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��������� We consider problems in sequence enumeration suggested by Stockhausen’s prob-
lem, and derive a generating series for the number of sequences of length k on n available
symbols such that adjacent symbols are distinct, the terminal symbol occurs exactly r times,
and all other symbols occur at most r − 1 times. The analysis makes extensive use of tech-
niques from the theory of symmetric functions. Each algebraic step is examined to obtain
information for formulating a direct combinatorial construction for such sequences.

1. Introduction

The score of the piano work nr. 7 Klavierstück XI by Karlheinz Stockhausen (1957) [S]
consists of 19 fragments of music. The performer is instructed to choose at random one
of these fragments, and play it; then to choose another, different, fragment and play that,
and so on. If a fragment is chosen that has already been played twice, the performance
ends. We can state a more general problem as follows: Denote each fragment of music by
a symbol. Then an r-Stockhausen sequence on n symbols is a sequence such that

(1) adjacent symbols are distinct,
(2) the terminal symbol occurs exactly r times,
(3) no symbol occurs more than r times,
(4) exactly one symbol occurs r times,
(5) the symbol alphabet is Nn = {1, 2, . . . , n}.

The original problem posed by Stockhausen is then the case when r = 3 and n = 19. We
shall refer to 3-Stockhausen sequences simply as Stockhausen sequences. We let cr(n, k)
be the number of r-Stockhausen sequences of length k on n symbols, and

sr(n) :=
(r−1)n+1∑
k=2r−1

cr(n, k),
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for the minimum (resp. maximum) length of an r-Stockhausen sequence is 2r − 1 (resp.
(r − 1)n + 1). The expected length of a performance under the assumption that each
fragment is equally likely is given in [RY].

The method of generating series is a major technique in enumeration. In this case, the
determination of the exact number of Stockhausen sequences on n symbols is an enumera-
tive question that can be approached using the theory of symmetric functions for coefficient
extraction in the generating series approach. A generalization of the problem leads to a
combinatorial construction for the Stockhausen sequences. Although only known tech-
niques [G] are used, these are sophisticated, and the problem serves as a useful study of
these techniques, and the algebraic analysis gives partial information about the formulation
of a bijective proof.

The paper is organized as follows. In Section 2, we define a few classical symmetric
functions, and state some properties they satisfy. Section 3 contains the derivation of the
generating series for the number of Stockhausen sequences. In Section 4 we generalize
the method given in Section 3 and give an analogous derivation for the generating series
for the number of r-Stockhausen sequences. By examining the generating series for r-
Stockhausen sequences, we give in Section 5 a series of combinatorial constructions that
leads to r-Stockhausen sequences.

2. Symmetric Functions

We review some classical symmetric functions, and recall some properties of the ring of
symmetric functions. The reader is directed to [M] for a fuller account.

A function f(x1, x2, . . . ) in infinitely many indeterminates is a symmetric function if f
is invariant under any permutation of any finite number of the variables. We shall consider
such symmetric functions over the rationals. The following symmetric functions are used
in the derivation of the generating series for cr(n, k).

The complete symmetric function hn is defined by

hn(x1, x2, . . . ) =
∑

i1≤i2≤···≤in

xi1xi2 · · ·xin .

Moreover, h0 = 1. If λ = (λ1, λ2, . . . , λk) is a partition, i. e. a non-increasing sequence of
positive integers, we let hλ denote hλ1hλ2 · · ·hλk . The weight of λ is |λ| :=

∑
i λi.

The monomial symmetric function mλ is the sum of all distinct monomials of the form
xλ1
i1
· · ·xλkik , where i1, . . . , ik are distinct.

The power sum symmetric function pn is defined by

pn(x1, x2, . . . ) =
∑
i

xni .

Similar to hλ, pλ is defined to be pλ1pλ2 · · · pλk .
It is known that [M] each of the sets {hλ}, {mλ}, and {pλ}, where λ ranges over all

partitions of n, is a basis of the vector space over � of symmetric functions homogeneous
of degree n.
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Let mj(λ) denote the number of j’s in the partition λ. The complete symmetric function
hn can be expressed in terms of the power sum symmetric functions as follows:

hn =
∑
λ`n

z−1(λ)pλ,

where
z(λ) =

(∏
j≥1

jmj(λ)mj(λ)!
)

and λ ` n indicates that λ is a partition of n. For instance, h1 = p1, h2 = (p2
1 +p2)/2, and

h3 = (p3
1 + 3p2p1 + 2p3)/6.

