The Number of Knight’s Tours Equals 33,439,123,484,294 —
Counting with Binary Decision Diagrams

Martin Lobbing™ and Ingo Wegener*

FB Informatik, LS II, Univ. Dortmund, 44221 Dortmund, Germany
e-mail: loebbing/wegener@ls2.informatik.uni-dortmund.de

Submitted: October 25, 1995; Accepted: January 19, 1996.

AMS subject classification: 05-04, 056C38, 68R10.

Abstract

The number of knight’s tours, i.e. Hamiltonian circuits, on an 8 x 8 chessboard is computed with
decision diagrams which turn out to be a useful tool for counting problems.

1 Introduction

Binary decision diagrams are representations of Boolean functions with many applications in hardware
verification and computer-aided design (Bryant (1992)). We believe that binary decision diagrams also
have many applications in combinatorics and graph theory. To support this claim we determine the
number of cycle coverings of the knight’s graph on an 8 x8 chessboard as well as the number of knight’s
tours with binary and slightly more general multi decision diagrams. We have chosen the knight’s tour
problem because of its long history (famous mathematicians like FEuler, Legendre, and Vandermonde
(see Rouse Ball and Coxeter (1987)) have worked on this problem) and since it is a combinatorial chess
problem known to everybody. Our results are the following ones.

Theorem 1 The number of cycle coverings of the directed knight’s graph for 8 x 8 chessboards equals
a?, where o = 2,849,759,680, i. e. it equals 8,121,130,2383,753,702,400.

Theorem 2 The number of undirected knight’s tours on an 8 x8 chessboard equals 33,439,123,484,294.
The number of directed knight’s tours is twice the number of undirected ones.

2 Binary and multi decision diagrams

Many counting problems can be modeled as the problem of counting the number of satisfying inputs
for a function f: A1 x -+ x Ay — {0,1}. An input @ = (ay,...,a,) is called satisfying if f(a) = 1.
Some types of representations of functions allow to solve this problem efficiently, if f has a short
(especially not exponential) representation. For typical representations of finite functions, like circuits

*Supported in part by DFG grant We 1066/7-3.

THE ELECTRONIC JOURNAL OF COMBINATORICS 3 (1996), #R5 2

or formulae, the problem of counting the satisfying inputs is #P-complete. Hence, we look for types
of representations, where it is easy to count the satisfying inputs.

Definition 1 A wvariable ordering is a permutation m on {1,...,n}. An ordered multi decision diagram
(OMDD) for a function f : Ay x---x A, — {0,1}, where A; = {0,...,k;— 1}, and a variable ordering
7w 1s a rooted directed acyclic graph with at most two sinks labelled with 0 or 1 and inner nodes, each
one labelled with an index i € {1,...,n}. Fach inner node with label i has k; outgoing edges labelled
with 0,... ki — 1, each of these edges leads to one of the nodes with label j, where w(j) > =(i), or to
a sink. For the input a = (a1,...,ayn) € Ay X -+ x Ay the unique path leaving the root and following
the edge with label a; at nodes with label i has to reach the sink with label f(a). If k; = 2 for all i, we
have OBDDs (B=binary).

Typically, there are a lot of nodes with label i, but each directed path can contain at most one of
them. It is also possible that no node with label ¢ exists. In general it is difficult to find an appropriate
variable ordering to obtain small OMDDs, but in our applications we define the functions in such a
way that the variable ordering 7, where w(i) = ¢ for all ¢, is appropriate. In the following we only use
this variable ordering. We summarize known results on OMDDs. It is easy to count the number of
satisfying inputs. A formal description, e. g. a circuit, can be transformed step by step into an OMDD.
Let f := g ® h for some binary operator ®. Then it is easy to obtain an OMDD for f from OMDDs
for g and h. Moreover, the OMDD of minimal size for a given function and variable ordering is unique
and called reduced. It is possible to create reduced OMDDs only. The whole approach is heuristic,
since for some functions OMDDs are exponentially larger than, e. g., circuits. The practical usefulness
of OMDDs relies on the uniqueness of reduced OMDDs. Therefore, we avoid typical problems which
arise in backtracking algorithms. Let us consider all the different “situations” for the different values
of (a1,...,a;), where i < n. A situation corresponds to the subfunction of f, where the first ¢ variables
are replaced by constants. In backtracking algorithms it is a problem to detect situations without any
solutions (the subfunction is the constant 0) and to detect isomorphic situations (the subfunctions
are equal). In OMDDs all situations without any solutions are represented automatically by the sink
with label 0 and isomorphic cases are represented automatically by the same node (for details see
Bryant (1992)).

For the knight’s tour problem we have to count the number of satisfying inputs of the following
function TOUR defined on 64 variables. We assume a fixed numbering of the squares. Then k; is the
number of knight’s moves leaving the i-th square. Hence, a = (ay,...,ass) describes for each square a
knight’s move leaving this square and TOUR(a) = 1 if and only if ¢ describes a knight’s tour.

3 Counting knight’s tours with decision diagrams

The counting of cycle coverings is a quite direct application of OBDD techniques. It is easy to see that
the number of cycle coverings on an 8 x & chessboard is equal to «?, if « is the number of one-to-one
mappings from the white to the black squares respecting the legal moves of a knight. The Boolean
function deciding whether some choice of moves represents such a one-to-one mapping is described as a
circuit and then translated gate by gate into an OBDD. We obtain « as the number of satisfying inputs.
We got the same result for o with three independent approaches: OBDDs of size 598,472, ZBDDs (an
OBDD variant introduced by Minato (1993)) of size 406,660 (6.5 CPU minutes on a SUN 670/140
with 128 MB storage), and with backtracking (the most clever approach took more than 30 days).

