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Abstract

We show that the quantum straightening for Young tableaux and Young bitableaux
reduces in the crystal limit q 7→ 0 to the Robinson-Schensted correspondence.

1 Introduction

Let K be a field of characteristic 0, and X = (xij)1≤i, j≤n a matrix of commutative
indeterminates. The ring K[xij ] may be regarded as the algebra F [Mat n] of polynomial
functions on the space of n×n matrices over K. A linear basis of this algebra is given by
the bitableaux of Désarménien, Kung, Rota [6], which are defined in the following way.

Given two (semistandard) Young tableaux τ and τ ′ of the same shape, with columns
c1, . . . , ck and c′1, . . . , c

′
k, the Young bitableau (τ | τ ′) is the product of the k minors of X

whose row indices belong to ci and column indices to c′i, i = 1, . . . , k. For example,
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x11 x12 x15
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∣∣∣∣ x13 x14

x53 x54

∣∣∣∣×
∣∣∣∣ x25 x27

x65 x67

∣∣∣∣ .

More generally, we shall call tabloid a sequence of column-shaped Young tableaux, and we
shall associate to each pair δ, δ′ of tabloids of the same shape a bitabloid (δ | δ′) defined
as the product of minors indexed by the columns of δ and δ′.
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There exists an algorithm due to Désarménien [5] for expanding any polynomial in
K[xij ] on the basis of bitableaux. This is the so-called straightening algorithm (for
bitableaux). In particular, the monomials xi1j1 · · ·xikjk

, which obviously form another lin-
ear basis of K[xij ], can be expressed in a unique way as linear combinations of bitableaux.
Thus, the straightening of x23 x11 x32 reads
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On the other hand, the Robinson-Schensted correspondence [26, 27, 28, 17] associates
to any word w on the alphabet of symbols {1, . . . , n} a pair (P (w), Q(w)) of Young
tableaux of the same shape. For example, the image of the word w = 2 1 4 3 5 1 2 under
this correspondence is the pair

,
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Both the straightening algorithm and the Robinson-Schensted algorithm are strongly
connected with the representation theory of GLn. Indeed, the straightening algorithm
allows to compute the action of GLn in (polynomial) irreducible representations, while
the Robinson-Schensted correspondence was devised by Robinson to obtain a proof of the
Littlewood-Richardson rule for decomposing into irreducibles the tensor product of two
irreducible representations. The problem that we want to investigate is whether there
exists any relation between the straightening algorithm and the Schensted algorithm. It
turns out that to answer this question, one has to replace the algebra F [Mat n] by its
quantum analogue Fq[Mat n] [25]. This is the associative algebra over K(q) generated by
n2 letters tij , i, j = 1, . . . , n subject to the relations

tik til = q−1 til tik , (1)

tik tjk = q−1 tjk tik , (2)

til tjk = tjk til , (3)

tik tjl − tjl tik = (q−1−q) til tjk , (4)

for 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n. The quantum determinant of T = (tij) is the
element

det q = det q T :=
∑

w∈Sn

(−q)−`(w) t1w1 . . . tnwn
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of Fq[Matn]. Here Sn is the symmetric group on {1, . . . , n} and `(w) denotes the length
of the permutation w. The quantum determinant of T belongs to the center of Fq[Matn].
More generally, for I = (i1, . . . , ik) and J = (j1, . . . , jk) one defines the quantum minor of
the submatrix TIJ as

det q TIJ :=
∑

w∈Sk

(−q)−`(w) ti1jw1
. . . tikjwk

,

and the quantum bitableau (τ |τ ′) (resp. quantum bitabloid (δ | δ′)) as the product of the
quantum minors indexed by the columns of the Young tableaux τ and τ ′ (resp. of the
tabloids δ and δ′). As proved by Huang, Zhang [10], the set of quantum bitableaux is
again a linear basis of Fq[Mat n]. For example, the expansion of the monomial t23 t11 t32
on this basis is

2 1 3 3 1 2 1 2 3 1 2 3
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(1− q2 + q4) q4
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In the present example the coefficients of the expansion are polynomials in q, and only
one of them has a nonzero constant term. In other words, denote by B the linear basis
of quantum bitableaux in Fq[Mat n], and let L be the lattice generated over K[q] by the
elements of B. Then

