codewords, with the property
that each nonzero distance lies in the interval[

q

2
− 3

2
√
q ,

q

2
+

3
2
√
q

]
In constructing such codes we shall use character sums associated with the quadratic
character χ of Fq2 , in which the range of summation is Fq. Sums of this type were
considered, for example, by Davenport [5]. He shows, for example, that if θ is any
element generating the finite field Fpk over its prime subfield Fp and if χ is the
quadratic character of Fpk , then

p−1∑
t=0

χ(θ+ t) = O
(
p

2k+1
2k+2

)
In fact, Weil’s theorem shows that the right-hand side of the above estimate can be
sharpened to O(

√
p). For references on Weil theorem and related topics (including

algebraic geometric codes), one may consult [2], [5], [6], [8], [10], [12], [13], [15].
Other authors have considered as well combinatorial consequences of various results
concerning the distribution of the values taken by a multiplicative character of a
finite field on a coset of a certain subfield. See, for example, [3]. In the third section
of the paper we provide an extension of the basic construction, the result of which
will be, for any n > 2, a class of codes C(q, n) with similar properties as C(q, 2),
but only with an ‘almost’ constant weight for their codewords.

Note that whenever we take off the first row and the first column of a normalized
Hadamard matrix of order 4t, the set of all the rows of the remaining matrix can
be seen (by replacing each occurrence of a −1 with 0) as a nonlinear code of length
n = 4t− 1 having a constant weight [n/2] = 2t− 1, for which the distance between
two distinct codewords is d = 2t. It is well known [1], [9] that the case 4t− 1 = q
a prime power will do the job, and thus in this case one can find nonlinear codes
of length q, constant weight (q − 1)/2 and constant distance (q − 1)/2, having q
codewords. A natural question will be, then, what will happen would we give up
the requirement for having a constant distance, by permitting a ‘small variation’
of the parameter d, while keeping a constant weight, say [n/2], for the codewords.
Our study of the codes C(q, 2) provides a partial answer to this in a special case.
Thus, whenever q is an odd prime power, we obtain the lower bound (q2− q)/2 for
the maximum number of codewords in a code of length q, constant weight (q−1)/2
and nonzero distances within the range [q/2−3

√
q/2, q/2+ 3

√
q/2]. In particular,

A(q, q/2 − 3
√
q/2) ≥ (q2 − q)/2, where A(n, d) is the maximum number of binary

codewords of length n and minimum distance d. One might want to compare
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this with the Plotkin upper bound A(4t, 2t) ≤ 8t, which is attained whenever a
Hadamard matrix of order 4t exists.

Thinking probabilistically, one could see a codeword in C(q, n) as a ‘random
subset’ of Fq or, equally, as the output of an experiment of randomly and inde-
pendently selecting elements of Fq, the probability of choosing a particular one
being 1/2 + O(1/

√
q), the implied constant depending only on n. Any two such

experiments are ‘almost independent’ , in the sense that the probability of a given
element of Fq to be selected by each of the two such fixed experiments is in the
range 1/4 +O(1/

√
q). If we consider C(q, 2), we see that in fact we get an explicit

example of (q2 − q)/2 ‘almost independent’ random subsets of Fq, while for fixed
n and big q the number of codewords in C(q, n) grows asymptotically like qn/n.
One can further improve by adding the complementary codewords. All these facts
might be useful in statistics.

In the fourth section of the paper we shall prove the ‘quasi-random’ character
[4] of the distribution of the 0’s and 1’s in the codewords of the constructed binary
codes, by making use of exponential sums estimates coming from classical results
on Artin L−series. Also, we shall prove that the codes C(q, 2), although nonlinear,
are distance invariant.

In the last section we will consider first the problem of extending the codes C(q, 2)
and C(q, n) by adding the complementary codewords. Then we will establish a
connection with the binary codes belonging to two known classes, namely that of
the duals of the double error correcting BCH codes, and that of the duals of the
Melas codes.

