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Abstract

We introduce a generalization of the classical game of Nim by placing the
piles on the vertices of a simplicial complex and allowing a move to affect the
piles on any set of vertices that forms a face of the complex. Under certain
conditions on the complex we present a winning strategy. These conditions are
satisfied, for instance, when the simplicial complex consists of the independent
sets of a binary matroid. Moreover, we study four operations on a simplicial
complex under which games on the complex behave nicely. We also consider
particular complexes that correspond to natural generalizations of classical
Nim.
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1 Introduction

One of the classical games – perhaps the classical game – in mathematics is the game
of Nim. It is a two player game, played as follows. A set of piles of chips is given.
The players take turns removing chips. In a move, a player removes any positive
number of chips from one pile. The winner is the player who takes the last chip.
An elegant winning strategy for this game was first described by Bouton [2]. By
virtue of the simplicity of this strategy, Nim has since served as a yardstick for all
impartial two-player games (see [1, 3]) in the sense that any position in such a game
is equivalent to a position in Nim.

In this paper we generalize the game of Nim to a finite simplicial complex ∆.
Note that, in accordance with the following definition, a simplicial complex is taken
to be finite throughout the paper.

Definition 1.1 A simplicial complex ∆ on a finite set V is a collection of subsets of
V such that

i) {v} ∈ ∆ for all v ∈ V .

ii) if F ∈ ∆ and G ⊆ F then G ∈ ∆.

The members of ∆ are called simplices or faces, and the elements of V are called
vertices.

Consider now the following generalization of the game Nim, which we call simpli-
cial Nim. Let ∆ be a simplicial complex. On each vertex of ∆ place a pile of chips.
As before, the players take turns removing chips, the difference being that a player
is allowed to remove chips from any non-empty set of piles if the underlying vertices
form a face in ∆. Observe that in a move, a player may freely remove any (or all)
chips on each vertex of the face in question, but must remove at least one chip from
some vertex. Thus, classical Nim corresponds to the simplicial complex being a set
of disjoint vertices. At the other extreme, if a simplicial complex ∆ consists of all
subsets of V , then any game on ∆ is equivalent to a single Nim pile whose size is the
sum of the sizes of piles on ∆.

A central role in this paper is played by the circuits, or minimal non-faces, of a
simplicial complex. In Section 3 we give a winning strategy for any complex ∆ such
that each circuit of ∆ contains a vertex not in any other circuit. That is, for such
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a complex we find the zero positions (also called winning positions). These are the
positions where the first player to move loses.

In Section 4 we introduce three conditions on a simplicial complex ∆. If these
conditions are satisfied then the zero positions of ∆ can be explicitly characterized.
In Section 5 we show that the simplicial complex consisting of the independent sets
of a binary matroid satisfies the three conditions. Hence, on such a complex, there
is an explicit strategy for winning a game.

In Section 6 we consider three operations on a simplicial complex under which
games on the complex behave nicely. One of these operations consists of taking the
join of two simplicial complexes. The other two can be described as “doubling a
vertex”, that is, adding a vertex to a complex in such a way that the new vertex is in
some sense equivalent to a vertex in the original complex. These operations, or rather
their inverses, can be used to simplify complexes before analyzing their structure with
respect to the game.

In Section 7 we define the length of a zero position. The length measures the
maximum length of an optimally played game. We determine its value for some
classes of simplicial complexes.

In Section 8 we study two families of simplicial complexes which correspond to
natural generalizations of classical Nim and give partial results on their winning
positions. Finally, in Section 9, we mention some open problems.

2 Definitions and Preliminaries

We first introduce some notation for simplicial complexes, or complexes, for short.
Let ∆ be a simplicial complex with vertex set V . A maximal face of ∆ with respect
to inclusion is called a facet. Further, if W ⊆ V , then the subcomplex of ∆ induced
by W is the complex K on vertex set W such that F ⊆ W is a face of K if and only
if F is a face of ∆. In other words, K is the restriction of ∆ to W . In this case, K
is said to be an induced subcomplex of ∆.

A subset C of V is called a circuit of ∆ if C is not a face of ∆, but all proper subsets
of C are faces of ∆. Hence, a circuit is a minimal non-face of ∆. Topologically a
circuit of ∆ is the boundary of a simplex σ where σ is minimal with respect to
not belonging to ∆. When giving examples, we will frequently identify a simplicial
complex with its geometric realization. For a rigorous treatment of this and for more
background on simplicial complexes, see [7].
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Given a complex ∆ with vertex set V , let N
V be the set of vectors indexed by V

whose entries are non-negative integers. Thus, each vector in N
V corresponds to a

position in a game on ∆. That is, if n ∈ N
V , where n = (nv)v∈V , then the vector n

corresponds to the position where there are nv chips on vertex v for each v ∈ V . Let
e(v) be the v-th unit vector, that is, the vector whose v–th entry is 1 and all other
entries are 0. For a subset A of V let

e(A) =
∑
v∈A

e(v).

Further, for two vectors m,n ∈ N
V we write m ≤ n if mv ≤ nv for all v ∈ V . If

m 6= n and m ≤ n then we denote this by m < n. Also, let min(n) be the minimum
among the coordinates of n and let max(n) be the maximum.

An impartial two player game (or Nim game) is a game where two players take
turns making moves and where, in a given position, the allowed moves do not depend
on whose turn it is. This is the case for Nim and for the generalization we will consider
here. In an impartial two player game each position is recursively assigned a value.
For a finite subset A of N , the minimal excluded value of A, mex(A), is the smallest
integer in N − A. That is, mex(A) = min(N − A). We use the notation n → m to
indicate that there is a legal move from the position n to the position m. The value
of a position is defined recursively by

v(n) = mex ({v(m) : n → m}) ,

and v(0) = 0. The value of a position is also known as the position’s Grundy number
or Sprague-Grundy number (see [1, 3, 10]).

A game which is guaranteed to end in a finite number of moves is called short.

The positions with value zero are called winning or zero positions. In principle,
knowing the set of zero positions for a short game is equivalent to knowing a winning
strategy for the game. This can be seen from the following characterization of zero
positions, the proof of which is omitted.

Theorem 2.1 In a short impartial two player game a set W is the set of zero posi-
tions if and only if

(a) the final positions (in our case the position 0) belong to W ,

(b) there is not a move from a position in W to another position in W , and

(c) for every position not in W there is a move to a position in W .
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This characterization is crucial in establishing that a strategy is indeed a winning
strategy.

We end this section with two basic results.

Lemma 2.2 If C is a circuit of the simplicial complex ∆ then n · e(C) is a zero
position for all n ∈ N .

Proof: For n = 0, this is clear. Suppose, then, that n > 0 and let n = n · e(C).
Assuming that there is a move n → m, let k = min(m) and let v be a vertex such
that mv = k. Observe that since C is not a face of ∆, the move cannot have left all
the piles empty. Since C is a circuit, C − {v} is a face, so we can reduce the piles on
each vertex of C − {v} to k, and then repeat the strategy until k = 0. 2

Let K and H be two simplicial complexes on vertex sets VK and VH , respectively. A
map φ : VK → VH is simplicial if φ(F ) is a face of H whenever F is a face of K. A
simplicial bijection is an invertible simplicial map whose inverse is also simplicial.

Lemma 2.3 Let ∆ be a simplicial complex and suppose there is a simplicial bijection
φ : ∆ → ∆ such that

i) φ = φ−1 (that is, φ is an involution), and

ii) if F is a facet of ∆ then F and φ(F ) are disjoint.

Then every position n on ∆ such that nx = nφ(x) is a zero position.