2 1 3 3 1 2 1 1
3

2
2

3≡ mod qL

This is an illustration of the following

Theorem 1.1 Let u = i1 · · · ik and v = j1 · · · jk be two words on {1, . . . , n}, and denote by
(P (u), Q(u)), (P (v), Q(v)) their images under the Robinson-Schensted correspondence.
Then,

ti1j1 · · · tikjk
≡

{
(P (u)|P (v)) mod qL if Q(u) = Q(v)

0 mod qL otherwise
.



the electronic journal of combinatorics 3 (2) (1996), #R11 4

More generally, as will be proved in Section 5, any quantum bitabloid lies in the K[q]-
linear span L of quantum bitableaux, and is congruent modulo qL to a unique quantum
bitableau (or to 0) described by means of the Robinson-Schensted correspondence.

As a corollary we obtain an unexpected characterization of the plactic congruence on
words [17, 20], defined by

u ∼ v ⇐⇒ P (u) = P (v) .

Corollary 1.2 With the same notations as above,

u ∼ v ⇐⇒ ti1i1 · · · tikik ≡ tj1j1 · · · tjkjk
mod qL .

At this point, it is important to recall that the existence of a connection between
the Robinson-Schensted correspondence and the representation theory of the quantized
enveloping algebra Uq(gl n) at q = 0 was first discovered by Date, Jimbo, Miwa [4]. The
results presented here are in fact of the same kind as those of [4], namely, it is shown in
[4] that if V(1) denotes the basic representation of Uq(gl n), the transition matrix in V ⊗k

(1)

from the basis of monomial tensors to the Gelfand-Zetlin basis specializes when q = 0 to a
permutation matrix given by the Robinson-Schensted map. Similarly, Theorem 1.1 states
that the transition matrix in the Uq(gl n)-module Fq[Mat n] from the basis of monomials

Bτ = {ti1j1 · · · tikjk
| Q(i1 · · · ik) = Q(j1 · · · jk) = τν for some ν}

to the basis of quantum bitableaux is equal at q = 0 to a permutation matrix also
computed from the Robinson-Schensted algorithm. Here, τν denotes for each partition ν
a fixed standard Young tableau of shape ν.

The work of Date, Jimbo, Miwa, provided the starting point from which Kashiwara
developed his theory of crystal bases for quantized enveloping algebras [13, 14]. We shall
use crystal bases as the main tool for proving Theorem 1.1.

The paper is organized as follows. In Section 2, we collect the necessary material
about Uq(gl n), Uq(sl n) and their representation theory. In Section 3, we review the
definition and basic properties of Kashiwara’s crystal bases at q = 0. These two sections
are intended to provide a leisurely introduction to quantum groups and crystal bases, in
order to make the paper more self-contained and more accessible. The new results appear
in Section 4 and Section 5. In Section 4, we formulate and prove a version of Theorem 1.1
for the case of (single) tableaux, that is, we work in the subring of Fq[Mat n] generated
by the quantum minors taken on the initial rows of T . Finally in Section 5 we prove
Theorem 1.1, and its above-mentioned generalization.

2 Uq(gl n) and Uq(sl n)

A general reference for this Section and the following one is the nice exposition [3]. We
first recall the definition of the quantized enveloping algebras Uq(gl n) [12] and Uq(sl n)
[11, 7]. Uq(gl n) is the associative algebra over K(q) generated by the 4n − 2 symbols
ei, fi, i = 1, . . . , n− 1 and qεi, q−εi, i = 1, . . . , n, subject to the relations

qεiq−εi = q−εiqεi = 1 , [qεi, qεj ] = 0 , (5)
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qεiejq
−εi =




qej for i = j
q−1ej for i = j + 1

ej otherwise
, (6)

qεifjq
−εi =




q−1fj for i = j
qfj for i = j + 1
fj otherwise

, (7)

[ei, fj] = δij
qεiq−εi+1 − q−εiqεi+1

q − q−1
, (8)

[ei, ej ] = [fi, fj ] = 0 for |i− j| > 1 , (9)

eje
2
i − (q + q−1)eiejei + e2

i ej = fjf
2
i − (q + q−1)fifjfi + f 2

i fj = 0 for |i− j| = 1 . (10)