There is [M] an inner product 〈·, ·〉 defined on the vector space of symmetric functions
such that 〈mλ, hµ〉 = δλ,µ, so 〈pλ, pµ〉 = z(λ)δλ,µ for any two partitions λ and µ, where
δλ,µ is 1 if λ = µ and zero otherwise. It follows that if f and g are symmetric functions,
then 〈pnf, g〉 = 〈f, n ∂g

∂pn
〉, so the action adjoint to multiplication by pn is n ∂

∂pn
.

For any partition λ, let l(λ) denote the number of parts of λ. Then the number of
monomials on n (≥ l(λ)) symbols of the form xλ1

i1
· · ·xλl(λ)

il(λ)
, where i1, . . . , il(λ) are distinct,

is
(2.1)

n!
(n− l(λ))!m1(λ)!m2(λ)! · · ·mλ1(λ)!

= mλ(1, . . . , 1︸ ︷︷ ︸
n 1’s

, 0, . . . ) =
(n)l(λ)

m1(λ)!m2(λ)! · · ·mλ1(λ)!
,

where (n)j = n(n− 1) · · · (n− j + 1) denotes the jth falling factorial.
The following proposition is needed and can be regarded as the adjoint form of Taylor’s

Theorem on the ring of symmetric functions.

Proposition 2.1. Let f and g be symmetric functions and u a real number, and suppose
that f = f(p1, p2, . . . ). Then

〈f(p1, p2, . . . ), eupjg〉 = 〈f(p1, p2, . . . , pj−1, pj + ju, pj+1, pj+2, . . . ), g〉.

Proof. We use the adjoint action to multiplication by pj ,

〈f(p1, p2, . . . ), eupj g〉 =
∑
k≥0

uk

k!

〈
jk

∂k

∂pkj
f(p1, p2, . . . ), g

〉

=

〈∑
k≥0

(uj)k

k!
∂k

∂pkj
f(p1, p2, . . . ), g

〉

=
〈

exp
(
ju

∂

∂pj

)
f(p1, p2, . . . ), g

〉
= 〈f(p1, p2, . . . , pj + ju, . . . ), g〉

using the formal version of Taylor’s Theorem. �
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3. A solution for the original problem

We derive a generating series for the number c3(n, k) of Stockhausen sequences on n
symbols of length k. To reach this goal, we begin with the generating series for sequences
satisfying condition (1) for Stockhausen sequences (Lemma 3.1), then we derive the gener-
ating series of sequences satisfying conditions (1) and (2) for r = 3 (Proposition 3.2); and
finally we address the generating series for Stockhausen sequences by imposing appropriate
restrictions in order to satisfy conditions (3) and (4).

Lemma 3.1. The generating series for all strings on n symbols such that adjacent symbols
are different is

D(z, x1, . . . , xn) =
1

1−
∑n
i=1

zxi
1+zxi

,

where z is an ordinary marker for the length of the string and xi marks the occurrence of
symbol i.

See [RY,§2] for a proof.

Proposition 3.2. Let Dn(z, x1, . . . , xn) be the generating series of sequences on the sym-
bols {1, 2, . . . , n} (marked by x1, . . . , xn) of length k (marked by z) such that the terminal
symbol occurs exactly three times (non-terminal symbols occur arbitrarily many times) and
adjacent symbols are distinct. Then

Dn(z, x1, . . . , xn) = z3


n∑
j=1

x3
j

(∑n
i=1
i6=j

zxi
1+zxi

)2

(
1−

∑n
i=1
i6=j

zxi
1+zxi

)3

 .

Proof. Consider such a sequence which terminates with the symbol j. The sequence de-
composes into AjBjB′j, where A, B, and B′ are strings on the symbols {1, 2, . . . , n} \ {j}
with distinct adjacent elements, A possibly empty but B and B′ non-empty. By Lemma
3.1, the generating series for all such sequences is

z3x3
jLw

1
1− w

∑n
i=1
i6=j

zxi
1+zxi

,

where Lw is the linear transform defined by

Lwf(w) =
1
2!
∂2f

∂w2

∣∣∣∣
w=1

.