Proof: Given such a position, any move on a facet F can be countered by the
corresponding move on φ(F ), restoring the symmetry. 2

Observe that this lemma does not describe all zero positions on a complex that
possesses such a simplicial bijection. For instance, in classical Nim with an even
number of piles, any pairing of piles (vertices) satisfies the hypotheses of the lemma,
but a zero position need not consist of pairs of equal piles.
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3 Pointed circuit complexes

As we have seen in Lemma 2.2, the circuits of a simplicial complex ∆ are essential in
determining the zero positions on ∆. We now introduce a condition on the collection
of circuits under which the zero positions of ∆ can be characterized.

Definition 3.1 A circuit C in a simplicial complex ∆ is pointed if it has a vertex
which belongs to no other circuit of ∆. Such a vertex v is called a point of C and
C is said to be pointed by v. If every circuit of ∆ is pointed, then ∆ is said to be a
pointed circuit complex.

Observe that if S is a set of vertices in a complex ∆ and S is not a face of ∆,
then S must contain a circuit of ∆.

Theorem 3.2 Let ∆ be a pointed circuit complex, and let C be the collection of
circuits of ∆. Then the zero positions of ∆ are those of the form∑

C∈C
aC · e(C),

where aC is a non-negative integer for each circuit C.

Proof: Let W be the set of positions described in the statement of the theorem.
Clearly 0 ∈ W . Let n be a position on ∆. We must show that either n is in the set
W or else there is a move n → m where m belongs to W . If n 6= 0 and the position
is not an immediate win, then n must be supported by some circuit, that is, we must
have nv > 0 for all vertices v in some circuit C. Pick a non-negative integer aC for
each circuit C so that

m =
∑
C∈C

aC · e(C) ≤ n.

If there is a circuit C such that mv < nv for all vertices v in C, then we may increase
aC by 1 and the above inequality will still hold. Hence we may assume that for each
circuit C there is a vertex u(C) such that mu(C) = nu(C). Consider the set

F = {v ∈ V : mv < nv}.
Observe that F contains no circuit C of ∆ since u(C) 6∈ F . Thus F is face of ∆. If F
is empty then n = m ∈ W . If F is non-empty we can make the move n → m ∈ W .
Thus, for every position n 6∈ W there is a move n → m where m ∈ W . Note that so
far we have not used the assumption that ∆ is a pointed circuit complex.
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Figure 1: The pointed circuit complex of Example 3.3.

We now show that there is no move from a position in W to another position in
W . Assume, on the contrary, that there is a move n → m, where n,m ∈ W . We
may then write

n =
∑
C∈C

aC · e(C) and m =
∑
C∈C

bC · e(C).

Now, each circuit C has a vertex p(C) which belongs to no other circuit. Thus we
have that bC = mp(C) ≤ np(C) = aC for each circuit C. Since there is a move n → m,
there must be at least one circuit C such that bC < aC . But then n → m is not a
legal move since it would entail decreasing the piles on all the vertices in the circuit
C. Hence, there is no move from a position in W to another position in W . 2

Example 3.3 Let ∆ be the simplicial complex with facets {1, 2, 3}, {2, 3, 4}, {3, 4, 5},
and {1, 5} (see Figure 1). Then the circuits of ∆, namely {1, 3, 5}, {1, 4}, and {2, 5},
are all pointed, with points 3, 4 and 2, respectively. Hence the zero positions of ∆
are given by

a · e({1, 3, 5}) + b · e({1, 4}) + c · e({2, 5}) = (a + b, c, a, b, a + c).

Example 3.4 Let ∆ be the simplicial complex with facets {1, 2, 3, 4}, {2, 3, 4, 5},
{1, 2, 5}, and {1, 4, 5}. Then the circuits of ∆ are {1, 2, 4, 5} and {1, 3, 5}. Clearly
these are pointed by 2 and 3, respectively. Hence the zero positions of ∆ are given
by

a · e({1, 2, 4, 5}) + b · e({1, 3, 5}) = (a + b, a, b, a, a + b).
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4 Nim-regular complexes

Any vector n ∈ N
V has a unique binary expansion, that is, we may write

n =
∑
i≥0

2i · e(Ai),

where A0, A1, . . . are subsets of V and where, for i large enough, each Ai is empty.
For such a position n, we say that 2i is carried by Ai.

If X, Y , Z are three sets then by Z = X ∪· Y we mean that Z is the disjoint union
of X and Y , that is to say, that X ∩Y = ∅ and Z = X ∪Y . We will frequently write
X ∪· Y to emphasize that X and Y are disjoint. Note that in what follows, the use
of S − T , where S and T are sets, does not imply that S contains T .

Let ∆ be a simplicial complex with vertex set V and let B be a collection of
subsets of V . We will now describe three conditions on ∆ and B which together
imply that the zero positions of ∆ have nice binary expansions with respect to B.

Definition 4.1

Condition (A) The empty set belongs to B.

Condition (B) Suppose that F is a face of ∆, that B, B′ ∈ B and that B′ = F ∪· B.
Then F is the empty face.

Condition (C) Let F be a face of ∆ and let S be a subset of V . Then there exist
faces K and G of ∆, with K ⊆ F ⊆ G, such that G − F ⊆ S and (S − G)∪· K ∈ B.

These three conditions play an important role in the proofs in this section. Observe
that in these proofs the conditions (A), (B), and (C) correspond, respectively, to
statements (a), (b), and (c) in Theorem 2.1.

Definition 4.2 Let ∆ be a simplicial complex and B a collection of subsets of ∆ such
that Conditions (A), (B), and (C) are satisfied. Then B is said to be a Nim-basis
for ∆. A simplicial complex which has a Nim-basis is said to be Nim-regular.

The reason for the above definitions is that the zero positions of a Nim-regular
complex ∆ can be completely characterized in terms of B. Moreover, we will see
in Section 5 that in the case of binary matroids the collection B will emerge as a
naturally defined object.
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a b c

Figure 2: A simplicial complex with no Nim-basis.

It follows from Condition (B) that no non-empty face F of ∆ can belong to a Nim-
basis of ∆. For otherwise, letting B = F and B′ = ∅ ∈ B, we obtain B = F ∪· B′,
contradicting Condition (B).

It is easy to verify that for a complex ∆ consisting of a single simplex (that is, of
all subsets of the vertex set V ), the collection containing the empty set as its only
element is a Nim-basis for ∆.

A complex ∆ with no Nim-basis is shown in Figure 2. Letting S = {a} and
F = {c} we get from Condition (C) that either {a} ∈ B or {a, c} ∈ B. By Condition
(B) we cannot have {a} ∈ B, so {a, c} ∈ B. Similarly, with S = {a, b} and F = {c}
we get that {a, b, c} ∈ B. But {a, b, c} = {b}∪· {a, c}, which contradicts Condition
(B), so ∆ has no Nim-basis. Observe also that any complex containing ∆ as an
induced subcomplex lacks a Nim-basis.

As a further example, consider classical Nim, corresponding to a complex consist-
ing of n isolated vertices, one for each pile. Then it is easily checked that the collection
of all subsets of vertices of even cardinality is a Nim-basis. We will now generalize
this situation to arbitrary Nim-regular complexes and give an explicit description of
the zero positions on such complexes.

Proposition 4.3 Suppose there exists a collection B of subsets of V such that the
zero positions of ∆ are precisely those that have the form∑

i≥0

2i · e(Ai),

with Ai in B for all i ≥ 0. Then ∆ is Nim-regular and B is a Nim-basis for ∆.

Proof: We verify that B satisfies the conditions (A), (B) and (C).

(A) Since 0 is a zero position, it is clear that the empty set must belong to B.