The subalgebra of Uq(gl n) generated by ei, fi, and

qhi = qεiq−εi+1, q−hi = q−εiqεi+1, i = 1, . . . , n− 1, (11)

is denoted by Uq(sl n).
The representation theories of Uq(gl n) and Uq(sl n) are closely parallel to those of

their classical counterparts U(gl n) and U(sl n). Let M be a Uq(gl n)-module and µ =
(µ1, . . . , µn) be a n-tuple of nonnegative integers. The subspace

Mµ = {v ∈M | qεiv = qµiv , i = 1, . . . , n}

is called a weight space and its elements are called weight vectors (of weight µ). Relations
(6) (7) show that

eiMµ ⊂Mµ+αi
, fiMµ ⊂Mµ−αi

,

where µ+αi = (µ1, . . . , µi+1, µi+1−1, . . . , µn) and µ−αi = (µ1, . . . , µi−1, µi+1+1, . . . , µn).
Thus, ordering the weights in the usual way by setting

µ ≤ λ ⇐⇒
k∑

i=1

µi ≤
k∑

i=1

λi , k = 1, . . . , n,

we see that the ei’s act as raising operators and the fi’s as lowering operators. A weight
vector is said to be a highest weight vector if it is annihilated by the ei’s. M is called a
highest weight module if it contains a highest weight vector v such that M = Uq(gl n) v.
If v is of weight λ, it follows that dim Mλ = 1 and M = ⊕µ≤λMµ. One then shows that
there exists for each partition λ of length ≤ n a unique highest weight finite-dimensional
irreducible Uq(gl n)-module Vλ, with highest weight λ.

Example 2.1 The basic representation V = V(1) of Uq(gl n) is the n-dimensional vector
space over K(q) with basis {vi, 1 ≤ i ≤ n}, on which the action of Uq(gl n) is as follows:

qεivj = qδijvj , eivj = δi+1 jvi, fivj = δijvi+1 .
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Example 2.2 More generally, the Uq(gl n)-module V(1k) is a
(

n
k

)
-dimensional vector space

with basis {vc} labelled by the subsets c of {1, . . . , n} with k elements (i.e. by the Young
tableaux of shape (1k) over {1, . . . , n}). The action of Uq(gl n) on this basis is given by

qεivc =
{

vc if i 6∈ c
qvc otherwise

,

eivc =
{

0 if i + 1 6∈ c or i ∈ c
vd otherwise, where d = (c \ {i + 1}) ∪ {i} ,

fivc =
{

0 if i + 1 ∈ c or i 6∈ c
vd otherwise, where d = (c \ {i}) ∪ {i + 1} .

We see that the action of the lowering operators fi does not depend on q, and can be
recorded on a colored graph whose vertices are the column-shaped Young tableaux c and
whose arrows are given by:

c
i−→ d ⇐⇒ fivc = vd .

Thus for k = 2, n = 4, one has the following graph:
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4

3
4

2 3

1 1

3

2

This is one of the simplest examples of crystal graphs (cf. Section 3).

In order to construct more interesting Uq(gl n)-modules, we use the tensor product
operation. Given two Uq(gl n)-modules M, N , we can define a structure of Uq(gl n)-
module on M ⊗N by putting

qεi(u⊗ v) = qεiu⊗ qεiv, (12)

ei(u⊗ v) = eiu⊗ v + q−hiu⊗ eiv, (13)

fi(u⊗ v) = fiu⊗ qhiv + u⊗ fiv. (14)

Indeed, the formulas

∆qεi = qεi ⊗ qεi, ∆ei = ei ⊗ 1 + q−hi ⊗ ei, ∆fi = fi ⊗ qhi + 1⊗ fi,
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make Uq(gl n) into a bialgebra. One shows that the decomposition into irreducible com-
ponents of the tensor product of two irreducible Uq(gl n)-modules is given by

Vλ ⊗ Vµ '
⊕
ν

cν
λ µ Vν , (15)

where the cν
λ µ are the classical Littlewood-Richardson numbers. In particular, it follows

that
V ⊗k '

⊕
ν`k

fν Vν , (16)

where fν denotes the number of standard Young tableaux of shape ν.

