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Section 1. Introduction.

Several papers have recently been published concerning t–cores and congruence prop-
erties that they satisfy. For examples of these, see Garvan [1], Kolitsch [4], and Garvan,
Kim, and Stanton [2]. Most of the congruence results developed in the above works deal
with prime t. In contrast, the goal of this paper is to focus on two congruences satisfied
by 4–cores.

Before looking at the congruences themselves, a brief word is in order concerning the
definition of a t–core. Given the partition π of the integer n, we say that π is a t–core if
its Ferrers graph does not contain a hook of length t. See James and Kerber [3] for a fuller
discussion of the definition of t–cores.

We will focus all attention in this paper on the case t = 4. The generating function for
the number of 4–cores of n, denoted by a4(n), is given by

∑
n≥0

a4(n) qn =
(q4; q4) 4

∞
(q ; q)∞

where

(a ; q)∞ = (1− a)(1− aq)(1− aq2)(1− aq3) . . .

Section 2. Congruences Modulo 2.

In this section, our goal is to prove the following:

Theorem 1. For all n ≥ 0,

a4(9n+ 2) ≡ 0 (mod 2), (1)

and a4(9n+ 8) ≡ 0 (mod 2). (2)
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Proof. Note the following:∑
n≥0

a4(n) qn =
(q4; q4) 4

∞
(q ; q)∞

=
(q4; q4)∞(q4; q4) 3

∞
(q ; q)∞

= (q ; q) 3
∞(q4; q4) 3

∞.
(q4; q4)∞
(q ; q) 4

∞
≡ (q ; q) 3

∞(q4; q4) 3
∞ (mod 2)

=

∑
n≥0

(−1)n(2n+ 1)q(
n+1

2 )

 ∑
m≥0

(−1)m(2m+ 1)q4(m+1
2 )


≡
∑
m,n≥0

q(
n+1

2 ) + 4(m+1
2 ) (mod 2).

Here we have used Jacobi’s famous result:

(q ; q) 3
∞ =

∑
n≥0

(−1)n(2n+ 1)q(
n+1

2 )

Our theorem is now proven provided we show that all coefficients of the terms of the form
q9n+2 and q9n+8 in the double sum above are divisible by 2.

In order to get a contribution to the term q9n+2, we must have(
n+ 1

2

)
+ 4
(
m+ 1

2

)
≡ 2 (mod 9).

However, note that
(
n+1

2

)
≡ 0, 1, 3 or 6 (mod 9) for every n ∈ �. Hence,

(
n+1

2

)
+4
(
m+1

2

)
≡

0, 1, 3, 4, 5, 6, or 7 (mod 9), but never 2. Thus, there is no contribution to q9n+2. This
proves (1). Exactly the same approach proves (2); the fact needed to prove (2) is that 8 is
not in the above list. �

Section 3. A Congruence Modulo 4.

Congruence (1) is “best possible” in the sense that there are some values of a4(9n+ 2)
which are even but not divisible by 4. The earliest example is a4(2), which equals 2.
However, (2) is not best possible. In fact, the goal of this section is to prove the following
strengthening of (2):
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Theorem 2. For all n ≥ 0,

a4(9n+ 8) ≡ 0 (mod 4). (3)

Proof. We have

∑
n≥0

a4(n)q8n+5 = q5 (q32; q32)4
∞

(q8; q8)∞

= q
(q16; q16)2

∞
(q8; q8)∞

(
q2 (q32; q32)2

∞
(q16; q16)∞

)2

=
∑
n odd,
positive

qn
2

 ∑
n odd,
positive

q2n2


2

=
∑

k,l,m odd,
positive

qk
2+2l2+2m2

So we see that a4(n) equals the number of solutions of the equation 8n+5 = k2 +2l2 +2m2

with k, l,m odd and positive. This was noted by Ono [5], who used it to show that a4(n)
is positive for all n. In particular, a4(9n+ 8) is the number of solutions of

72n+ 69 = k2 + 2l2 + 2m2. (4)

We want to show that the number of solutions of (4) is divisible by 4.
As a quick example, note that if n = 0 in (4), we see that

69 = 12 + 2× 32 + 2× 52 = 12 + 2× 52 + 2× 32

= 72 + 2× 32 + 2× 12 = 72 + 2× 12 + 2× 32

and the number of solutions is 4.
Now, consider equation (4). Modulo 6 this becomes

k2 + 2l2 + 2m2 ≡ 3 (mod 6).

An odd square is 1 or 3 (mod 6). From the tables
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k2 ≡ 1 (mod 6) :

l2 : 1 1 3 3
m2 : 1 3 1 3

k2 + 2l2 + 2m2 : 5 3 3 1

k2 ≡ 3 (mod 6) :

l2 : 1 1 3 3
m2 : 1 3 1 3

k2 + 2l2 + 2m2 : 1 5 5 3

we see that the only solutions of k2+2l2+2m2 ≡ 3 (mod 6) are (k2, l2,m2) ≡ (1, 1, 3), (1, 3, 1)
or (3, 3, 3) (mod 6), that is, (k, l,m) = (±1,±1, 3), (±1, 3,±1), or (3, 3, 3) (mod 6).