2. The basic construction

Let q be an odd prime power. We may choose j in Fq2 with Fq2 = Fq(j)
and a minimal equation over Fq of the form j2 = s, where s ∈ F∗q − (F∗q)

2. Let
χ : F∗q2 → {−1, 1} be the quadratic (Legendre) character. Obviously, the restriction
of χ to F∗q is trivial, every element of Fq being a square in Fq2 . To every element
x ∈ Fq2−Fq we associate a 0−1 vector Vx indexed by the elements of Fq : namely
we will define

(1) Vx(t) :=
1
2

(1 + χ(x+ t))

That is, Vx(t) is 1 if x+ t is a square and 0 elsewhere. We have defined, in fact, a
binary code of length q, which we will denote by C(q, 2). Natural questions arise
consequently. How many distinct codewords do appear in this way ? What can
we say about their weights ? How can we estimate the Hamming distance between
two codewords ? We will show how all the above questions can be pretty fairly
answered provided we use the relation (2) below expressing the Hamming distance
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d(Vx, Vy) between the codewords Vx and Vy as a character sum. First, let us note
the (obvious) fact that

d(Vx, Vy) =
1
2

∑
t∈Fq

|χ(x+ t)− χ(y + t)|

As |a− b| = 1− ab for every a, b ∈ {−1, 1}, one easily finds out that

(2) d(x, y) =
1
2

q −∑
t∈Fq

χ[(x+ t)(y + t)]


We need an explicit condition under which d(Vx, Vy) = 0. This will be provided by
the next proposition.

PROPOSITION 1. For every x, y ∈ Fq2 − Fq, d(Vx, Vy) = 0 if and only if
y = x or y = x.

PROOF. We agree to denote the Frobenius action by by z := a− bj = zq for
every z = a + bj ∈ Fq2 − Fq. Then, it is easy to see that for every such z, one
has d(Vz, Vz) = 0. We need now to prove the converse. Let us denote by ψ the
quadratic character of Fq. It is a well known fact that the relation between ψ and
its canonical ‘lifting’ χ is given by

(3) χ(z) = ψ(Nz)

for every z ∈ F∗q2 , where Nz = zz = z1+q is the usual norm map from Fq2 to Fq
Let x, y ∈ Fq2 −Fq two distinct elements. Suppose that the relation

χ(x+ t) = χ(y + t)

holds for every element t of Fq. Eventually we have to prove that x and y are
Frobenius conjugate. By using (3), we can rewrite this as

ψ((x+ t)(x+ t)) = ψ((y + t)(y + t))

or, equivalently,
ψ[(x+ t)(x+ t)(y + t)(y + t)] = 1

for any t in the base field. We now recall the celebrated ‘Riemann Hypothesis’ for
algebraic curves over finite fields, first proved by Hasse [7] for elliptic curves, then,
in the general case, by Weil [15]. Thus, the number N of Fq−rational points on a
genus 1 curve defined over Fq satisfies the inequality

|N − (q + 1)| ≤ 2
√
q

Let us return now to our proof. From our assumptions it follows that the polynomial

P (X) = (X + x)(X + x)(X + y)(X + y)
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is separable (i.e., it has distinct roots). Moreover, we assumed that P (t) is a square
in F∗q for every t in Fq. In other words the genus 1 curve defined over Fq by the
equation

(4) Y 2 = P (X)

has 2q finite Fq−rational points. One can view geometrically the equation (4) as
a two-sheeted covering of P1, ramified in four finite places, corresponding to the 4
linear factors of P (X). The place at infinity of P1 is not ramified, so our curve (4)
has two more rational points ‘at infinity’, adding up to a total of N = 2q + 2 Fq–
rational points. Now, we only have to apply the above stated Hasse−Weil theorem
implying in this special case that q + 1 ≤ 2

√
q, or q = 1, an obvious contradiction.

This concludes the proof. �

COROLLARY 2. C(q, 2) has (q2 − q)/2 codewords. �

Next we will prove that the codewords of C(q, 2) have constant weights.

PROPOSITION 3. The weight of each codeword in C(q, 2) is (q − 1)/2.

PROOF. The weight wt(Vx) of Vx can be expressed as

wt(Vx) =
1
2

q +
∑
t∈Fq

χ(x+ t)

 =

=
1
2

q +
∑
t∈Fq

ψ[(x+ t)(x+ t)]


Taking into account the well known exact estimates of the complete character sums
with quadratic polynomial argument [8] the result follows at once. �

We will now prove how the Weil estimates for character sums with polynomial
argument (see [8], chapter 5, theorem 5.41) imply that the Hamming distance be-
tween two distinct codewords of C(q, 2) is, as announced, ‘almost’ constant .