Example 2.3 The n2-dimensional Uq(gl n)-module V ⊗2 decomposes into the q-symmetric
square V(2) and the q-alternating square V(1,1). For n = 2 this decomposition is described
by the following diagram:

0
e1←− v1 ⊗ v1

f1−→ v1 ⊗ v2 + qv2 ⊗ v1
f1−→ (q + q−1) v2 ⊗ v2

f1−→ 0 ' V(2)

0
e1←− v2 ⊗ v1 − qv1 ⊗ v2

f1−→ 0 ' V(1,1)

The algebra Fq[Mat n] defined in Section 1 is also endowed with a natural structure of
Uq(gl n)-module via the action defined by

qεi tkl = qδil tkl, ei tkl = δi+1 l tk l−1, fi tkl = δil tk l+1, (17)

and the Leibniz formulas

qεi(PQ) = (qεiP ) . (qεiQ), (18)

ei(PQ) = (eiP ) . Q + (q−hiP ) . (eiQ), (19)

fi(PQ) = (fiP ) . (qhiQ) + P . (fiQ), (20)

for P, Q in Fq[Mat n]. This provides a very convenient realization of the irreducible
modules Vλ as natural subspaces of Fq[Mat n]. To describe it, we introduce some notations.
We shall write yλ for the unique Young tableau of shape and weight λ. This is the so-
called Yamanouchi tableau of shape λ. Let τ be any Young tableau of shape λ. The
quantum bitableau (yλ | τ) will be simply denoted by (τ) and will be called a quantum
tableau. This is a product of quantum minors taken on the first rows of the matrix T .
Quantum tabloids are defined similarly. Finally, denote by Tλ the subspace of Fq[Mat n]
spanned by quantum tableaux (τ) of shape λ. Then one can show [19, 23] the following
q-analogue of a classical result of Deruyts (see [9]).

Theorem 2.4 The subspace Tλ is invariant under the action of Uq(gl n) on Fq[Mat n],
and is isomorphic as a Uq(gl n)-module to the simple module Vλ.

The action of Uq(gl n) on Tλ is computed by means of the q-straightening formula. Namely,
for column-shaped quantum tableaux one checks easily that the action coincides with
the one previously described in Example 2.2. For general quantum tableaux we use
Leibniz formulas (18) (19) (20), and when necessary we use the q-straightening algorithm
(cf. Section 4) for converting the quantum tabloids of the right-hand side into a linear
combination of quantum tableaux.
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Example 2.5 We choose n = 3 and λ = (2, 1). T(2,1) is 8-dimensional and one has for
instance

f1 = + q = (1 + q2) −q3

3
1 1

3
1 2

3
2 1

3
1 2

2
1 3

In this example, the quantum tableaux (τ) have been written for short τ (without brack-
ets). This small abuse of notation will be used freely in the sequel.

This realization of Vλ is, up to some minor changes of convention, the same as the one
described in [2] via the q-Young symmetrizers of the Hecke algebra of type A.

We denote by Fq[GLn/B] the subspace of Fq[Mat n] spanned by the quantum tableaux.
It follows from the q-straightening formula that this is in fact a subalgebra of Fq[Mat n]. It
coincides for q = 1 with the ring of polynomial functions on the flag variety GLn/B, hence
the notation. The quantum deformation Fq[GLn/B] has been studied by Lakshmibai,
Reshetikhin [19] and Taft, Towber [29]. As a Uq(gl n)-module it decomposes into:

Fq[GLn/B] '
⊕

`(λ)≤n

Vλ . (21)

Returning to Fq[Mat n] and its linear basis formed by quantum bitableaux, we note
that the action of Uq(gl n) defined by (17) involves only the column indices of the variables
tij . The defining relations (1) (2) (3) (4) being invariant under transposition of the matrix
T , we see that we have another action of Uq(gl n) given by

(qεi)†tkl = qδik tkl, e†i tkl = δi+1 k tk−1 l, f †
i tkl = δik tk+1 l, (22)

(where the symbol † has been added to distinguish this action from the previous one),
and the Leibniz formulas (18) (19) (20). These two actions obviously commute with each
other, so that Fq[Mat n] is now endowed with the structure of a (left) bimodule over
Uq(gl n). The quantum version of the Peter-Weyl theorem provides the decomposition
[23]

Fq[Mat n] '
⊕

`(λ)≤n

Vλ ⊗ Vλ . (23)

Here, the irreducible bimodule Vλ ⊗ Vλ is generated by applying all possible products of
lowering operators f †

i , fj to the highest weight vector (yλ|yλ).
We end this Section by noting that every Uq(gl n)-module M can be regarded by

restriction as a Uq(sl n)-module (that we still denote by M). In particular, the Vλ are also
irreducible under Uq(sl n). However we point out that, as Uq(sl n)-modules,

Vλ ' Vµ ⇐⇒ λi − λi+1 = µi − µi+1 , i = 1, . . . , n− 1 .