(B) Assume that F is a non-empty face of ∆, that B, B′ ∈ B, and that B′ = F ∪· B.
Then e(B′) = e(F ∪· B) → e(B) is a legal move, but that contradicts the assumption
that both e(B) and e(B′) are zero positions.
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(C) Recall that no non-empty face of ∆ belongs to B. Consider the position 2 ·e(F )+
e(S), where F is a non-empty face of ∆. This is a non-zero position because F , which
carries 21, does not belong to B. Thus we can make a move to a zero position. This
zero position must have the form e(T ) because leaving any piles of size 2 or 3 would
necessarily mean that 21 was carried by a non-empty face H ⊆ F , but H 6∈ B. Let
K = T ∩ F and let G = F ∪ (S − T ). Observe that G is the set on which the move
was made. Thus G is a face. Moreover, it can be verified that (S − G)∪· K = T ,
which belongs to the collection B. 2

The converse of this proposition is more interesting.

Theorem 4.4 Assume that ∆ is a Nim-regular simplicial complex with Nim-basis B.
Then a position n is a zero position on ∆ if and only if

n =
∑
i≥0

2i · e(Ai),

where Ai belongs to B for all i ≥ 0.

Proof: Let W be the set of positions described in the statement of the theorem. We
verify that W satisfies the conditions in Theorem 2.1.

(a) Observe that 0 ∈ W , since ∅ ∈ B.

(b) We now show that it is impossible to move from a position in W to another
position in W . Assume, on the contrary, that n and m are two positions belonging
to W such that n → m. Suppose the binary expansions of these positions are given
by

n =
∑
i≥0

2i · e(Ai), m =
∑
i≥0

2i · e(Bi).

Let k be the largest index where Ai and Bi differ. We then have that Bk ⊆ Ak and
Bk 6= Ak, so Ak − Bk is a non-empty face. But this contradicts Condition (B), since
both Ak and Bk belong to B.

(c) It remains to be shown that for any position n not in W there is a move n →
m ∈ W . Let n be a position which does not belong to W . As before, let n have the
binary expansion

n =
∑
i≥0

2i · e(Ai).

Let N be the largest index such that AN 6= ∅. Let FN and GN+1 both be the empty
set, which is a face. For i = N, N − 1, . . . , 0 use Condition (C) with F = Fi and
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S = Ai to find faces Ki and Gi such that Ki ⊆ Fi ⊆ Gi, Gi − Fi ⊆ Ai, and Bi ∈ B,
where Bi = (Ai − Gi)∪· Ki. Moreover, let Fi−1 = Gi, which implies that Gi ⊆ Gi−1.

Let m be the position given by

m =
N∑

i=0

2i · e(Bi).

Clearly m belongs to W . We need to show that the move n → m is legal.

Since Bi = (Ai − Gi)∪· Ki and Ki ⊆ Gi, we have that Bi − Gi = Ai − Gi. Recall
that GN ⊆ GN−1 ⊆ · · · ⊆ G0. Thus Gi ⊆ G0, so Bi − G0 = Ai − G0. Hence for all
v 6∈ G0 we have that nv = mv.

Now consider v ∈ G0. Let k be the largest index such that v ∈ Gk. Hence
v 6∈ Gk+1 = Fk. Since Gk − Fk ⊆ Ak, we have that v ∈ Ak. Also v 6∈ Fk implies that
v 6∈ Kk, so v 6∈ (Ak − Gk)∪· Kk = Bk. Moreover, for i ≥ k + 1 we have Gi ⊆ Gk.
Since Bi − Gi = Ai − Gi we have that Bi − Gk = Ai − Gk. This implies that
χ(v ∈ Bi) = χ(v ∈ Ai) for all i ≥ k + 1, where χ is the function which, for any
statement S, has the value 1 if S is true and 0 otherwise. Now we have that

mv =
N∑

i=0

2i · χ(v ∈ Bi)

=
k−1∑
i=0

2i · χ(v ∈ Bi) +
N∑

i=k+1

2i · χ(v ∈ Bi)

≤
k−1∑
i=0

2i +
N∑

i=k+1

2i · χ(v ∈ Bi)

< 2k +
N∑

i=k+1

2i · χ(v ∈ Bi)

= 2k +
N∑

i=k+1

2i · χ(v ∈ Ai)

≤
k−1∑
i=0

2i · χ(v ∈ Ai) + 2k +
N∑

i=k+1

2i · χ(v ∈ Ai)

=
N∑

i=0

2i · χ(v ∈ Ai) = nv.

Hence we have that mv < nv for v ∈ G0. Recall that G0 is a face of ∆. Moreover, G0

is non-empty, since G0 = ∅ implies Ai = Bi for all i and that would contradict that
n is not in W . Therefore, the move n → m is a legal move. 2
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Figure 3: The Nim-regular complex of Example 4.6.

Observe that the preceding theorem implies that a Nim-basis is unique. In the sequel,
we can therefore talk about the Nim-basis of a complex when such a basis exists.

Theorem 4.4, together with Lemma 2.2, now leads to the following corollary.

Corollary 4.5 Suppose ∆ is a Nim-regular complex and that B is the Nim-basis of
∆. Then every circuit of ∆ belongs to B. 2

Example 4.6 Consider the simplicial complex ∆ on the set V = {1, 2, 3, 4} with
facets {1, 2}, {1, 3}, {1, 4}, and {2, 3, 4} (see Figure 3). Let B = {∅, {1, 2, 3}, {1, 2, 4},
{1, 3, 4}}. Then ∆ is Nim-regular and B is the Nim-basis for ∆. Hence the zero
positions of ∆ are those of form

∑
i≥0 2i · e(Ai), where Ai ∈ B. As an example, the

position
(7, 3, 5, 6) = e({1, 2, 3}) + 2 · e({1, 2, 4}) + 4 · e({1, 3, 4})

is a zero position on ∆. Note that the non-empty sets of B are precisely the circuits
of ∆.

Let ∆k(V ) be the simplicial complex whose facets are all the (k−1)-subsets of V .
That is, a subset of V is a face if and only if its cardinality is less than k. Thus,
∆k(V ) is the (k − 1)–skeleton of the simplex with vertex set V . Playing on ∆k(V ) is
equivalent to playing Nim on |V | piles with a move allowed to affect at most k − 1
piles.

The following proposition first appeared in [6], though Moore did not give a proof
in his short paper. It is also discussed in [1, chapter 15, page 498], [8, section 122,
page 151], and [9].
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Proposition 4.7 (E. H. Moore) The zero positions of ∆k(V ) are those of the form∑
i≥0 2i · e(Ai), where |Ai| ≡ 0 mod k.

Proof: Let B = {B ⊆ V : |B| ≡ 0 mod k}. We show that ∆k(V ) is Nim-regular
with Nim-basis B.

(A) Clearly the empty set is in B, so that Condition (A) is satisfied.

(B) If F ∪· B = B′, with F a face and B, B′ ∈ B, then |F | ≡ 0 mod k. Since F is a
face we have that |F | ≤ k − 1. Hence we conclude that |F | = 0, so F is the empty
set. This proves that ∆k(V ) and B satisfy Condition (B).

(C) To check Condition (C), let F be a face of ∆k(V ) and S a subset of V . Let m
be the unique integer m such that 1 ≤ m ≤ k and |S − F | ≡ m mod k.

• If k − |F | ≤ m then choose K to be a subset of F of cardinality k − m, and
let G = F . Thus the cardinality of (S − G)∪· K is divisible by k and hence
(S − G)∪· K belongs to B.

• If m < k − |F |, choose a subset H of S − F of cardinality m. Let K = ∅ and
G = F ∪ H . Observe that G − F ⊆ S and |G| = |F | + m ≤ k − 1. Moreover,
|(S − G)∪· K| = |S − G| = |(S − F ) − H| = |(S − F )| − m ≡ 0 mod k, so that
(S − G)∪· K ∈ B.

