Applying Tabu Search to Determine New Ramsey Graphs
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Abstract

In this note an adaptation of heuristic tabu search algorithm for finding Ramsey graphs is
presented. As a result, seven new lower bounds for classical Ramsey numbers are established:
R(3,13) > 59, R(4,10) > 80, R(4,11) > 96, R(4,12) > 106, R(4,13) > 118, R(4,14) > 129,
and R(5,8) > 95.

1 Introduction

Let us define a (k,l;n)-Ramsey graph, or in short (k,l;n)-Rg, to be a graph on n vertices which
does not contain clique of order k or an independent set of order . The Ramsey number R(k,[)
is defined to be the smallest integer n > 0 such that, there is no (k,l;n)-Rg. Our approach
to establishing a new lower bound for a Ramsey number, R(k,l) > n, is based on the idea
of heuristic search for a (k,l;n — 1)-Rg in a space of highly regular graphs on n — 1 vertices.
Similar methods have been used to improve lower bounds for small classical Ramsey numbers
by searching restricted space of graphs. For example, see [1], [6], [9], and [10]. Others can be
found referenced in Radziszowski’s excellent extensive survey of known bounds and values of
various kinds of Ramsey numbers [8]

The following sections contain descriptions of our algorithms, and the Ramsey graphs which
imply the new lower bounds. Some of these bounds were previously announced in [7].

2 Tabu search

2.1 General framework

The tabu search (T'S) method is a heuristic procedure which has proved to be very efficient in
solving many combinatorial optimization problems. A detailed description of it is given in [4].
Our approach makes use of T'S in its simplest form outlined below.

For a given optimization problem: mingeg f(s), where f is called objective function and S
denote the space of all allowed states, T'S starts from an initial state s € S chosen arbitrarily
and explores the space S by moving from one state to another subject to a defined neighborhood
function Nb: S — 2%, During each step, the actual state s is replaced by its neighbor having the

* The computational results presented in this paper were partly obtained using machines from the Academic
Computer Center in Gdanisk TASK.
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least value of f. If more than one state has the same minimal value the tie is broken randomly.
This process is stopped when a new state satisfies the required condition. In order to avoid
some of the possible loops, a FIFO queue called the tabu list is provided. Its aim is to remember
recently visited states which are forbidden and cannot be chosen during state replacement. We
show this simple form of T'S in pseudo-code:

e choose any s € S as the wnitial state
o initialize tabu list T = ()
o while s is not acceptable do:

o nsert s into T
o if T s full remove the oldest element
o replace s with s € Nb(s) T satisfying f(s') = min, e np(s) f (%)

2.2 Adaptation for search of Ramsey graphs

To implement T'S for a particular application, one must specify the search space S, objective
function f, neighborhood function Nb, final acceptance criterion, method of choosing initial
state and length of the tabu list 7. In this paper we only give the specifications used in our
computational experiments.

Let us assume that we are looking for a (k,l;n)-Rg, where k < .

Restricted space of graphs. For a given edge partition of a complete graph K,, into r
graphs: & = {G1,Gs,...,G,}, where V(G;) = V(K,,) for 1 <i <r, E(K,) = U;_; E(G;) and
E(G,)NE(G;) =0 for 1 < i # j < r, we define the space S to be the family of all graphs
without independent sets of size [, obtained by the union of any subset of &:

5={G,=UG7; | I C{1,2,...,r}, K gc‘;f}.

1€l

We have considered many different types of partition £. However, the results which improve
the known lower bounds of Ramsey numbers were established using only two such types. One of
them leads to the search among cyclic graphs. The other slightly generalizes the previous one.
A detailed discussion of the partitions used is presented in the next section.

The neighborhood function. Two graphs G and G; are defined to be neighbors iff one
of them can be obtained from another by union with exactly one element from &:

Gr € Nb(Gy) & |[(TUJ)~ (INnJ))| =1

The objective function and the final acceptance criterion are clear: f(G) is simply
equal to the number of cliques of size k contained in G, and the process stops iff f(G) = 0.