Example 2.6 The Uq(sl 2)-modules V(l) will be very important in the sequel and we
describe them precisely. For l ≥ 0, V(l) is a (l + 1)-dimensional vector space over K(q)
with basis {uk, 0 ≤ k ≤ l}, on which the action of Uq(sl 2) is as follows:

qh1 uk = ql−2k uk , e1 uk = [l − k + 1] uk−1 , f1 uk = [k + 1] uk+1 .
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In these formulas [m] denotes the q-integer (qm − q−m)/(q − q−1), and we understand

u−1 = ul+1 = 0. Setting [m]! = [m][m − 1] · · · [1] and f
(m)
1 = fm

1 /[m]!, we see that the

basis {uk} is characterized by uk = f
(k)
1 u0. Also, we note that the weight spaces being

one-dimensional, there is up to normalization a unique basis of V(l) whose elements are
weight vectors. The basis {uk} may therefore be regarded as canonical. This will provide
the starting point for defining the crystal basis of a Uq(gl n)-module.

3 Crystal bases

In this Section, we give, following [15], a self-contained introduction to crystal bases of
Uq(gl n)-modules.

It follows from relations (6) (7) (8) (11) that for any i = 1, . . . , n− 1, the subalgebra
Ui generated by ei, fi, qhi, q−hi is isomorphic to Uq(sl 2). Hence a Uq(gl n)-module M
can be regarded by restriction to Ui as a Uq(sl 2)-module. We shall assume from now on
that the weight spaces Mµ are finite-dimensional, that M = ⊕µMµ, and that for any i,
M decomposes into a direct sum of finite-dimensional Ui-modules. Such modules M are
said to be integrable. It follows from the representation theory of Uq(sl 2) that for any i,
the integrable module M is a direct sum of irreducible Ui-modules V(l).

Example 3.1 Let M denote the Uq(gl 3)-module V(2,1) in the realization given by Theo-
rem 2.4. As a U1-module, M decomposes into 4 irreducible components, as shown by the
following diagram:

1
2

1 1
2

2

1
3

1 1
3

2 1
2

3 2 2
3

1
2

3

1
3

3 2
3

3

e1

e1

e1

e1

f1 f1

f1 f1/[2] f1

f1

f1 f10

0

0

0 0

0

0

0

(1 + q2) − q3

On the other hand, as a U2-module, M decomposes into:



the electronic journal of combinatorics 3 (2) (1996), #R11 10

1 1
3

f2/[2] f2 0
2

3
3

2 1 3+ q

f2 0

1
2

1 1

1

1

3
2
3

3

e2

e2

e2

e2

f2 f2

f2

f2 f20

0

0

0 0

0

3

2
2

2 2

1− q

1

3
2

2
3

We observe that the U1-decomposition leads to the basis

1
3

2 1
2

3(1 + q2) − q3 1
2

3( ; )B1 =

for the 2-dimensional weight space M(1,1,1), while the U2-decomposition leads to

1 1
2

3
3

2+ q 1 1− q
3

2
2

3( ; )B2 =

These two bases are different and therefore one cannot find a basis B of weight vectors
in M compatible with both decompositions. However, as noted by Kashiwara, ‘at q = 0’
the bases B1 and B2 coincide. The next definitions will allow us to state this in a more
formal way.

Consider the simple Uq(sl 2)-module V(l) with basis {uk} (cf. Example 2.6). Kashiwara

[13, 14] introduces the endomorphisms ẽ, f̃ of V(l) defined by

ẽ uk = uk−1 , f̃ uk = uk+1 , k = 0, . . . , l,

where u−1 = ul+1 = 0. More generally, if M is a direct sum of modules V(l), that is, if there
exists an isomorphism of Uq(sl 2)-modules φ : M

∼−→ ⊕V ⊕αl

(l) , one defines endomorphisms

ẽ, f̃ of M by means of φ in the obvious way, and one checks easily that they do not
depend on the choice of φ. In particular, if M is an integrable Uq(gl n)-module, regarding
M as a Ui-module we define operators ẽi, f̃i on M for i = 1, . . . , n− 1.