Hence the three conditions are satisfied, and the proposition follows from Theo-
rem 4.4. 2

Note that the sets in B in Proposition 4.7 are the disjoint unions of circuits of ∆k(V ).
This proposition implies the strategy for classical Nim by setting k = 2. For k > 2,
the game is still easy to play since the winning strategy (once deciphered from the
proof!) is easy to remember.

5 Binary matroids

A (finite) matroid M (without loops) is a simplicial complex I (whose elements are
called independent sets) such that for all U, V ∈ I with |U | > |V |, there exists an
x ∈ U − V such that (V ∪· x) ∈ I.

If M is a binary matroid (to be defined in the next paragraph) then there is a
collection B of subsets of V such that B is the Nim-basis for I. Hence there is an
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explicit winning strategy for binary matroids. To show this, we will avoid presenting
the general theory of matroids. Instead we will define directly a binary matroid. For
background on matroid theory, see the book by Neil White [11]. Let F2 = {0, 1} be
the finite field of order two.

Definition 5.1 A binary matroid M on a finite set V is a triple (V, φ, W ) where W
is vector space over the field F2, and φ is a function from the set V to the vector space
W. A subset I = {v1, . . . , vk} of V is called independent if the vectors φ(v1), . . . , φ(vk)
are linearly independent in W . The empty set is considered to be independent. A
subset of V that is not independent is called dependent. A minimal dependent set is
called a circuit.

From linear algebra it follows that the maximal independent sets all have the same
cardinality. This cardinality is called the rank of the matroid.

The symmetric difference A4B of two sets A and B is A4B = (A−B)∪· (B−A).
The power set of a set V , denoted 2V , forms an abelian group under symmetric
difference. With W and φ as in Definition 5.1, let Φ : 2V → W be the group
homomorphism defined by Φ(A) =

∑
x∈A φ(x) and let K be the kernel of Φ. Hence K

is given by

K =

{
A ⊆ V :

∑
x∈A

φ(x) = 0

}
,

and K is a subgroup of 2V , so K is closed under symmetric difference. We will show
that K is the Nim-basis for the Nim-regular complex I of independent sets of M .

Observe that the empty set is the only independent set that belongs to K.

Lemma 5.2 Given M a binary matroid, let I be an independent set of M and let
Q, Q′ ∈ K. If Q′ = I ∪· Q then I is the empty set.

Proof: Since Q′ = I ∪· Q, we have I = Q4Q′. Hence I is a member of K. But I is
also independent, and the only independent set A with Φ(A) = 0 is the empty set,
so we conclude that I is empty. 2

The following proposition describes precisely the sets in the collection K.

Proposition 5.3 The collection K consists of all subsets of V that can be written as
a disjoint union of circuits.
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Proof: Let C = {v1, . . . , vk} be a circuit of the binary matroid M . Since C is a
dependent set, there exist scalars α1, . . . , αk ∈ F2 such that

∑k
i=1 αi ·φ(vi) = 0. Since

C is a minimal dependent set, we know that αi 6= 0 for all i. Since αi ∈ F2−{0} = {1}
we have that αi = 1 for all i. Hence

∑k
i=1 φ(vi) = 0, and C ∈ K.

Assume now that A is a disjoint union of circuits, where the union may be empty.
Then we can write A = ∪k

i=1Ci. But, since the union is disjoint, we have A = 4k
i=1Ci.

Since K is closed under symmetric difference, we conclude that A ∈ K. Hence every
disjoint union of circuits is a member of the collection K.

Conversely, assume that A ∈ K. By induction on the cardinality of A, we will
prove that A is a disjoint union of circuits. If A is empty, this is trivially true. If A
has a proper non-empty subset B such that Φ(B) = 0 then, by induction, we know
that both B and A − B are disjoint unions of circuits, and hence also A. Suppose,
then, that A does not have a proper non-empty subset B such that Φ(B) = 0. This
implies that every proper subset B of A is independent. But since A is dependent,
A is a circuit. This completes the proof. 2

On general matroids there is an operation called contraction. Here it will be enough
to consider contraction on binary matroids.

Definition 5.4 Let M = (V, φ, W ) be a binary matroid, and let v ∈ V be an element
such that {v} is independent. Observe that {0, φ(v)} is a one-dimensional subspace
of W . The contraction M/v is the binary matroid (V ′, φ′, W ′), where V ′ = V − {v},
W ′ = W/{0, φ(v)}, and where, for x ∈ V ′, we have φ′(x) = φ(x) + {0, φ(v)}.

From this definition an important fact follows. First, let I ′ be a subset of V ′. Then
I ′ is an independent set of M/v if and only if I ′ ∪ {v} is an independent set of M .
Moreover, let K′ be the collection

K′ =

{
A ⊆ V ′ :

∑
x∈A

φ′(x) = 0W ′

}
.

Lemma 5.5 Let Q′ belong to K′. Then either Q′ or Q′ ∪· {v} belongs to K.

Proof: The statement Q′ ∈ K′ is equivalent to
∑

x∈Q′ φ(x) ∈ {0, φ(v)}, from which
the lemma follows. 2

This lemma may be considered as a generalization (for binary matroids) of the state-
ment: Suppose M is a binary matroid and that v is a vertex of M , so M/v is also a
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binary matroid. Then, if C ′ is a circuit of M/v then either C ′ or C ′ ∪ {v} is a circuit
of M .

The next result shows that M , together with K, satisfies Condition (C).

Proposition 5.6 In a binary matroid M , let I be an independent set and let S be a
subset of V . Then there exist independent sets K and J , with K ⊆ I ⊆ J , such that
J − I ⊆ S and (S − J)∪· K is a disjoint union of circuits, that is, (S − J)∪· K ∈ K.

Proof: The proof is by induction on the size of I. First assume that |I| = 0, so I = ∅.
We claim that any set S may be written as a disjoint union of one independent set
and a disjoint union of circuits. (The proof of this claim is by induction on the size
of S. If S is an independent set, then it has the desired form. If S is dependent then
S contains a minimal dependent set, that is, a circuit C. By induction we know that
S −C may be written as a disjoint union of one independent set and a disjoint union
of circuits. But now S = (S −C)∪· C has the desired form, and the claim is proved.)
So, when I (and thus also K) is empty, we can decompose S into the disjoint union
of one independent set, which serves as J , and a collection of disjoint circuits. It is
then easy to check that the statement of the theorem holds.

For the induction step, consider the case when I is non-empty. Choose v ∈ I.
Then {v} is independent. Let us consider the matroid M/v on the set V ′ = V −{v}.
Let I ′ = I − {v} and S ′ = S − {v}. Observe that I ′ is independent in the matroid
M/v. By induction we can find J ′ and K ′ such that J ′ is independent in M/v,
J ′ − I ′ ⊆ S ′, K ′ ⊆ I ′, and (S ′ − J ′)∪· K ′ belongs to K′. Let T ′ = (S ′ − J ′)∪· K ′.
Let E ⊆ {v} be the set such that T ′ ∪· E ∈ K (see Lemma 5.5). Let K = K ′ ∪· E
and J = J ′ ∪· {v}. Observe that J is an independent set in the matroid M . Also,
J − I = J ′ − I ′ ⊆ S ′ ⊆ S. Now,

(S − J)∪· K = (S ′ − J ′)∪· K ′ ∪· E

= T ′∪· E ∈ K.