Although we introduce Lw here to simplify the expression for the generating series, it will
be seen later that it has combinatorial significance. To get the sequences described in the
statement, we take the union over j, and so, summing the above generating series over j
we obtain

Dn = z3
n∑
j=1

x3
jLw

1
1−w

∑n
i=1
i6=j

zxi
1+zxi

. �
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We remark that a very easy direct proof is possible, but Lw is introduced in order to
illustrate how its counterpart, L(r)

w , will be used in Section 4, where for r > 3, this linear
transform helps in carrying out the calculations with symmetric functions.

To restrict the frequency of occurrence of symbols, we let P3 be the set of all partitions
with exactly one 3 as the largest part. For α in P3, let xα denote xα1

1 xα2
2 · · · and let [xα]f

denote the coefficient of xα in f ; then

[xα]Dn = [xα]z3p3Lw
1

1− w(zp1 − z2p2)

for the power sums p1, p2, p3 in x1, x2, . . . , xn.
Let

(3.1) G(z, x1, . . . , xn) = z3p3Lw
1

1− w(zp1 − z2p2)
,

where p1, p2, and p3 are power sum symmetric functions in infinitely many indeterminates.
Then

[xα]Dn = [xα]G(z, x1, x2, . . . , xn, 0, 0, . . . ).

Therefore the generating series for the set of all Stockhausen sequences on n symbols is

Fn(z, x1, . . . , xn) =
∑
α∈P3

∑
β

[xβ]G(z, x1, x2, . . . , xn, 0, 0, . . . ),

where the inner sum is over all distinct permutations β of α.
The sequences defined in the statement of Proposition 3.2 satisfy conditions (1) and

(2). Conditions (3) and (4) are imposed by the restriction that all partitions α are in P3.
The last condition is imposed by evaluating G with xn+1 = xn+2 = · · · = 0 to exclude
n + 1, n + 2, . . . from the alphabet, and by the sum over β so that each element of the
alphabet Nn is permitted to occur.

Since G is a symmetric function in the xi’s, we may expand it in terms of the monomial
symmetric functions:

G =
∑
θ∈P3

mθ(x1, x2, . . . )aθz|θ|,

where the aθ’s are scalars.
Then another way of expressing Fn is

Fn =
∑
α∈P3

mα(1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, 0, . . . )[mα]G =
∑
α∈P3

(n)l(α)

m1(α)!m2(α)!
aαz

|α|,

because from (2.1)mα(1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, 0, . . . ) is the number of terms in the monomial symmet-

ric function mα on x1, x2, . . . , xn, which is equal to the number of sequences over {0, 1, 2, 3}
of length n with n − l(α) occurrences of 0, m1(α) occurrences of 1, m2(α) occurrences of
2 and one occurrence of 3 (as specified by P3).
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We use the property 〈mα, hθ〉 = δα,θ of the inner product to extract the coefficient of
mα in G. In order to have m1(α)! and m2(α)! in the denominator and one part of size 3
in α, we consider

uh3e
u(h1+h2) =

∑
α∈P3

hα
ul(α)

m1(α)!m2(α)!
.

Clearly, 〈
G,uh3e

u(h1+h2)
〉

=
∑
α∈P3

ul(α)

m1(α)!m2(α)!
aαz

|α|.

With the help of the mapping Ξn : uj 7→ (n)j , for j = 0, 1, 2, . . . , extended linearly to the
power series ring in u, we obtain

Fn =
∑
k≥0

c3(n, k)zk = Ξn
〈
G, uh3e

u(h1+h2)
〉
.

We are now in a position to work on Φ3(z, u) :=
∑

n Fn(z)un/n!, our goal for this
section.

Lemma 3.3. Let c be independent of u. Then Ξneucuk = (n)k(1 + c)n−k. If, moreover,
g(u) = 1 + g1u+ g2u

2 + · · · is a power series in u, then Ξneucg(u) =
[
un

n!

]
eu(1+c)g(u).

Proof. The first statement follows from direct computation. Now

Ξneucg(u) = Ξn
∑
k≥0

eucgku
k =

∑
k≥0

gk · (n)k(1 + c)n−k =
n∑
k=0

gk
n!

(n−k)!(1 + c)n−k,

and the second statement follows. Note that (n)k = 0 if n < k. �

It now follows that the generating series for c3(n, k) is

Corollary 3.4.

Φ3(z, u) :=
∑
k,n≥0

c3(n, k)zk u
n

n! = eu〈G,uh3e
u(h1+h2)〉.

Proof. We know that

∑
k≥0

c3(n, k)zk = 〈G,Ξnuh3e
u(h1+h2)〉 = 〈G,

[
un

n!