THE ELECTRONIC JOURNAL OF COMBINATORICS 3 (1996), #R5 3

>
w
I

>
I

AN

el <L

<K |

= el

>)

<
pt
»

\
YA

KR
Y

L -

uu LL Lh LL

C
r
AN

DD
S

[
[

e L oA TN

c

LL

uu

,_
[
-
=
Cc
[«
Cc
[«

[52]
¢

-

c
Cc
C

§%&%@;&”>@4
Baccaan
90 NS -
e N2 N
i\

)
<
A

kAl T A Sy
P SN

>
w)
T

&%«%«”Xx
<
90 N\
N
s
ke

- %
L O

>
w
I

Figure 1: An example of a knight’s tour

Counting knight’s tours is much more difficult, since tours cannot be described by local properties.
We use a hybrid approach of OMDD techniques, backtracking and divide-and-conquer. The ideas are
illustrated in Fig. 1.

The chessboard is divided into L (row 1, 2, and 3), M (row 4 and 5) and U (row 6, 7, and 8). The
lower “half board” LM consists of L and M and the upper half board UM consists of U and M. The
overlapping of the half boards leads to a smaller number of cases in our divide-and-conquer approach.
If we define that a move from row 4 to row 5 belongs to LM and a move from row 5 to row 4 belongs
to UM, each move belongs to one half board.

Let us consider a fixed directed knight’s tour. A square belongs to UL, if the move to this square
belongs to the upper half board and the move leaving this square belongs to the lower half board.
LU, LL and UU are defined similarly. Each square of U (or L) belongs to UU (resp. LL). We divide
our problem according to the different partitions of M into UL, LU, LL and UU. It 1s sufficient to

consider (116)2 + (126)2 4+ -+ (186)2 = 383,358,644 cases. For each i € {1,... 8} we choose each pair
(A, B) of subsets of M of size ¢ and let LL=ANB, UL=A—-ANDB, LU = B— AN B (ensuring
the necessary condition |UL| = |LU|) and UU = M — (AU B). We obtain all cases, where |LL] < 8.
Because of symmetry it is sufficient to multiply the number of solutions of the cases where |UU| > 9

by 2.

THE ELECTRONIC JOURNAL OF COMBINATORICS 3 (1996), #R5 4

Each directed knight’s tour consists in LM — UU of cycle free disjoint paths combining each node
in UL with one node in LU. Let f : UL — LU be the one-to-one mapping such that f(v) is the
endpoint of the path starting at v, i.e. v points to f(v). Similarly, we obtain for the paths in UM — LL
a one-to-one mapping ¢ : LU — UL. The pointers defined by f and g lead to a cycle on ULULU. Such
pairs (f, ¢) are called good. In our example f(Ab) = G4, f(F4) = D5, g(G4) = F4 and ¢g(D5) = Ab
define the cycle Ab — G4 — F4 — D5 — Ab. Disjoint path systems on LM — UU and UM — LL define
a directed knight’s tour iff (f,¢) is good. Let #(UL, LU, LL, UU, f) be the number of disjoint path
systems on LM — UU respecting the partition of M and respecting f, and let #(UL, LU, LL, UU,g)
be defined similarly for UM — LL. Then the number of directed knight’s tours equals

> > #(ULLU,LL, UU,f) #(UL LU, LL, UU,g)
(UL,LU,LL,UU) (f,g9) good

and the number of undirected tours is half this number.

To check the rather “global” property that a set of moves respects a given function f: UL — LU
1s difficult with OMDDs. They become too large to be stored in the storage space which is nowadays
available. We create for each partition (UL, LU, LL, UU) two OMDDs for LM — UU. The first one
checks whether each white square is left once and each black square is reached exactly once by the
moves chosen for the white squares and whether the partition (UL, LU, LL, UU) is respected. The
other OMDD does the same for the moves leaving the black squares. For each pair of inputs satisfying
the two OMDDs we like to check whether they describe a cycle free path system. Each such pair
has to be counted for the corresponding parameter #(UL, LU, LL, UU, f). We obtain the parameters
#(UL,LU,LL, UU,g) by symmetry. Finally, the above formula is evaluated.

The use of OMDDs has two major advantages. It is easy to check whether a reduced OMDD
represents the constant 0. Then nothing has to be done. Otherwise, the satisfying inputs can be
enumerated by backtracking on the OMDD without considering any non satisfying input.

The computation can be easily distributed to many computers. We have performed the computation
with 20 SUN work stations within approximately four months. The CPU time is much less, since we
could use the computers only during their idle times.

Conclusion

BDD techniques known from hardware verification and computer-aided design have been applied to
the solution of open combinatorial problems. The number of knight’s tours on the 8 x 8 chessboard is
determined.

References

Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys 24(3), 293-318.

Minato, S.-I. (1993). Zero-suppressed BDDs for set manipulation in combinatorial problems. Proc.

of the 30th ACM/IEEE Design Automation Conference, 272-277.

Rouse Ball, W. W. and Coxeter, H. S. M. (1987). Mathematical recreations and essays. Dover,
New York.