PROPOSITION 4. The Hamming distance between two distinct codewords
Vx and Vy of C(q, 2) lies in the interval[

q

2
− 3

2
√
q ,

q

2
+

3
2
√
q

]

PROOF. One can write

d(Vx, Vy) =
1
2

q −∑
t∈Fq

ψ(P (t))


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where P (X) = (X + x)(X + x)(X + y)(X + y) is a polynomial in Fq[X] which
factors over Fq as a product of two distinct monic irreducible polynomials. The
number of its distinct roots is d = 4 and, by Weil’s theorem we get∣∣∣d(Vx, Vy)− q

2

∣∣∣ ≤ 3
2
√
q

This concludes the proof. �

NOTE. We certainly can define, in fact, a 0 − 1 vector Vx for any element
x ∈ Fq2 . Provided we agree that χ(0) := 1 (fact which we tacitly assume in the
next section), it becomes clear that for any x ∈ Fq the associated vector Vx is the
constant vector whose all components are 1. We avoided to do this as we planned
to provide an example of a constant weight code. However, defining a Vx for every
x will prove to be fruitful in the next paragraph, when we shall generalize the codes
C(q, 2).

3. Higher dimensional analogues

We now try to define higher dimensional analogues C(q, n) of the codes C(q, 2).
The idea is as follows: instead of working with a quadratic extension of finite fields
we shall choose to adapt the previous construction to an extension of arbitrary
degree Fqn/Fq. Thus, we will be able to construct for every n ≥ 2 and each odd
prime power q a nonlinear code C(q, n). Unfortunately, if n > 2, C(q, n) will prove
to be only an ‘almost’ constant weight code. Let χ be now the quadratic character
of Fqn (n > 2) and x be an element of Fqn . One may use the same relation (1)
in order to define a 0− 1 vector Vx indexed by the elements of Fq. The Hamming
distance between two such vectors has exactly the same formal expression (2). We
easily check that d(x, x) = 0 where x = xq represents the Frobenius action. Thus
the vectors Vx are the same along any Frobenius orbit. The basic problem is whether
we have any other identifications. Notice that a relation similar to (3) holds here,
the only difference being that the norm is given now by N (z) = z1+q+q2+...+qn−1

for every z in Fqn .

Let x ∈ Fqn . Then we have the obvious polynomial identity:

(5) N (X + x) = P (X)n/e

where P (X) is the minimal polynomial of −x over Fq, e is its degree, and

N(X + x) = (X + x)(X + xq)(X + xq
2
)...(X + xq

n−1
)

is the characteristic polynomial of −x over Fq.
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Now, if x, y ∈ Fqn , P (X), Q(X) ∈ Fq[X] are the minimal polynomials over Fq
of −x,−y, respectively, with the corresponding degrees e and g, say, then one can
write down the Hamming distance d(Vx, Vy), by using (5), as follows:

(6) d(Vx, Vy) =
1
2

q −∑
t∈Fq

ψ[P (t)n/eQ(t)n/g]


Here ψ has the same meaning as before: it represents the quadratic character of
Fq, whose lifting to Fqn is χ.

PROPOSITION 5. Vx is a vector with all the components 1 whenever n/e
is even, where e represents the degree of the minimal polynomial of x over Fq.

PROOF. The weight of Vx will be given by

wt(Vx) =
1
2

q +
∑
t∈Fq

ψ[N(x+ t)]

 =

(7) =
1
2

q +
∑
t∈Fq

ψ[P (t)n/e]


where P (X) ∈ Fq[X] is the minimal polynomial (of degree e) of −x over Fq.
Thus, whenever n/e is even, the corresponding Vx is is the constant 1 vector. An
alternative but more elementary solution runs as follows. As n/e = [Fqn : Fq(x)],
we see that whenever n/e is even all the elements having the form x + t for some
t in Fq belong to a field Fq(x) for which Fqn is an extension of even degree, and
consequently they are squares in Fqn . �

The following question pops up naturally: are there any other situations (besides
the ones described above) in which two such binary vectors Vx and Vy coincide ?