That is, (S −J)∪· K is a disjoint union of circuits. This completes the induction and
thus the proof. 2

It is clear that the empty set belongs to K, so Condition (A) holds. By Lemma 5.2
and Proposition 5.6 we know that M , together with K, satisfies Conditions (B)
and (C). Hence, if every singleton is an independent set of M then K is the Nim-
basis for the Nim-regular complex of independent sets of M . Thus by Theorem 4.4
we have:
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Theorem 5.7 Let M be a binary matroid such that the singleton {v} is an indepen-
dent set for all v ∈ V . Then the zero positions on M are precisely those positions
that have binary expansions ∑

i≥0

2i · e(Ai),

where Ai ∈ K. In other words, the zero positions on M are those positions where 2i

is carried by a disjoint union of circuits for each i. 2

It should be noted that not all Nim-regular matroids are binary. Consider, for
example, the simplicial complex ∆k(V ), which was defined before Proposition 4.7. It
is a Nim-regular complex. Moreover, the faces of ∆k(V ) form the independent sets of
a matroid on V . This is the uniform matroid of rank k − 1 on the set V . But when
k > 2, this matroid is not binary.

Observe that classical Nim corresponds to playing simplicial Nim on the binary
matroid (V, φ, W ), where φ is a non-zero constant vector. That is, there is an x ∈ W ,
x 6= 0, such that φ(v) = x for all v ∈ V . We note that classical Nim also is a special
case of the game considered in Proposition 4.7.

An important class of binary matroids is the class of graphical matroids. Let
G be a graph with multiple edges allowed. Let V denote the set of edges of G.
Moreover, let W be the vector space over F2 spanned by the vertices of G. Define
φ : V −→ W by φ(v) = x + y, where v is the edge {x, y}. Observe that a subset I
of V is independent in the binary matroid (V, φ, W ) if and only if the graph induced
by the set I is a forest, that is, there is no closed cycle of edges in I. Thus, given a
graph G, we may play the following game. Place piles of chips on each edge of the
graph. A player is allowed to remove chips from a set of edges if those edges form a
forest. We leave it to the reader to formulate the winning strategy for this game.

6 New games from old

In this section we consider three operations on simplicial complexes under which
games on the complexes behave nicely.

Let ∆1 and ∆2 be simplicial complexes on V1 and V2, respectively, where V1 and
V2 are disjoint. The join ∆1 ∗ ∆2 of the two complexes ∆1 and ∆2 is the simplicial
complex on V1 ∪· V2, such that F is a face of the join ∆1 ∗ ∆2 if the restriction F Vi

of F to Vi is a face of ∆i for i = 1, 2. In other words, a face of ∆1 ∗ ∆2 is any union
F1 ∪· F2 where F1 ∈ ∆1 and F2 ∈ ∆2. In this case, ∆1 and ∆2 are called factors of ∆.
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The operation of taking the join of two complexes is associative, so ∆1 ∗∆2 ∗ · · · ∗∆k

is unambiguous.

A simplicial complex ∆ is called a cone if one can write ∆ = ∆1 ∗ v where v is
a single vertex. Let T be the simplicial complex consisting of two distinct isolated
vertices v1 and v2. The suspension of a simplicial complex ∆ by T is the complex
∆ ∗ T .

Theorem 6.1 Suppose ∆ is the join of ∆1 and ∆2. Then the vector n is a zero
position on ∆ = ∆1 ∗ ∆2 if and only if the restriction nVi

= (nv)v∈Vi
of n to Vi is a

zero position on ∆i for i = 1, 2.

Proof: Suppose the restriction of n is a zero position for each of the factors. Notice
that the join of one face in each factor is a face of ∆. Thus we can play on each factor
separately, since a legal move on each factor constitutes a legal move on ∆.

Conversely, suppose n is a zero position on ∆. If nVi
is not a zero position on

∆i for i = 1 or i = 2 then there is a move on ∆i to a zero position on ∆i. Thus,
there is a move n → m such that m is a zero position when restricted to each factor.
But then m is a zero position on ∆ and hence n cannot be a zero position on ∆, a
contradiction, so nVi

is indeed a zero position on ∆i for i = 1, 2. 2

For the complex consisting of a single vertex, the only zero position is the one
with an empty pile on that vertex. For a complex consisting of two disjoint vertices,
corresponding to two piles in classical Nim, the zero positions are those of the form
(n, n), that is, those having the same number of chips on each vertex. Thus we have
the following two corollaries, where, for a complex on vertex set V = W ∪· {v}, we
write n = (m, nv) to indicate that n is the position with nv chips on vertex v and
such that m = n|W .

Corollary 6.2 Let ∆ be a cone, that is, ∆ = ∆′ ∗ v where v is a single vertex. The
position n = (m, nv) is a zero position on ∆ if and only if m is a zero position on
∆′ and nv = 0.

Corollary 6.3 Let ∆ = ∆′ ∗ T be the suspension of the complex ∆′ by T = {v1, v2}.
The position n = (m, nv1 , nv2) is a zero position on ∆ if and only if m is a zero
position on ∆′ and nv1 = nv2.

The n–dimensional hyperoctahedron (or cross polytope) is the convex hull in
n–dimensional real space of {±ei : ei a standard unit vector}. Its boundary is the
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geometric realization of the simplicial complex defined, for n ≥ 2, by On = On−1∗O1,
with O1 being the complex consisting of two disjoint vertices. Hence Corollary 6.3
implies the following corollary.

Corollary 6.4 The zero positions of On, the boundary complex of the hyperoctahe-
dron, are precisely those positions that have the same entries for antipodal vertices.

Corollary 6.4 can also be derived from Theorem 3.2, since On is a pointed cir-
cuit complex whose circuits are the sets containing two antipodal vertices. In fact,
Corollary 6.4 even follows from Theorem 5.7, for On is isomorphic to the complex of
independent sets of the graphical matroid whose underlying graph has the 2n vertices
x1, . . . , xn, y1, . . . , yn and the n double edges (xi, yi) (and thus a total of 2n edges).

As it turns out, the (almost) converse of Theorem 6.1 also holds.

Theorem 6.5 Let ∆ be a simplicial complex with vertex set V . Let V = V1 ∪· V2 be a
partition of V and let ∆i be the subcomplex induced by Vi. Suppose that for every zero
position n on ∆, such that max(n) = 1, the restriction of n to V1 is a zero position
on ∆1. Then ∆ is the join of ∆1 and ∆2.

Proof: Let F be a face in ∆1 and G a face in ∆2. Consider the position where there
is a pile of size one on each vertex of F and on each vertex of G and a zero on all
other vertices of ∆. This is not a zero position on ∆ because it is not a zero position
on F and therefore not a zero position on ∆1. Thus we can make a move to a zero
position. By the hypothesis, such a move must necessarily remove all chips from F ,
since that is the only way to get a zero position on the simplex F . But then we must
clearly also remove all chips from G, for otherwise we would not get a zero position
on ∆. Since this is the only way to get a zero position on ∆, and since we know we
can make a move to a zero position, the move must be legal. This implies that F ∪· G
is a face of ∆, so ∆ is the join of ∆1 and ∆2. 2

We now define two operations, By,z
x (∆) and P y,z

x (∆), on a simplicial complex ∆.
When there is no risk of confusion, we write Bx(∆) and Px(∆).

Definition 6.6 Let ∆ be a simplicial complex on V . Assume that x ∈ V but y, z 6∈
V . Define the simplicial complex By,z

x (∆) on (V − {x})∪· {y, z} by the following
conditions:

i) If F ⊆ V − {x} is a face of ∆ then F is a face of By,z
x (∆).

ii) If F ⊆ V −{x} and F ∪· {x} is a face of ∆ then F ∪· {y, z} is a face of By,z
x (∆).
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Observe that since By,z
x (∆) is a simplicial complex, the sets F , F ∪· {y}, and F ∪· {z}

are all faces of By,z
x (∆) when the hypotheses in ii) are satisfied.

The next lemma is easy to prove and so it is left to the reader.

