
Knight's Tours of an 8� 8 ChessboardBrendan D. McKayComputer Science Department, Australian National University,Canberra, ACT 0200, Australiabdm@cs.anu.edu.auAbstract.We describe a computation that determined the number of knight's tours ofa standard chessboard. We also verify Knuth's count of tours with a symmetry.The total number of undirected tours is 13,267,364,410,532 and the number ofequivalence classes under rotation and re
ection of the board is 1,658,420,855,433.1. Introduction.A knight's tour is a hamiltonian cycle in the graph de�ned by legal knight'smoves on a chessboard. We only consider tours that are cycles, and do not dis-tinguish between a tour and its reverse. A recent paper [3] describes an elegantmethod that can solve the di�cult problem of determining the total number ofknight's tours. Unfortunately, the implementation of the algorithm was performedincorrectly, leading to the wrong answer. The long task of repeating the computa-tion is underway at the time of writing. Nevertheless, the desirability of independentveri�cation is clear, and that is the purpose of this note.2. Counting all tours.We will explain our method using the same tour as used in [3]. That tour isshown in Figure I on the left, and on the right it is broken into two pieces withthe steps crossing the central line deleted. The subgraph of the tour induced bythe squares in the lower half of the board consists of a set of paths, some of thempossibly trivial. That set of paths is called the lower half-tour of the tour. Thelower half-tour in Figure I consists of 6 disjoint paths, including the trivial paths inb4, f4 and h4.More generally, we will use the expression lower half-tour to be a set of (possiblytrivial) vertex-disjoint paths whose vertex-set is the lower half of the board, whoseedges are legal knight's moves, and whose endpoints lie in ranks 3 and 4.An upper half-tour is de�ned similarly. In Figure I, the lower and upper half-tours are shown on the right. 1
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Figure I. A knight's tour and its two induced half-tours.The path structure of a half-tour is the set of pairs of endpoints of the pathscomprising it. For the lower half-tour in Figure I, the path structure is fa4-b3,b4-b4, c4-d3, f4-f4, g4-f3, h4-h4g. The order in which the two endpoints of eachpath are written is immaterial.Lemma 1. The number of tours which induce a particular pair of upper and lowerhalf-tours depends only on the path structures of the half-tours.Proof. To complete a pair of half-tours into a tour, we must add knight steps acrossthe middle line, joining endpoints of paths in the lower half-tour to endpoints ofpaths in the upper half-tour. The number of ways of doing this successfully dependsonly on the positions of the endpoints of the paths in the two half-tours, and onwhich of those endpoints belong to the same path. This information is precisely thepath structure.The �rst step in our computation was to �nd all half-tour path structures, andthe number of half-tours corresponding to each. This was achieved by a standardback-track algorithm in about 6 hours. There are altogether 70433448 half-tours,having 7934470 di�erent path structures. There are between 1 and 5680 half-tourswith each path structure.In order to complete the computation, we need to consider each possible pairof path structures for the upper and lower half tours, and determine the number oftours that induce them. However, the number of such pairs is much too large asyet so we do a further grouping of cases.2



The type of a lower half-tour is a pair (a; b), where a = a1; a2; : : : ; a8 andb = b1; b2; : : : ; b8. The values a1; a2; : : : ; a8 are, reading across rank 4: 0 for theinternal vertex of a path, 1 for the endpoint of a non-trivial path, and 2 for a trivialpath. The values b1; b2; : : : ; b8 contain the same information for rank 3. The lowerhalf-tour of Figure I has type ((1; 2; 1; 0; 0; 2; 1; 2); (0; 1; 0; 1; 0; 1; 0; 0)).The type is clearly a function of the path structure. Altogether there are 453741possible types for half-tours, with 6357 values of a and 1296 values of b occurring.A particular tour has a pair of types (aL; bL); (aU ; bU ) for its lower and upperhalf-tours. Whether an arbitrary such pair of types corresponds to any tours can bevery often be determined in the negative by examining the pair (aL; bU ), as all ofbU must be accounted for by knight steps between rank 4 and rank 6 while obeyingthe limits imposed by aL. If there is at least one such set of knight steps, we callaL and bU compatible. Similarly for (aU ; bL).We are now able to describe the remainder of the computation.Consider each pair of types (aL; bL); (aU ; bU ) such that (aL; bU ) and (aU ; bL)are compatible. Some of these are equivalent under horizontal or vertical 
ips of theboard or their product; we selected the lexicographically least from each equivalenceclass and calculated a multiplicity (1, 2 or 4) to compensate.For each of the remaining pairs of types (aL; bL); (aU ; bU ), we determined allpossible ways of choosing a set of knight steps between ranks 3 and 5, 4 and 5,or 4 and 6 to match these types. (The total number of such sets for the entirecomputation was about 361 million.) Finally, for each such set of steps, each pathstructure SL with type (aL; bL), and each path structure SU with type (aU ; bU ),we tested whether the union of the three consisted of a single circuit. If yes, we hadidenti�ed a collection of tours with cardinality equal to the product of the numberof half-tours with path structure SU , the number of half-tours with path structureSL, and the multiplicity de�ned in the previous paragraph.This �nal part of the computation was quite expensive, taking 232 hours on amixture of Sun workstations. However, this time is quite small compared to thetime required for the method described in [3]. The result was as stated in theAbstract.Equivalence classes.It was pointed out by Knuth [2] that the only symmetry of an 8 � 8 boardwhich may preserve a knight's tour is a rotation by 180 degrees. This is an easy butinteresting exercise that we will leave for the reader. Knuth further reported a count3



of 608,233 equivalence classes of such symmetrical tours, each such class containing4 tours. Since all other equivalence classes contain 8 tours, we can calculate thetotal number of equivalence classes to be the number stated in the Abstract.Is it correct?Every computer programmer knows that errors in programming or executioncan escape the most rigorous checking. Although we feel con�dent our result iscorrect, independent veri�cation is needed for practical certainty. Hopefully, thatveri�cation will be provided when the rerunning of [3] is complete. As a partialcheck of our result, we ran it all again in left-right mirror image, obtaining thesame result. We also applied the method of Knuth [1] to estimate the total numberof tours by performing random probes of an exhaustive search tree, obtaining anestimate close to our answer.Finally, we veri�ed Knuth's count of 608,233 classes of symmetric tours using asimple backtrack program that ran for �ve minutes.References.[1] D. E. Knuth, Estimating the e�ciency of backtrack programs, Math. Comput.,29 (1975) 121{136.[2] D. E. Knuth, Private communication, 1996.[3] M. L�obbing and Ingo Wegener, The number of knight's tours equals33,439,123,484,294, Electronic J. Combin., 3 (1996) R5.
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