Indeed , let us suppose that x and y represent two different Frobenius orbits, and
that n/e and n/g are not both even. Then −x, −y are also in distinct Frobenius
orbits, their minimal polynomials, P (X) and Q(X) respectively are distinct, and
consequently the polynomial

H(X) = P (X)n/eQ(X)n/g

has e+g distinct roots. Also it is easy to see that H(X) is not, in this case, a square
of some other polynomial. All we need to is to apply now the Weil estimates. By
using them we see that

(8)

∣∣∣∣∣∣
∑
t∈Fq

ψ(P (t)n/eQ(t)n/g)

∣∣∣∣∣∣ ≤ (e+ g − 1)
√
q
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Because obviously e, g ≤ n, we find, from (8):∣∣∣∣∣∣
∑
t∈Fq

ψ(P (t)n/eQ(t)n/g)

∣∣∣∣∣∣ ≤ (2n− 1)
√
q

It is now clear that the 0 − 1 sequences corresponding to the Frobenius orbits
through x and y are distinct provided that q > (2n−1)2. More generally, the 0−1
vectors associated to distinct Frobenius orbits of cardinalities e and g, respectively
(certainly e and g are divisors of n), at least one of the numbers n/e, n/g being
odd, are distinct as long as q > (e + g − 1)2. Under the condition q > (2n − 1)2,
the set of all 0 − 1 words having the form Vx for some x ∈ Fqn and which are
not constant 1 vectors will form a nonlinear code which we will denote by C(q, n).
These represent the obvious generalization of the codes C(q, 2) introduced in the
previous section. We are naturally led to the following theorem.

THEOREM 6. If q > (2n−1)2, a 0−1 vector Vx has all the components equal
to 1 if and only if [Fqn : Fq(x)] is even. The Hamming distances between distinct
codewords of C(q, n) are of the form q/2 +O(

√
q). The weight of any non-constant

codeword Vx is ‘almost’ constant, being on the form q/2 +O(
√
q). All the implied

constants depend only on n. �

If, for example, n is odd and q > (2n − 1)2 then the number of codewords in
C(q, n) coincides with the number of all Frobenius orbits of Fqn/Fq. At the other
extreme, let us consider the case of 2−extensions, that is the case in which n is a
power of 2, so let n = 2k and q > (2n− 1)2. Then any two Frobenius orbits which
are both non-maximal (i.e., this is the case when both of them have less than 2k

elements) give rise to the same codeword of C(q, n). More generally, under the
assumptions of the previous theorem, the number of codewords in C(q, n) equals
the number of those Frobenius orbits in Fqn/Fq whose ‘co-cardinality’ n/e is odd.

NOTE. We have seen that under the restrictive condition

(9) q > (2n− 1)2

a 0−1 vector Vx has all the components 1 if and only if [Fqn : Fq(x)] is even. The ‘if’
part doesn’t require any condition while the converse holds under the assumption
(9). Can we drop (9) completely ? We shall show by an example that this cannot
be done in general. Indeed, let us consider a fixed prime power q, while n will
be chosen to be odd. If n is big enough, one can find an element x for which the
corresponding Vx has all the components equal to 1. Indeed let M be the number
of the elements x ∈ Fqn for which the quadratic character χ takes the value 1
on each element of the form x + t with t in Fq. There is a classical result on
the distribution of quadratic residues in finite fields [12], to the effect that, given
ε1, ε2, ...εn in {−1, 1}, and n distinct field elements a1, a2, ..., an, then the number
N(ε1, ε2, ...εn) of elements x in Fq (q odd) having the property that

χ(x+ ai) = εi
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for any i = 1, 2, ..., n is estimated as

N(ε1, ε2, ...εn) =
q

2n
+O (n

√
q)

where the implied constant is absolute. Thus, M is given by a formula of the type

M =
qn

2q
+O(qn/2+1)

For some big enough n, M will be nonzero, and consequently one could find an x
for which Vx is a constant 1 vector.

4. Quasi-randomness and distance-regularity

We refer here to the the paper [4] in which the concept of quasi-randomness is
discussed in connection with the residue class rings Zn. There the authors provide
a list of ten equivalent definitions for what are called ‘quasi-random subsets of Zn’.
Here we shall use their exponential sum characterization. Namely, suppose we are
able to define, for every n belonging to an infinite set of positive integers, a certain
subset Sn ⊂ Zn. We shall say that this produces a sequence quasi-random subsets
within the respective residue class rings if for any j 6= 0 in Zn we have the estimate∑

x∈Sn

exp (2πijx/n) = o(n)

As a nice example, it is proved [4] by a Gaussian sum argument that the perfect
squares within the finite prime fields form quasi-random subsets.