]
euuh3e

u(h1+h2)〉

by Lemma 3.3. Since G is independent of u, the last expression is[
un

n!

]
〈G, euuh3e

u(h1+h2)〉 =
[
un

n!

]
eu〈G,uh3e

u(h1+h2)〉.
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It follows that

Φ3(z, u) = eu〈G,uh3e
u(h1+h2)〉.

To evaluate the inner product, we expand G and uh3e
u(h1+h2) in terms of the power

sums, and use the property 〈pλ, pµ〉 = z(λ)δλ,µ of the inner product, the adjoint action to
multiplication by pj , and Taylor’s Theorem on the ring of symmetric functions. We know
that upon substitution of G using (3.1)

Φ3(z, u) = eu
〈
Lw

z3p3

1− w(zp1 − z2p2)
,
u

6
(p3

1 + 3p2p1 + 2p3)eu(p1+(p2
1+p2)/2)

〉

by linearity of 〈, 〉 and ignoring terms in the second argument that are independent of p3,
we get

= Lwe
u

〈
z3p3

1− w(zp1 − z2p2)
,
u

3
p3e

u(p1+(p2
1+p2)/2)

〉
by adjoint action of p3, we have

= Lwe
u

〈
z3

1− w(zp1 − z2p2)
, ueu(p1+(p2

1+p2)/2)

〉
using Proposition 2.1 we obtain

= Lwe
u

〈
z3

1− w(z(p1 + u)− z2(p2 + u))
, ueup

2
1/2

〉
again by the property of the inner product we ignore terms in the first argument indepen-
dent of p1 and reach

= Lwe
u

〈
z3

1− wzu+ wz2u− wzp1
, ueup

2
1/2

〉
.

Since

1
1−wzu+ wz2u− wzp1

=
∑
j≥0

(wzp1)j

(1− wzu+ wz2u)j+1
,
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we have that

Φ3(z, u) = z3ueuLw
∑
j≥0

(wz)j

(1− wzu+ wz2u)j+1

〈
pj1, e

up2
1/2
〉

= z3ueuLw
∑
j≥0

(wz)2j

(1− wzu+ wz2u)2j+1

〈
p2j

1 , e
up2

1/2
〉

= z3ueuLw
∑
j≥0

(wz)2j

(1− wzu+ wz2u)2j+1

〈
p2j

1 , u
j p

2j
1

2jj!

〉

= z3ueuLw
∑
j≥0

uj(wz)2j

(1− wzu+ wz2u)2j+1

(2j)!
2jj!

.

We summarize the result in the following.

Proposition 3.5. Let L(r)
w (f(w)) = 1

r!
∂rf
∂wr

∣∣∣
w=1

, then

Φ3(z, u) = z3ueuLw
∑
j≥0

uj(wz)2j

(1− wzu+ wz2u)2j+1

(2j)!
2jj!

.

We remark that the original Stockhausen number s3(n) is[
un

n!

]
Φ3(1, u) =

[
un

n!

]
1
2ue

u
∑
j≥0

(2j)(2j − 1)
(2j)!
2jj!

uj ,

so

s3(n) = n

n−1∑
j=0

(
n− 1
j

)(
2j
2

)
(2j)!

2j
.

A direct combinatorial proof of this expression is given in [RY].

4. A generating series for r-Stockhausen sequences

We use the method suggested by the previous section to derive a generating series for
r-Stockhausen sequences.

Theorem 4.1. Let
Φr(z, u) :=

∑
n,k≥0

cr(n, k)zk
un

n!

be the generating series for the number cr(n, k) of sequences of length k on n symbols such
that adjacent symbols are distinct, the terminal symbol occurs exactly r times, and all other
symbols occur at most r− 1 times. Then

Φr(z, u) = uzrL(r−1)
w Θw exp

(
u[tr−1]

ewzt/(1+zt)

1− t

)
,
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where z is the ordinary marker for the length of the sequence, u is the exponential marker
for the number of available symbols, L(r)

w (f(w)) = 1
r!

∂rf
∂wr

∣∣∣
w=1

and Θw is the inverse

Laplace transform Θw : wj 7→ j!wj.

We may take advantage of the analysis of the original problem (when r = 3).

Proof. Let

Fn,r := zrpr

(∑
j≥1(−1)j−1zjpj

)r−1

(
1−

∑
j≥1(−1)j−1zjpj

)r .
Then

cr(n, k) = [zk]Ξn
〈
Fn,r , uhre

u(h1+h2+···+hr−1)
〉
.