However, if (k, l,m) ≡ (3, 3, 3) (mod 6), then (k2, l2,m2) ≡ (9, 9, 9) (mod 72) [since
(6k + 3)2 = 72

(
k+1

2

)
+ 9], and then k2 + 2l2 + 2m2 ≡ 45 6≡ 69 (mod 72).

So, in (4), just one of l and m is 3 (mod 6). Suppose it is m. We have m ≡ 3 (mod 6),
m2 ≡ 9 (mod 72), and

k2 + 2l2 = 72n+ 69− 2m2 ≡ 51 (mod 72).

We will show that for each m ≡ 3 (mod 6), the number of solutions is even. By the
symmetry between l and m in (4), the total number of solutions will be divisible by 4.

We want to show that the number of solutions of

k2 + 2l2 = 72n+ 51 (5)

with k, l odd and positive is even. Allowing k, l to be positive or negative, we want to show
that the number of solutions is divisible by 8. For example, if n = 0 in (5) above, we have

51 = (±1)2 + 2× (±5)2

= (±7)2 + 2× (±1)2,

yielding 8 solutions.

Each solution of (5) with k, l positive gives rise to a family of four solutions (±k,±l).
Modulo 18, (5) becomes

k2 + 2l2 ≡ 15 (mod 18).

Note the following table, which gives k2 + 2l2 (mod 18):
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k ±1 ±3 ±5 ±7 9
l
±1 3 11 9 15 11
±3 1 9 7 13 9
±5 15 5 3 9 5
±7 9 17 15 3 17

9 1 9 7 13 9

¿From this table, we see that (k, l) ≡ (±1,±5), (±7,±1), or (±5,±7) (mod 18). Observe
that each family includes just one solution with (k, l) ≡ (1, 1) (mod 6). We call that
solution the representative of the family. Thus, the representative solution has (k, l) ≡
(1,−5), (7, 1), or (−5, 7) (mod 18). For example, in

51 = (±1)2 + 2× (±5)2

= (±7)2 + 2× (±1)2,

the family (k, l) = (±1,±5) is represented by (1,−5) and the family (k, l) = (±7,±1) by
(7, 1).

We now show that the ‘families of four’ come in pairs. Suppose k2 +2l2 = 72n+51 and
that (k, l) ≡ (1,−5), (7, 1) or (−5, 7) (mod 18). Set

k′ =
k − 4l

3
, l′ = −2k + l

3
.

Then, (k′, l′) ≡ (1, 1) (mod 6). That is, k′ and l′ are odd integers and

(k′)2 + 2(l′)2 =
(
k − 4l

3

)2

+ 2
(
−2k + l

3

)2

= k2 + 2l2 = 72n+ 51.

Note that (k′, l′) belongs to a different family from (k, l). First, k′ 6= −k since k′ ≡ k ≡ 1
(mod 6). Also, k′ 6= k since, if k′ = k, k = −2l, and then

72n+ 51 = k2 + 2l2 = 6l2 ≡ 0 (mod 6),

which is false. Moreover, (k′, l′) is the representative of that family.
Therefore, since the transformation(

k
l

)
→
(
k′

l′

)
=
(

1/3 −4/3
−2/3 −1/3

)(
k
l

)
is its own inverse, we know the families come in pairs. This completes the proof of (3). �
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Section 4. Concluding Remarks.

The referee has made the following observation. We showed in the proof of Theorem 1
that a4(n) is congruent modulo 2 to the number of representations of n in the form

n =
(
l + 1

2

)
+ 4
(
m+ 1

2

)
or,

8n+ 5 = (2l + 1)2 + (4m+ 2)2

with l,m ≥ 0.

It follows that

a4(n) ≡ r2(8n+ 5)
8

(mod 2)

where r2(n) is the number of representations of n as a sum of two squares.

As is well-known, r2(n) is given for n > 0 by

r2(n) = 4(d1(n)− d3(n))

where di(n) is the number of divisors of n which are congruent to i modulo 4.

Thus a4(n) is even precisely when d1(8n+5)−d3(8n+5) is divisible by 4, which gives the
following

Theorem 3. a4(n) is even if and only if at least one of the following holds:

(α) 8n+ 5 has a prime divisor p ≡ 3(mod 4) with ordp(8n+ 5) odd,

(β) 8n+ 5 has a prime divisor p ≡ 1(mod 4) with ordp(8n+ 5) ≡ 3(mod 4),

(γ) 8n+5 has two prime divisors p1, p2 ≡ 1(mod 4) with ordp1(8n+5) and ordp2(8n+5)
both odd.

(Here, ordp(n) is the highest power of p which divides n.)

In particular, if n ≡ 2 or 8 (mod 9) then ord3(8n+ 5) = 1 is odd, and a4(n) is even.

We believe that a4(n) ≡ 0 (mod 4) for n in other arithmetic progressions, but we do
not yet have proofs of these congruences.
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