Obviously, the above definition has a formal analogue for finite fields. Thus, if we
are able to define, for every q belonging to an infinite set of prime powers, a certain
subset Sq ⊂ Fq, we shall agree to say that the subsets we define are quasi-random
within the respective finite fields if, in whatever way we choose nontrivial additive
characters ω of the corresponding finite fields, the following estimate holds:∑

x∈Sn

ω(x) = o(q)

Let’s now go back to our codes. We can associate to any codeword Vx in C(q, n)
a certain subset S(q;x) of Fq in a very simple way: an element t will be in S(q;x)
whenever x + t is a square in Fqn , that is, whenever the codeword Vx has an 1
on the position indexed by the element t. In what follows the parameter n will
be considered to be fixed. We shall prove that the subsets defined above are, in
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the sense we agreed on above, quasi-random. In order to do so we use traditional
results on Artin L−series in order to estimate exponential sums of the type

(10)
∑

t∈S(q;x)

ω(t)

where ω are nontrivial additive characters of the finite fields in case. Indeed one
obviously has the following estimates:

∑
t∈S(q;x)

ω(t) =
1
2

∑
t∈Fq

[1 + χ(x+ t)]ω(t) +O(1) =

=
1
2

∑
t∈Fq

[1 + ψ(P (t))]ω(t) +O(1) =
1
2

∑
t∈Fq

ψ(P (t))ω(t) +O(1)

As before, we have denoted with P (X) ∈ Fq[X] the degree n characteristic polyno-
mial of −x over Fq, while ψ is the quadratic character of Fq. The classical estimate
for this type of exponential sums follows as a corollary of well known results on
Artin L−series [12]. Thus, we find that the absolute value of (10) is bounded from
above by n

√
q/2 + O(1). This concludes the proof of the quasi-random character

of the above defined subsets S(q;x). Thus, a codeword in C(q, n) can ‘safely’ be
seen as a ‘random subset’ of Fq or, equally, as the output of an experiment of ran-
dom and independent selection of elements of Fq, the probability of picking up a
particular one being 1/2 + O(1/

√
q). ¿From theorem 6 we find that these experi-

ments are ‘almost independent’ in the sense that the probability of a given element
of Fq to be selected by each of the two such fixed experiments is in the range
1/4+O(1/

√
q). The implied constants depend only on n. Thinking at C(q, 2) only,

we see that in fact we managed to construct an explicit example of (q2 − q)/2 such
‘almost-independent’ random subsets of Fq, each one having (q − 1)/2 elements.
By appropriately modifying of the ‘O’ constants, the codes C(q, n) will provide, for
fixed n and big q, examples of roughly qn/n such ‘random subsets’. This can be
further improved, if we consider the extensions of the codes C(q, n) by adding the
complements of their codewords (see the next section).

We turn now to the codes C(q, 2) in order to prove that they are distance invari-
ant, that is, for any positive integer k, the number of codewords at the distance k
from a given codeword Vx depends only on k and not on x (this holds, for example,
for every linear code). The proof of this fact is easy. Indeed, let x, y be two ele-
ments of Fq2 −Fq which are not Frobenius conjugate. Then, one can find elements
a, b ∈ Fq with the property that ax + b = y. For any codeword Vz, z ∈ Fq2 − Fq
at a Hamming distance k from Vx, we make correspond the codeword Vaz+b, which
will follow to be at a Hamming distance k from Vy. To see this, we use a property
of the distance d which follows easily from the definition. Namely, for any x, z in
Fq2 −Fq and any a, b in Fq, one has

d(Vx, Vz) = d(Vax+b, Vaz+b)
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Easy to see that the correspondence

Vz → Vaz+b

is the desired bijection. This concludes the proof of the distance invariance for the
codes C(q, 2). Incidentally we have found a permutation group consisting of affine
transformations which preserves the Hamming distances between the codewords of
C(q, 2).