Now
Fn,r = zrL(r−1)

w pr

(
1− w

∑
j≥1

(−1)j−1zjpj

)−1

,

and∑
k≥0

cr(n, k)zk = ΞnzrL(r−1)
w

〈
pr

(
1−w

∑
j≥1

(−1)j−1zjpj

)−1

, uhre
u(h1+h2+···+hr−1)

〉

=
[
un

n!

]
zrL(r−1)

w

〈
pr
(

1− w
∑
j≥1

(−1)j−1zjpj
)−1

, uhre
u(1+h1+h2+···+hr−1)

〉

=
[
un

n!

]
Φr(z, u),

by definition. So

(4.1) Φr(z, u) = uzrL(r−1)
w

〈
pr

(
1− w

∑
j≥1

(−1)j−1zjpj

)−1

, hre
u(1+h1+h2+···+hr−1)

〉
.

In order to extract the coefficients from (4.1), we perform some technical maneuvers using
the properties of symmetric functions stated in Section 2.

It is convenient for expository purposes to isolate these into a series of steps.
Step 1. Apply the adjoint action to multiplication by pj to remove pj from the first

argument of the inner product.
Since hr =

∑
α∈P z

−1(α)pα, where z(α) = 1m1(α)m1(α)! 2m2(α)m2(α)! · · · , it follows
that ∂hr

∂pr
= 1

r
. Also, eu(1+h1+···+hr−1) expanded in terms of the power sums using the

formula above is independent of pr, so

Φr = uzrL(r−1)
w

〈1− w
∑
j≥1

(−1)j−1zjpj

−1

, eu(1+h1+···+hr−1)

〉

= uzrL(r−1)
w

〈
1,

1− w
∑
j≥1

(−1)j−1zjj
∂

∂pj

−1

eu(1+h1+···+hr−1)

〉
.
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Step 2. Introduce the mapping Θw : wj 7→ j!wj to express1− w
∑
j≥1

(−1)j−1zjj
∂

∂pj

−1

as an exponential function, and hj ’s in terms of the power sums so that the ring theoretic
Taylor’s Theorem can be used.

Since
(

1−w
∑
j≥1(−1)j−1zjpj

)−1

= Θwe
w
�
j≥1(−1)j−1zjpj ,

Φr = uzrL(r−1)
w Θw

〈
1, ew

�
j≥1(−1)j−1zjj ∂

∂pj eu(1+h1+···+hr−1)
〉

The generating series for the complete symmetric functions is
∑

k≥0 hkt
k =

∏∞
i=1(1 −

txi)−1, so

1 + h1 + · · ·+ hr−1 = [tr−1]
1

1− t

∞∏
i=0

(1− txi)−1

= [tr−1]
1

1− t exp
∑
i≥1

ln(1− txi)−1

= [tr−1]
1

1− te
p1t+p2t

2+···.

Thus eu(1+h1+···+hr−1) = exp
(
u[tr−1]e

p1t+p2
t2
2 +···

1−t

)
.

Step 3. Apply Taylor’s Theorem to get

Φr = uzrL(r−1)
w Θw

〈
1, e

w
�
j≥1(−1)j−1zjj ∂

∂pj exp

(
u[tr−1]

ep1t+p2
t2
2 +···

1− t

)〉

= uzrL(r−1)
w Θw

〈
1, exp

(
u[tr−1]

e(wt+p1)+(−2wz2+p2) t
2
2 +···

1− t

)〉

= uzrL(r−1)
w Θw

〈
1, exp

(
u[tr−1]

ewzt−wz
2t2+···

1− t

)〉

since the inner product is with 1, all pi, i ≥ 1, are set to 0 in the second argument of the
inner product.

We conclude that Φr = uzrL
(r−1)
w Θw exp

(
u[tr−1]e

wzt/(1+zt)

1−t

)
. �

We remark that the exponential ewzt/(1+zt) is the generating function for Laguerre
polynomials. A short proof of the r-Stockhausen problem that is inspired by this analysis
is given in [RY, §5]. An explicit formula derived from this expression for the number of
r-Stockhausen sequences and a direct combinatorial proof are given in [Y].
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5. Combinatorial constructions

We have shown that the generating series for generalized Stockhausen sequences is

Φr+1(z, u) :=
∑
n,k≥0

cr+1(n, k)zk
un

n!