Example 3.2 We keep the notations of Example 3.1. We have

1
3f̃2

3
2 1 31

2
3 + q

f̃2 01
2

31 − q
3

2
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Hence,

3
1 3

3
1 3

1
2

3

1
3

2
f̃2

f̃2 1

1 + q2

q

1 + q2

Since we want to let q tend to 0, we introduce the subring A of K(q) consisting of
rational functions without pole at q = 0. A crystal lattice of M is a free A-module L such
that M = K(q)⊗A L, L = ⊕µLµ where Lµ = L ∩Mµ, and

ẽiL ⊂ L , f̃iL ⊂ L , i = 1, . . . , n− 1 . (24)

In other words, L spans M over K(q), L is compatible with the weight space decom-
position of M and is stable under the operators ẽi and f̃i. It follows that ẽi, f̃i induce
endomorphisms of the K-vector space L/qL that we shall still denote by ẽi, f̃i. Now
Kashiwara defines a crystal basis of M (at q = 0) to be a pair (L, B) where L is a crystal
lattice in M and B is a basis of L/qL such that B = tBµ where Bµ = B∩ (Lµ/qLµ), and

ẽiB ⊂ B t {0} , f̃iB ⊂ B t {0} , i = 1, . . . , n− 1 , (25)

ẽiv = u ⇐⇒ f̃iu = v, u, v ∈ B, i = 1, . . . , n− 1 . (26)

Example 3.3 We continue Examples 3.1 and 3.2. Denote by B the basis of quantum
tableaux in M , and let L be the A-lattice in M spanned by the elements of B. Let B be
the projection of B in L/qL. Then, Example 3.1 shows that (L, B) is a crystal basis of
M .

Kashiwara has proven the following existence and uniqueness result for crystal bases
[13, 14].

Theorem 3.4 Any integrable Uq(gl n)-module M has a crystal basis (L, B). Moreover,
if (L′, B′) is another crystal basis of M , then there exists a Uq(gl n)-automorphism of M
sending L on L′ and inducing an isomorphism of vector spaces from L/qL to L′/qL′ which
sends B on B′. In particular, if M = Vλ is irreducible, its crystal basis (L(λ), B(λ)) is
unique up to an overall scalar multiple. It is given by

L(λ) =
∑

1≤i1,i2,...,ir≤n−1

A f̃i1 f̃i2 · · · f̃ir uλ, (27)

B(λ) = {f̃i1 f̃i2 · · · f̃ir uλ mod qL(λ) | 1 ≤ i1, . . . , ir ≤ n}\{0}, (28)

where uλ is a highest weight vector of Vλ.

It follows that one can associate to each integrable Uq(gl n)-module M a well-defined
colored graph Γ(M) whose vertices are labelled by the elements of B and whose edges
describe the action of the operators f̃i :

u
i−→ v ⇐⇒ f̃iu = v .

Γ(M) is called the crystal graph of M .
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Figure 1: Crystal graph of the Uq(gl 3)-module V(2, 1)

Example 3.5 The crystal graph of the Uq(gl 3)-module V(2,1) is readily deduced from
Examples 3.1, 3.2 and 3.3. It is shown in Figure 1.

It is clear from this definition that the crystal graph Γ(M) of the direct sum M =
M1 ⊕M2 of two Uq(gl n)-modules is the disjoint union of Γ(M1) and Γ(M2). It follows
from the complete reducibility of M that the connected components of Γ(M) are the
crystal graphs of the irreducible components of M . Note also that if one restricts the
crystal graph Γ(M) to its edges of colour i, one obtains a decomposition of this graph
into strings of colour i corresponding to the Ui-decomposition of M . For a vertex v of
Γ(M), we shall denote by εi(v) (resp. φi(v)) the distance of v to the origin (resp. end) of
its string of colour i, that is,

εi(v) = max{k | ẽk
i v 6= 0} , φi(v) = max{k | f̃k

i v 6= 0} .

The integers εi(v), φi(v) give information on the geometry of the graph Γ(M) around the
vertex v. They seem to be very significant from a representation theoretical point of view.
Indeed, both the Littlewood-Richardson multiplicities cν

λ µ and the q-weight multiplicities
Kλ µ(q) can be computed in a simple way from the integers εi(v), φi(v) attached to the
crystal graph Γ(Vλ) [1, 18].

One of the nicest properties of crystal bases is that they behave well under the tensor
product operation. We shall first consider an example, from which Kashiwara deduces by
induction the general description of the crystal basis of a tensor product [13].