The tabu list is slightly different from that of the previous general description. It is easy
to see that one iteration in this implementation is always a union or disunion of a previously
reached graph and one element of £. Instead of remembering recently generated graphs, the
tabu list only keeps the indices of elements of £ which were used during recent replacements.
Replacements leading to insertion or removal of an element of £ which is on the tabu list are
not allowed. The tabu queue defined in this way is more restrictive than in the definition but
consumes much less computation time. The length of the tabu list was adjusted experimentally
depending on the parameters k,[,n,r (usually between 1—107' and 13’—07‘)

A complete graph K,, is taken as the initial state.
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3 Results
3.1 Cyclic graphs

Following the earlier works mentioned in the Introduction, we first concentrated on cyclic graphs.

For a given vertex set {0,1,...,n — 1} define the distance function d(v,w) = min{|jv — w|,n —
|v — w|}. Each graph of the partition € contains edges which have the same distance d:

£ = {G1,Ga,-.,Ga ),
{v,w} € E(G;) & d(v,w)=1.

Using this specification we obtained surprisingly good results. In a short time our algorithm
found examples of cyclic Ramsey graphs demonstrated almost all the lower bounds established
by Radziszowski and Kreher in [9], where exhaustive searches for cyclic graphs were performed.
This fact confirms efficiency of our heuristic. Moreover, new lower bounds have been established
for the following numbers: R(4,10), R(4,11), R(4,12), R(4,13), R(4,14), and R(5,8). The
values of the new bounds and the indices of the £-components of the corresponding cyclic
graphs are presented in Table I. For comparison, we give a list of the best lower bounds for
these Ramsey numbers known before. R(4,10) > 72 [1]. R(4,11) > 77 as a consequence of
R(4,9) > 69 [9] and R(4,3) = 9 [5]. R(4,12) > 86 as a consequence of R(4,9) > 69 [9] and
R(4,4) = 18 [5]. Recently, a new lower bound R(4,12) > 98 has been announced (as [2]) in the
latest revision of [8]. R(4,13) > 97 as a consequence of R(4,7) > 49 [3]. R(4,14) > 103 [1].
R(5,8) > 94 [9].

Table I. New lower bounds and corresponding cyclic Ramsey graphs.

Ramsey New

number | lower Cyclic (k,l;7 — 1) — Ramsey graph

R(k,l) | bound r

R(4,10) | 80 | 6,8, 11, 12, 15, 16, 22, 25, 26, 27, 32, 34, 35

R(A4,11) | 96 | 3,5,6, 7, 10, 11, 12, 14, 20, 22, 24, 42, 44, 45, 46

R(4,12) | 106 | 4,6,7, 10, 11, 20, 22, 24, 29, 32, 35, 40, 43, 47, 48, 49

R(4,13) | 118 |5, 16, 17, 23, 25, 31, 34, 36, 37, 40, 43, 45, 47, 48, 49, 55, 58

R(4,14) | 129 | 4,7, 8, 11, 20, 22, 23, 24, 27, 30, 41, 49, 51, 54, 59, 60, 62

R(5,8) 9% | 2,6,7,9, 10, 14, 16, 17, 21, 27, 30, 31, 32, 35, 39, 40, 41, 43, 44, 45, 47

3.2 (3,13;58)-Ramsey graph
Let a set of 2n vertices be formed by two sets A = {ag,a1,...,a,-1} and B = {bg,b1,...,by_1}.
Define the partition & as follows:

8 = {G1147G12477Gf%J7G1B7G2377Gf%J7GOC7G?77G'S—1}

{ai,a;} € E(Gﬁ(qj,]’)) for0<i#j<n
{b;,b;} € E(Gﬁiﬁj)) for0<i#j<n

{ai,b;} € E(Gg(m)) for 0 <14,j < n, where
d(i,j) = min{|i—j|,n—[i—j|}

d (i,7) (j — i+ n)modn.
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Using this partition & we derived (3,13;58)-Rg G5 UGLUGHUGHLUGP UG uGE uGE U

G§ UGS UGS, UGS which improves the best previously known lower bound R(3,13) > 58 [6]
by one.

Finally, let us note that a better lower bound R(3,13) > 60 was claimed in [11]. Unfortu-

nately, the cyclic graph Csg(1,3,5,7,16,25) described in that paper as a (3,13;59)-Rg contains
a number of independent sets of size 13, for example {0, 2,6,10,14, 20,24, 28,32,38,42,46,50}.
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