Lemma 6.7 Let n be a position on By,z
x (∆) and define the position p on ∆ by

pv =

{
ny + nz if v = x

nv if v ∈ V − {x}.
Then the value of n, v(n), is equal to v(p), the value of p. In particular, n is a zero
position on By,z

x (∆) if and only if p is a zero position on ∆.

Definition 6.8 Let ∆ be a simplicial complex on V . Assume that x ∈ V but y, z 6∈ V .
Define the simplicial complex P y,z

x (∆) on (V − {x})∪· {y, z} by

i) If F ⊆ V − {x} is a face of ∆ then F ∪· {y} and F ∪· {z} are faces of P y,z
x (∆).

ii) If F ⊆ V −{x} and F ∪· {x} is a face of ∆ then F ∪· {y, z} is a face of P y,z
x (∆).

Note that, under the hypotheses in ii), F , F ∪· {y}, and F ∪· {z} are all faces of P y,z
x (∆).

Proposition 6.9 The vector n is a zero position on Px(∆) if and only if both ny = nz

and p is a zero position on ∆, where

pv =

{
ny = nz if v = x

nv if v ∈ V − {x}.

Proof: Let W be the set of positions given in the proposition. Clearly we have
0 ∈ W .

Assume that n and m are both in W . Let p and q be the zero positions on ∆
corresponding to n and m. Assume that there is a move from n to m. If my = ny

then such a move will change the piles in a face F such that y, z 6∈ F . But F is also
a face of ∆, and hence we could make a move from p to q. This contradicts that p
and q are both zero positions of ∆.

If my < ny then a move from n to m has to be on a face F that contains y and z.
By the construction of P y,z

x (∆), G = (F −{y, z})∪· {x} is a face of ∆. Now we could
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Figure 4: A complex ∆ and the two derived complexes By,z
x (∆) and P y,z

x (∆).

again make a move from p to q on the face G, also leading to a contradiction. Hence
there is no move from a position in W to another position in W .

Let n be a position on Px(∆), such that n 6∈ W . Construct a position p on ∆
according to the rule

pv =

{
min(ny, nz) if v = x

nv if v ∈ V − {x}.
If p is a zero position on ∆ then make the move n → m, where my = mz =
min(ny, nz) and mv = nv for v ∈ V − {x}. Otherwise, there is a move p → q, where
q is a zero position on ∆. Assume that this move takes place on the face F of ∆.
Let m be the position in W corresponding to the zero position q.

If x ∈ F then we can make the move n → m on the face (F−{x})∪· {y, z}. If x 6∈ F
then we can make the move n → m on one of the sets F , F ∪· {y}, and F ∪· {z}. But
these sets are all faces of P y,z

x (∆). Hence, we conclude that the positions described
in W are indeed all the zero positions of P y,z

x (∆). 2

Let ∆ be a Nim-regular simplicial complex with Nim-basis B. Let E be the collection
of subsets of (V − {x})∪· {y, z}, defined by:

E = {D ∈ B : x 6∈ D} ∪ {(D − {x})∪· {y, z} : x ∈ D ∈ B}.
Then the complex P y,z

x (∆) is Nim-regular and E is its Nim-basis. To see this, apply
Proposition 6.9 and Proposition 4.3.

Consider the simplicial complex ∆ in Figure 4. Its zero positions n satisfy nu +
nx = nw. Hence the zero positions n of By,z

x (∆) satisfy nu + ny + nz = nw by
Lemma 6.7. Moreover, Proposition 6.9 implies that the zero positions n of P y,z

x (∆)
are those positions n for which ny = nz and nu + ny = nw.
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We may iterate the two operations By,z
x and P y,z

x . For Y = {y1, . . . , yk} define
BY

x (∆) and P Y
x (∆) by

BY
x (∆) = Byk−1,yk

zk−1
(· · ·By2,z2

z1
(By1,z1

x (∆)) · · ·),
P Y

x (∆) = P yk−1,yk
zk−1

(· · ·P y2,z2
z1

(P y1,z1
x (∆)) · · ·),

where z1, . . . , zk−1 are dummy variables. Observe that the order of the elements of
Y does not matter, hence the operations are well-defined. Another description of
these two operations is this: The simplicial complexes BY

x (∆) and P Y
x (∆) on the set

(V − {x})∪· Y fulfill the following conditions:

i) If F ⊆ V − {x} is a face of ∆ then F is a face of BY
x (∆).

ii) If F ⊆ V − {x} and F ∪· {x} is a face of ∆ then F ∪· Y is a face of BY
x (∆).

iii) If F ⊆ V − {x} is a face of ∆ and Y ′ is a subset of Y of cardinality less than
|Y | then F ∪· Y ′ is a face of P Y

x (∆).

iv) If F ⊆ V − {x} and F ∪· {x} is a face of ∆ then F ∪· Y is a face of P Y
x (∆).

As a consequence of Lemma 6.7 and Proposition 6.9 we have the following two
corollaries.

Corollary 6.10 Let n be a position on BY
x (∆) and define the position p on ∆ by

pv =

{ ∑
y∈Y ny if v = x
nv if v ∈ V − {x}.

Then the value of n, v(n), is equal to the value of p, v(p). In particular, n is a zero
position on BY

x (∆) if and only if p is a zero position on ∆.

Corollary 6.11 The vector n is a zero position on P Y
x (∆) if and only if both ny1 =

· · · = nyk
and p is a zero position on ∆, where

pv =

{
ny1 if v = x
nv if v ∈ V − {x}.
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7 The length of a zero position

In this section we will introduce a fourth operation on simplicial complexes and show
how this operation preserves zero positions. In order to proceed we need to define
the concept of the length of a zero position.

Definition 7.1 Let n be a zero position of the simplicial complex ∆. The length
`∆(n) of n is recursively defined by setting `∆(0) = 0 and, for n 6= 0,

`∆(n) = 1 + max({`∆(m) : m is a zero position of ∆ and m < n}).

That is, `∆(n) is equal to the length of a longest chain 0 = m0 < m1 < · · · < mh = m,
where each mi is a zero position on ∆. In other words, if n is a zero position then
`∆(n) is the maximum number of moves it can take the second player to win the
game, assuming that both players try to make the game as long as possible and that
the second player always moves to a zero position. We will write `(n) when the
simplicial complex ∆ is understood.

Lemma 7.2 If C is a circuit of the simplicial complex ∆, then the zero position
n · e(C) has length n, that is, `∆(n · e(C)) = n.

Definition 7.3 Let ∆ be a simplicial complex on V . Assume that z 6∈ V . Define the
simplicial complex Cz(∆) on V ∪ {z} by the following conditions:

i) V is a face of Cz(∆).

ii) If F is a face of ∆ then F ∪ {z} is a face of Cz(∆).

Proposition 7.4 Let ∆ be a simplicial complex on vertex set V . The vector n is a
zero position on Cz(∆) if and only if n V is a zero position on ∆ and nz = `∆(n V ).

Proof: For n a position on Cz(∆) we will, as in Corollary 6.2, write n = (p, r)
if n V = p and nz = r. Also let W be the set of all positions described in the
proposition. Clearly 0 ∈ W , since `(0) = 0.

Assume that there is a move n → m, where both n and m belong to W . Let
n = (p, r) and m = (q, s). Since p and q are zero positions on ∆, we know that
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there is no move from p to q. Hence the only way a move n → m can take place is
by making a move on some subset of V that is not a face of ∆. But this implies that
r = s. Since q < p, we have that `(q) < `(p). This contradicts `(p) = r = s = `(q).

Given a position n 6∈ W we would like to find a position m ∈ W such that there
is a move n → m. Let n = (p, r).

First assume that p is a zero position on ∆. Then we either have `(p) < r or
`(p) > r. If `(p) < r, then make the move (p, r) → (p, `(p)). If `(p) > r then there
exists a zero position q of ∆ such that q < p and `(q) = r. In this case make the
move (p, r) → (q, r).