= uzr+1L(r)
w Θw exp

(
u[tr]

1
1− t exp

wzt

1 + zt

)
,

where

L(r)
w (f) =

1
r!
wr∂rf

∂wr

∣∣∣∣
w=1

and Θw : wk → k!wk.
The combinatorial nature of the transformations leads one to ask whether combinatorial

objects and constructions exist for each expression so that one can obtain generalized
Stockhausen sequences directly. In this section, we present a series of constructions that
has generalized Stockhausen sequences as the final consequence. The set-wise actions
of the constructions are suggested by the algebraic analysis, although the element-wise
actions (the combinatorial content) have to be supplied. Therefore we define first the set
A generated by

A =
1

1− w(
∑n
i=1

zti
1+zti

)
,

which is a fundamental structure in the series of constructions. Next, we convert the
univariate series in t into a multivariate series in t1, t2, . . . , tn to obtain n non-terminal
symbols in the Stockhausen sequences. To this end, we exhibit a bijection between sets
which are enumerated by [

un

n!

]
Θw exp

(
u[tr]

1
1− t exp

wzt

1 + zt

)
and

[tr1t
r
2 . . . t

r
n]

1
1− w(

∑n
i=1

zti
1+zti

)

n∏
i=1

1
1− ti

.

Once we have all n non-terminal symbols, we give a combinatorial interpretation for the
transformation L

(r)
w . After the application of L(r)

w to A, the last step is the placement of
r + 1 copies of the terminal symbol to make (r + 1)-Stockhausen sequences.

Step 1. Signed Divided Strings. To construct strings with distinct adjacent elements,
an argument involving the principle of inclusion–exclusion can be applied. However, one
can also consider signed sets as described in [SW]. The set of signed divided strings is a
signed set of strings with dividers such that

(1) different symbols are separated by dividers,
(2) the same symbol appearing in a block may be separated by dividers,
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(3) no dividers are adjacent, and no string ends with a divider,
(4) the sign of the string is

(−1)# (undivided even sub-strings).

An example of a typical signed divided string is +t1t1wt1wt2t2wt3wt1, where w marks the
divider and t1, t2 and t3 are symbols.

Let A be the set of strings on n symbols such that a non-empty string begins with a
divider. Let the symbols be zt1, zt2, . . . , ztn, and let w be an ordinary marker for dividers.
Then the ordinary generating series for A is

A(w, z, t1, . . . , tn) =
1

1− w(
∑n

i=1
zti

1+zti
)
.

Step 2. A Bijection. We define sets generated by

[tr1t
r
2 . . . t

r
n]

1
1− w(

∑n
i=1

zti
1+zti

)

n∏
i=1

1
1− ti

,

and [
un

n!

]
Θw exp

(
u[tr ]

1
1− t exp

wzt

1 + zt

)
,

and show a bijection between the sets. From the previous section, the series

A(w, z, t1, . . . , tn) =
1

1− w(
∑n

i=1
zti

1+zti
)

generates all, possibly empty, signed divided strings where a non-empty string begins
with a divider marked by w. The multiplication of A by

∏n
i=1

1
1−ti and the extraction

of the coefficient of tr1tr2 · · · trn in the result corresponds at the set theoretic level to the
concatenation of the signed divided strings in A with ti11 t

i2
2 · · · tinn for 0 ≤ i1, i2, . . . , in and

the restriction to only those concatenated strings with exactly r ti’s, i = 1, 2, . . . , n. But
this is equivalent to considering the strings in A with no more than r ti’s for i = 1, 2, . . . , n.
Thus we conclude that

[tr1t
r
2 . . . t

r
n]

1
1− w(

∑n
i=1

zti
1+zti

)

n∏
i=1

1
1− ti

generates all signed divided strings (⊂ A) with no more than r ti’s (i = 1, . . . , n) in each
string.

For [
un

n!

]
Θw exp

(
u[tr ]

1
1− t exp

wzt

1 + zt

)
,
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or equivalently,

Θw

(
[tr]

1
1− t exp

wzt

1 + zt

)n
,

where Θw is an inverse Laplace transform on w, i. e. Θw : wk 7→ k!wk, we describe a set
generated by the inner expression(

[tr]
1

1− t exp
wzt

1 + zt

)n
first, and then apply Θw combinatorially to the set.