Example 3.6 We slightly modify the notations of Example 2.6 and write {u(l)
k , k =

0, . . . , l} for the canonical basis of the Uq(sl 2)-module V(l). We recall that for convenience

we set u
(l)
−1 = u

(l)
l+1 = 0. A first basis of the tensor product V(1) ⊗ V(l) is {u(1)

j ⊗ u
(l)
k , j =
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0, 1, k = 0, . . . , l}. We define

wk = u
(1)
0 ⊗ u

(l)
k + ql−k+1u

(1)
1 ⊗ u

(l)
k−1 , k = 0, . . . , l + 1 , (29)

zk = ql−k−1 [l − k] u
(1)
1 ⊗ u

(l)
k − ql [k + 1] u

(1)
0 ⊗ u

(l)
k+1 , k = 0, . . . , l − 1 . (30)

It is straightforward to check that e1w0 = e1z0 = 0, f1wl+1 = f1zl−1 = 0, and

f1wk = [k + 1] wk+1 , f1zk = [k + 1] zk+1 .

Hence {wk} and {zk} span submodules of V(1) ⊗ V(l) isomorphic to V(l+1) and V(l−1) re-
spectively, and are the canonical bases of these irreducible representations of Uq(sl 2).
Therefore, the A-lattice L spanned by {wk}, {zk} is a crystal lattice and if we define
B = {wk mod qL}t{zk mod qL}, then (B, L) is a crystal basis of V(1)⊗V(l). On the other
hand, equations (29) (30) show that L coincides with the tensor product L(1) ⊗ L(l) of
the crystal lattices of V(1) and V(l), and that

wk ≡ u
(1)
0 ⊗ u

(l)
k mod qL , k = 0, . . . , l , wl+1 ≡ u

(1)
1 ⊗ u

(l)
l mod qL .

zk ≡ u
(1)
1 ⊗ u

(l)
k mod qL , k = 0, . . . , l − 1 .

Thus, (L, B) coincides with (L(1)⊗L(l), B(1)⊗B(l)), where we have denoted by B(1)⊗
B(l) the basis {u(1)

j ⊗ u
(l)
k , mod qL , j = 0, 1, k = 0, . . . , l}. Finally, the action of f̃1 on

B(1)⊗ B(l) is described by the crystal graph:

u
(1)
0 ⊗ u

(l)
0 → u

(1)
0 ⊗ u

(l)
1 → · · · → u

(1)
0 ⊗ u

(l)
l−1 → u

(1)
0 ⊗ u

(l)
l

↓
u

(1)
1 ⊗ u

(l)
0 → u

(1)
1 ⊗ u

(l)
1 → · · · → u

(1)
1 ⊗ u

(l)
l−1 u

(1)
1 ⊗ u

(l)
l

More generally, we have the following property [13].

Theorem 3.7 Let (L1, B1) and (L2, B2) be crystal bases of integrable Uq(gl n)-modules M1

and M2. Let B1 ⊗ B2 denote the basis {u ⊗ v, u ∈ B1, v ∈ B2} of (L1/qL1)⊗ (L2/qL2)
(which is isomorphic to (L1 ⊗ L2)/q(L1 ⊗ L2)). Then, (L1 ⊗ L2, B1 ⊗ B2) is a crystal
basis of M1 ⊗M2, the action of ẽi, f̃i on B1 ⊗B2 being given by

f̃i(u⊗ v) =
{

u⊗ f̃iv if εi(u) < φi(v)
f̃iu⊗ v if εi(u) ≥ φi(v)

, (31)

ẽi(u⊗ v) =
{

ẽiu⊗ v if εi(u) > φi(v)
u⊗ ẽiv if εi(u) ≤ φi(v)

. (32)

Theorem 3.7 enables one to describe the crystal graph of V ⊗m
(1) for any m, and to

deduce from that the description of the crystal graph Γλ of the simple Uq(gl n)-module
Vλ. For convenience, we shall identify the tensor algebra T (V(1)) with the free associative
algebra K(q)〈A〉 over the alphabet A = {1, . . . , n} via the isomorphism vi 7→ i, where
{vi} is the canonical basis of V(1) defined in Example 2.1. Accordingly, the crystal lattice
L spanned by the monomials in the vi is identified with A〈A〉 and the K-vector space
L/qL with K〈A〉.
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We recall some terminology on words. A subword of a word w = x1 · · ·xm is a word of
the form u = xi1 · · ·xik with 1 ≤ i1 < · · · < ik ≤ m. A factor of w is a subword consisting
of consecutive letters of w.