5. Further comments

The following question arises naturally : what about if we try to enlarge the codes
C(q, 2) by adding the complements of their codewords ? Obviously, for x ∈ Fq2−Fq
and t ∈ Fq, the ‘t−th’ component of the complement Vx of the codeword Vx will
be given by

(11) Vx(t) = 1− Vx(t) =
1
2

(1− χ(x+ t))

Using the same type of approach as in the proof of proposition 1, we find that
a codeword Vx never equals a complement Vy. In this manner we find out an
extended binary code Ce(q, 2), having q2 − q codewords, half of them having the
weight (q − 1)/2 and half the weight (q + 1)/2. The Hamming distance between
two codewords of Ce(q, 2) will be in the same range [q/2− 3

√
q/2, q/2 + 3

√
q/2].

Indeed, it is enough to prove that the Hamming distance between a Vx and a Vy
is in this range. Indeed, by using (1) and (11), this distance can be expressed in a
way similar to (2):

d(Vx, Vy) =
1
2

q +
∑
t∈Fq

χ[(x+ t)(y + t)]


and we already know that the absolute value of the inner sum was found to be
smaller than 3

√
q/2. One may extend the codes C(q, n) in a similar way. Using the

same approach as that in section 3, we find that if q > (2n − 1)2, a codeword Vx
of C(q, n) never equals a complement Vy. Under the same condition one finds then
that the weights and distances for the codewords of Ce(q, n) are within the same
range as those of the codes C(q, n). The details are left to the reader.

One may notice some similarities between the codes constructed above and the
codes belonging to two other classes, that is the classes of codes dual to the double
error correcting BCH codes Bm(q) and Melas codes Mm(q), respectively. The codes
Bm(q) and Mm(q) are defined starting from a finite field Fq, q = 2m, m > 2. Each
one has q2 codewords of length q − 1, we have one codeword in the dual Bm(q) or
in the dual of Mm(q) associated to each pair (λ, µ) of elements of Fq.
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It t ∈ F∗q , the ‘t−th’ component of that codeword belonging to the dual of Bm

which corresponds to the pair (λ, µ) is given by Tr(λt + µt3), while the ‘t−th’
component of the codeword belonging to the dual of Mm which corresponds to the
pair (λ, µ) will be Tr(λt+ µt−1), where Tr is the absolute trace function from Fq
to F2.

In the above two classes of (linear, this time) codes one finds again an ‘almost
constant’ character for the weights of the codewords: if we disregard the zero word,
the weights of all the other codewords are within a range of the form q/2 +O(

√
q).

The weight distribution for them is completely known (for a complete description
based on algebraic geometric methods related to families of elliptic curves over
finite fields one may see [11]). For example, if m is odd, the weights of the nonzero
codewords in the dual of Bm are (q +

√
2q)/2, q/2 and (q −√2q)/2, the frequency

of each weight being (q− 1)(q−√2q)/4, q(q− 1)/2 + q− 1 and (q− 1)(q+
√

2q)/4,
respectively. For the duals of the Melas codes the weight distributions present a
similar character. For more details we refer to [11]. The codes C(q, 2) and Ce(q, 2)
defined above can be looked at as possible ‘nonlinear companions’ for the duals of
Bm and Mm, their weight and distance distributions presenting the similar feature
of being within a range of the form q/2 +O(

√
q), while the number of codewords is

asymptotically of the form O(q2) : C(q, 2) has (q2−q)/2 codewords (presenting the
additional feature of having a constant weight) while Ce(q, 2) has q2− q codewords
(with only two possible weights, one unit apart, (q−1)/2 and (q+1)/2). Assuming
that q > (2n − 1)2, we see that the weight and distance distributions of the codes
C(q, n) and Ce(q, n) present a similar behavior, while from the point of view of the
number of codewords the situation is asymptotically better, this being of the form
O(qn) (although the implied constants depend on n). Indeed, by using theorem 6
above, it is clear that the number of codewords in C(q, n) will be given by

|C(q, n)| =
∑

d|n,nd≡1(mod2)

Nd

where Nd represents the number of monic irreducible polynomials over Fq of degree
d. For a fixed n and big q, that is asymptotically qn/n. By using the well known
formula for Nd we find

|C(q, n)| =
∑

d|n,nd≡1(mod2)

1
d

∑
s|d

µ(s)q
d
s


where µ represents here the Möbius function. In the special case in which n is an
odd prime we find, for example that

|C(q, n)| = N1 +Nn = q +
qn − q
n
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