Consider a labelled ordered n-tuple (S1, S2, . . . , Sn) of possibly empty, ordered sets of
all possible sizes. That is, given a label set (⊂ N := {1, 2, . . . }) of size n, label S1 with the
smallest label, S2 with the next label, etc, and Sn with the largest one. Every coordinate
in Si, i ∈ Nn, is also labelled from a label set ⊂ N in the same way. A typical entry of Si
has the form (−1)k+1wx(zt)k (k ≥ 1), where x is the label associated with that entry of
Si. Let w be an exponential marker for the labels wx’s. When we restrict the number of
t’s in each Si to no more than r, then the generating series for Si is

[tr]
1

1− t
w|Si|

|Si|!

(
zt

1 + zt

)|Si|
.

Summing over all |Si| from 0 to ∞, we get(
[tr]

1
1− t exp

wzt

1 + zt

)n
as the generating series for the n tuple of tuples. To apply Θw, or inverse Laplace transform,
i. e. removal of labels marked by w, we form signed divided strings in the following way.
Take the entry in some Sx that has the label w1, and put down the entire entry including
its sign as the first segment, w1ztizti · · · zti writing ti instead of t if the set Sx has the
symbol i assigned to it. In the second segment, find some set Sy that contains w2, and
write w2ztj . . . ztj if Sy has symbol j assigned to it. Continue in a similar manner until
the w’s are exhausted. Now combine the signs multiplicatively and erase the subscripts on
w to get a signed divided string on n available symbols because there are n Sx’s, such that
every ti appears no more than r times (since we start out with r or fewer t’s in each Sx).

Step 3. Application of L(r)
w . Let B be the set of non-empty strings on n symbols such

that a non-empty string begins without a divider. Let the symbols be zx1, zx2, . . . , zxn,
and let w be an ordinary marker for dividers. Then the ordinary generating series for B is

B(w, z, x1, . . . , xn) =

∑n
i=1

zxi
1+zxi

1− w(
∑n
i=1

zxi
1+zxi

)
.

Let ω be a divider. Define ωr × ( ∂
∂ω )r/Σr (see [GJ, p.36]) to be an operation on the

elements of the sets A (as defined in Step 1) and B that marks r distinct dividers in all
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possible ways regardless of the order in which dividers are marked. (Here Σr denotes the
symmetric group on r elements.) Then

(ωr × (
∂

∂ω
)r/Σr)A ∼−→ Aω̂ Bω̂Bω̂ · · · ŵB︸ ︷︷ ︸

r B’s

by induction on r, since

ω∂

∂ω
A ∼−→ Aω̂B and

ω∂

∂ω
B ∼−→ Bω̂B.

Notice that A(1, zx1, . . . , zxn) (respectively B(1, zx1, . . . , zxn)) is the ordinary generating
series for possibly empty (respectively non-empty) strings on n symbols zx1, . . . , zxn such
that adjacent symbols are distinct. Therefore, the operator L(r)

w applied to A gives the
generating series for (Ã, B̃, . . . , B̃) with r B̃’s, where Ã (respectively B̃) is the result of
ignoring dividers in the set A (respectively B). This is an (r+ 1)-tuple of strings such that
adjacent symbols are distinct, and the first string (but no others) may be empty.

In short, the purpose of L(r)
w is first to mark ω’s and secondly get rid of strings that have

at least one undivided sub-string of length greater than or equal to 2 (by setting w = 1
algebraically or ignoring dividers, ω’s, set theoretically).

Step 4. Placement of the terminal symbol. Given n + 1 symbols such that the
terminal symbol occurs r + 1 times, let u be an exponential marker for the available
symbols, z be an ordinary marker for the length of the string, and t1, . . . , tn be ordinary
markers for the occurrence of the non-terminal symbols, then

uzr+1L(r)
w Θw exp

(
u[tr]

1
1− t exp

wzt

1 + zt

)

is the generating series for T ∗ S (see [GJ, p. 163] for the definition of ∗), where T is the
set containing r + 1 copies of the terminal symbol t, and S is (A|w=1,B|w=1, . . . ,B|w=1)
with r B’s. The ∗ product is used because the symbols t, t1, . . . , tn form the label set
{1, 2, . . . , n, n+ 1}. To obtain Stockhausen sequences from T ∗ S, place zt in front of each
B, and at the final position, then remove all commas, and let z commute with the t’s.
Therefore, z marks the length of the string, and the string is faithfully represented by the
t’s.
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