Now we consider the case when p is not a zero position of ∆. Let

` = max({`(q) : q is a zero position of ∆ and q < p}).

Observe that ` is well-defined since 0 is such a zero position. If r ≤ `, we can find
a zero position q such that q < p and `(q) = r. In that case, make the move
(p, r) → (q, r). Left to consider is the case when r > `. In the game on ∆ we can
make a move p → q, where q is a zero position on ∆. Since q < p we know that
`(q) ≤ ` < r. Hence we may now make the move (p, r) → (q, `(q)). This completes
the proof. 2

It is easy to observe that Cz1(Cz2(∆)) = P z1,z2
x (Cx(∆)). From this it follows that

Cz1(Cz2(∆)) = Cz2(Cz1(∆)). Moreover, this observation can be used to prove the
following proposition.

Proposition 7.5 If n is a zero position on ∆ then `Cx(∆)((n, `∆(n))) = `∆(n). In
other words, the length of a zero position on Cx(∆) equals the length of the corre-
sponding zero position on ∆.

Proof: Let h = `Cx(∆)((n, `∆(n))). Then, by Proposition 7.4, we know that the posi-
tion (n, `∆(n), h) is a zero position on Cz(Cx(∆)). But this last complex is identical
to P x,z

y (Cy(∆)). By Proposition 6.9 we know that a zero position on P x,z
y (Cy(∆))

must have piles of equal sizes on vertices x and z. Hence

`∆(n) = h,

which is what we wanted to prove. 2
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Let ∆ be a pointed circuit complex, and denote the set of circuits of ∆ by C.
Then the set of circuits of Cz(∆) is given by

C′ = {C ∪ {z} : C ∈ C}.

If the vertex v is a point of the circuit C in ∆, then v is also a point of the circuit
C ∪ {z} in Cz(∆). Hence Cz(∆) is also a pointed circuit complex. Observe that the
vertex z belongs to every circuit of Cz(∆). Now by Theorem 3.2 and Proposition 7.4
we have the following result.

Proposition 7.6 Let ∆ be a pointed circuit complex. Then the length of a zero
position

∑
C∈C

aC · e(C) on ∆ is given by

`∆

(∑
C∈C

aC · e(C)

)
=
∑
C∈C

aC .

For certain classes of Nim-regular complexes we are able to compute the length
of a zero position.

Proposition 7.7 Let ∆ be a Nim-regular complex on V with Nim-basis B. Suppose
there exist real scalars αv, where v ∈ V , such that

`∆(e(D)) =
∑
v∈D

αv,

for all D in B. Then the length of a zero position n is given by

`∆(n) =
∑
v∈V

αv · nv.

Proof: Define g(n) by
g(n) =

∑
v∈V

αv · nv.

It is easy to see that g(0) = 0 and that g(n) is a non-negative integer. For m < n we
have that g(m) < g(n). Thus we have that m < n implies g(m) + 1 ≤ g(n). Hence
if we have a chain 0 = m0 < m1 < · · · < m` = n then ` ≤ g(n). Hence maximizing
over all chains, we have that `∆(n) ≤ g(n).
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To prove the other direction of the inequality, we will show that there is a chain
of length g(n). Let n be the zero position

∑
i≥0 2i · e(Ai). Observe that

g(n) =
∑
v∈V

nv · αv

=
∑
v∈V

∑
i≥0

2i · χ(v ∈ Ai)

 · αv

=
∑
i≥0

2i · ∑
v∈Ai

αv

=
∑
i≥0

2i · `∆(e(Ai)).

Between the two positions∑
i≥j+1

2i · e(Ai) and
∑
i≥j

2i · e(Ai)

we can construct a chain of length 2j · `∆(e(Aj)). Now, concatenating these chains
for j ≥ 0, we obtain a chain of the desired length from 0 to n. Hence g(n) ≤ `∆(n).
Thus we have that g(n) = `∆(n) and the proof is complete. 2

This proposition specializes nicely to the complex ∆k(V ), that is, the complex where
each k-subset of V is a circuit (see Proposition 4.7). Let n be a zero position on
∆k(V ). Then we have that

`∆k(V )(n) =
1

k
· ∑

v∈V

nv.

8 Paths and cycles

We now introduce two families of simplicial complexes, namely the path complex
Pn,k and the cycle complex Cn,k, and give partial results on their respective zero
positions. Since both correspond to natural generalizations of classical Nim, it would
be interesting to find a complete strategy for them.

The path complex Pn,k is defined for n ≥ 0 and k ≥ 1. The vertex set is {1, . . . , n+
k−1}, and it has n facets, namely {i, i+1, . . . , i+k−1} for i = 1, . . . , n. Observe that
Pn,2 is a path of length n in the graph theoretic sense (see Figure 5). We may view
the game on Pn,2 as a generalization of the game of Kayles (see [1, chapter 4, page 81]
and [3, page 127]). Playing on Pn,k is equivalent to playing on piles p1, p2, . . . , pn+k−1

with a move allowed to affect any k consecutive piles.
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. . .

Pn,2

. . .

Pn,3

Figure 5: The path complexes Pn,2 and Pn,3.

When n ≤ k the path complex Pn,k is a cone over the complex Pn,k−1. Hence,
analyzing the complex Pn,k when n ≤ k reduces to analyzing the complex Pn,n−1.
Consider a position m on Pn,n−1, such that

mb = · · · = mb+n−3 = 0 and
b−1∑
i=1

mi =
2n−2∑

i=b+n−2

mi,

where 2 ≤ b ≤ n. This is a zero position on Pn,n−1. Moreover, the converse also holds
true; all zero positions of Pn,n−1 are of this form. What remains is to find the zero
positions of Pn,k when n ≥ k + 2.

The cycle complex Cn,k has vertex set V = {1, 2, . . . , n} and it has the n facets
{i, i+1, . . . , i+k−1}, where i = 1, . . . , n, and the addition is modulo n. Hence each
vertex lies in k facets, and each facet contains k vertices. When k = 2 we have a cycle
of length n in the graph theoretic sense. When k ≥ 3 and both n and k are odd we
have a (k − 1)-dimensional Möbius strip, consisting of n simplices. Playing on Cn,k

is equivalent to playing on the cyclic graph with n vertices, with a move allowed to
affect the piles on any k consecutive vertices. Observe, however, that reducing a pile
to zero does not prevent subsequent moves from affecting piles on both sides of such
an empty pile, provided that k > 2. Of course, the same is true for the path complex.

When n is even and n ≥ 2k, the map φ(i) = i + n/2(mod n) is a simplicial
bijection which satisfies the conditions of Lemma 2.3. Hence, if n is a position with
ni = nj whenever i ≡ j (mod n/2) then n is a zero position on Cn,k. In particular,
1 = (1, . . . , 1) is a zero position on Cn,k. Moreover, when n is odd it is also easy to
see that 1 is a zero position on Cn,2. Namely, any move from 1 can be countered by a
move that leaves two disjoint, isomorphic (path) complexes with a 1 on each vertex.

Conjecture 8.1 Suppose n is a zero position on the cycle complex Cn,k. If 1 =
(1, 1, . . . , 1) is a zero position on Cn,k, then n + 1 is also a zero position on Cn,k.
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Definition 8.2 Let ∆ be a simplicial complex on vertex set V and let n ∈ N
V be a

position on ∆. Then n is a genuine position on ∆ if nv > 0 for each v ∈ V .

The converse of Conjecture 8.1 does not hold. For instance, (3, 3, 2, 3, 2, 2, 1) is
a zero position on the cycle complex C7,2, but (2, 2, 1, 2, 1, 1, 0) is not. However, one
may still ask whether the converse holds for genuine zero positions. In other words,
if n is a zero position and m is a genuine zero position with n = m + 1, is then m a
zero position?

It is easy to check the conjecture when (n, k) equals (3, 2) and (4, 2), respectively.
It also holds in the case when (n, k) equals (5, 2), as we shall soon see.

Given a vector v = (v1, . . . , vm), the symmetries of v is the set of vectors

{(vk, vk+1, . . . , vm, v1, . . . , vk−1) : 1 ≤ k ≤ m}
∪ {(vk−1, . . . , v1, vm, . . . , vk) : 1 ≤ k ≤ m}.

We note that the zero positions of the path complex P3,2 are given by

{(n1, 0, n3, n4) : n1 = n3 + n4} ∪ {(n1, n2, 0, n4) : n1 + n2 = n4}.

Namely, these are clearly zero positions, and it is easy to check that any other position
can be reduced to one of these. Hence we know that the zero positions of the cycle
complex C5,2 containing at least one zero are given by the symmetries of

(b + c, 0, b, c, 0).

Proposition 8.3 The zero positions of the cycle complex C5,2 are given by the sym-
metries of

(a + b + c, a, a + b, a + c, a),

where a, b, and c are any non-negative integers.

Proof: Let W be the set of positions described. Clearly 0 ∈ W .

Let n = (n1, n2, n3, n4, n5) be a position on C5,2 and let a = min(n), and consider
the position n − a · 1. This position has at least one zero. Hence either n − a · 1 is
of the form (b + c, 0, b, c, 0), or we can make a move to such a position. We conclude
that either n is of the form (a + b + c, a, a + b, a + c, a), or we can make a move to
such a position.
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Since 0 ∈ W , it remains only to show that we cannot make a move from a position
in W to another position in W . Observe that the positions n in W have the property
that one can always find two non-adjacent entries of n which are equal to min(n).

Given two positions n,m ∈ W , assume that there is a move n → m. If
min(m) = min(n) = a, we obtain a contradiction since it implies that the move
n − a · 1 → m − a · 1 is possible. Hence we have min(m) < min(n). But since we
made a move to the position m, we must have removed chips from the piles which
had the least number of chips in them. Thus, m either has only one pile with the
minimum number of chips or else two adjacent piles with the minimum number. But
this contradicts the property in the previous paragraph about positions in W . 2

Proposition 8.4 The zero positions of C5,3 are given by the symmetries of

(0, a + b, a, b, a + b),

where a and b are any non-negative integers.

Proof: For the complex with facets {1, 2, 3}, {2, 3, 4}, and {1, 4} it follows from
Theorem 3.2 that the zero positions are given by (a+ b, a, b, a+ b), where a and b are
non-negative integers.

Let the set of positions in the statement of the proposition be denoted by W . By
the previous paragraph, it is easy to see that the positions in W are zero positions of
the cycle complex C5,3. It remains to show that they are the only zero positions of
C5,3. To do so, it is enough to show that for any position not in W there is a move
to a position in W .

Let B = max(n) and a = min(n). Either there are adjacent vertices with B chips
and a chips, respectively, or else there are two such vertices separated from each other
by just one vertex.

Let n be a position not in W . Assume that there are two adjacent vertices with
piles of sizes B and a, respectively. Without loss of generality we may assume that
n = (a, B, x, y, z).

• If y − z ≥ a, then n → (a, a + z, 0, a + z, z) ∈ W is a legal move.

• If a ≥ y − z ≥ 0, then n → (y − z, y, 0, y, z) ∈ W is a legal move.

• If 0 ≥ y − z ≥ −x, then n → (0, z, z − y, y, z) ∈ W is a legal move.

• If −x ≥ y − z, then n → (0, x + y, x, y, x + y) ∈ W is a legal move.
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This covers all possibilities and thus shows that there is always a move n → m ∈ W.

Assume, then, that there are piles with B and a chips, respectively, that are not
adjacent. Without loss of generality we can assume that n = (a, x, B, y, z). Then
one of the following gives a legal move to a position in W .

• If x ≥ z − a, then n → (a, z − a, z, 0, z).

• If z ≥ a + x ≥ 0, then n → (a, x, a + x, 0, a + x).

This completes the proof. 2

9 Concluding remarks

It seems hard to find any general theorems about the winning strategy in simplicial
Nim. However, there are many questions whose answers it would be interesting to
find and we list some of these here.

Question 9.1 Assume that n is a zero position on a complex ∆. Is the position 2 ·n
also a zero position on ∆? Is the converse true?

Question 9.2 Assume that 1 = (1, . . . , 1) is a zero position on a complex ∆. Is then
the position n · 1 = (n, . . . , n) also a zero position of ∆?

Both of these questions have affirmative answers for all the complexes considered
in Sections 3 and 4.

Recall that the set of the zero positions of a pointed circuit complex ∆ is closed
under vector addition. That is, if n and m are both zero positions then so are n+m.
This property suggests the following question.

Question 9.3 Is it possible to classify all complexes whose set of zero positions is
closed under addition?
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For instance, consider the complex ∆ on vertex set {a, b, c, d} with facets {a, b} and
{c, d}. This complex is not a pointed circuit complex, but its zero positions are closed
under addition.

A harder question is what role does the topology of a complex ∆ play in a winning
strategy on ∆. One may observe that the reduced homology groups of the complexes
∆, Bx(∆), Px(∆), and Cz(∆) are related by

H̃i(∆) ' H̃i(Bx(∆)) ' H̃i+1(Px(∆)) ' H̃i+1(C
z(∆)).

Question 9.4 Suppose ∆ has a genuine zero position. Does ∆ have a genuine zero
position n with min(n) = 1? Also, if ∆ is a connected complex with v vertices, is
minn{max(n)} bounded by some function of v for all zero positions n?

Perhaps the most intriguing question we have not been able to answer is this:

Question 9.5 For each Nim-regular complex ∆ mentioned in this paper, the Nim-
basis of ∆ consists of all sets that can be written as disjoint unions of circuits of
∆. We showed this to be the case for binary matroids, but does this property hold in
general?

The value of a game played on a non-connected simplicial complex is the Nim-
sum (see [1, page 61]) of the values on the connected components. In particular,
a position is a zero position if and only if the Nim-sum of these values is zero.
However, it seems quite hard to compute the value of games on all but the simplest
complexes. In [5], Jenkyns and Mayberry give a formula for the value of Moore’s
Nimk which is equivalent to playing on ∆k(V ) when the set V has cardinality k + 1
(see Proposition 4.7). That is, this amounts to playing on the boundary complex
of a k-dimensional simplex. Thus we can compute the Nim-value of any game on a
complex consisting of the disjoint union of such boundaries and of simplices, since
the value of a game on a simplex is simply the total number of chips on its vertices.

Another generalization of Nim is Wythoff’s game, see [1, page 76]. The referee
of the present paper suggested the following generalization of Wythoff’s game: On a
simplicial complex ∆, place a pile of chips on each vertex of ∆. Now, when making
a move you are allowed to remove chips from any non-empty face F of ∆, but you
have to remove the same number of chips from each vertex of F .

There are 14 connected non-isomorphic simplicial complexes on 4 vertices. In this
paper, we have indeed described the zero positions for all of these but one. (We invite
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x

y

z w

Figure 6: A simplicial complex with two different types of zero positions.

the reader to check this!) The only complex that we have not touched upon is shown
in Figure 6. The set W of its zero positions is given by:

W = {(nx, ny, 0, nw) : nx + ny = nw}
∪ {(nx, ny, nz, nw) : nx = ny = nz + nw, nz ≥ 1}.

It is interesting to note that the zero positions of this complex are of two different
“types”. This fact hints that in general simplicial Nim it will be hard to describe the
set of zero positions.
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