Define linear operators êi, f̂i on K〈A〉 in the following way. Consider first the case
of a two-letter alphabet A = {i, i+1}. Let w = x1 · · ·xm be a word on A. Delete every
factor ((i+1) i) of w. The remaining letters constitute a subword w1 of w. Then, delete
again every factor ((i+1) i) of w1. There remains a subword w2. Continue this procedure
until it stops, leaving a word wk = xj1 · · ·xjr+s of the form wk = ir(i+1)s. The image of

wk under êi, f̂i is the word yj1 · · · yjr+s given by

êi(i
r(i+1)s) =

{
ir+1(i+1)s−1 (s ≥ 1)

0 (s = 0)
, f̂i(i

r(i+1)s) =
{

ir−1(i+1)s+1 (r ≥ 1)
0 (r = 0)

.

The image of the initial word w is then w′ = y1 · · · ym, where yk = xk for k 6∈ {j1 , . . . , jr+s}.
For instance, if

w = (2 1) 1 1 2 (2 1) 1 1 1 2 ,

we shall have
w1 = . . 1 1 (2 . . 1) 1 1 2 ,

w2 = . . 1 1 . . . . 1 1 2 .

Thus,
ê1(w) = 2 1 1 1 2 2 1 1 1 1 1 ,

f̂1(w) = 2 1 1 1 2 2 1 1 1 2 2 ,

where the letters printed in bold type are those of the image of the subword w2. Finally,
in the general case, the action of the operators êi, f̂i on w is defined by the previous
rules applied to the subword consisting of the letters i, i+1, the remaining letters being
unchanged.

The operators êi, f̂i have been considered in [21], where they were used as building
blocks for defining noncommutative analogues of Demazure symmetrization operators. It
follows from Theorem 3.7 that they coincide in the above identification with the endo-
morphisms ẽi, f̃i on the K-space L/qL [16].

It is straightforward to deduce from the definition of êi, f̂i the following compatibility
properties with the Robinson-Schensted correspondence:

(a) for any word w on A such that êiw 6= 0, we have Q(êiw) = Q(w),

(b) for any pair of words w, u such that P (w) = P (u) and êiw 6= 0, we have P (êiw) =
P (êiu).

In other words, the operators êi, f̂i do not change the insertion tableau and are compatible
with the plactic equivalence. Moreover, the words y such that êiy = 0 for any i are
characterized by the Yamanouchi property: each right factor of y contains at least as
many letters i than i+1, and this for any i. It is well-known that for any standard Young
tableau τ there exists a unique Yamanouchi word y such that Q(y) = τ . This yields the
following crystallization of (16).
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Theorem 3.8 The crystal graph of the Uq(gl n)-module V ⊗m
(1) is the colored graph whose

vertices are the words of length m over A, and whose edges are given by:

w
i−→ u ⇐⇒ f̂iw = u .

The connected components Γτ of Γ(V ⊗m
(1) ) are parametrized by the set of Young tableaux τ

of weight (1m). The vertices of Γτ are those words w which satisfy Q(w) = τ . Moreover,
if λ denotes the shape of τ , then Γτ is isomorphic to the crystal graph Γ(Vλ).

Replacing the vertices w of Γτ by their associated Young tableaux P (w), we obtain a
labelling of Γ(Vλ) by the set of Young tableaux of shape λ, as shown in Example 3.5. It
follows from property (b) above that this labelling does not depend on the particular choice
of τ among the standard Young tableaux of shape λ. We end this section by showing a less
trivial example of crystal graph, which is computed easily using the previous description
of f̂i.

Example 3.9 The crystal graph of the Uq(gl 4)-module V(2,2) is shown in Figure 2.

4 Fq[GLn/B]

The subalgebra Fq[GLn/B] of Fq[Matn] generated by quantum column-shaped tableaux
can also be defined by generators and relations [29, 19]. The generators are denoted by
columns

ik
...
i2
i1

1 ≤ k ≤ n, 1 ≤ i1, . . . , ik ≤ n,

and their products are written by juxtaposition. The relations are

(R1) if ir = is for some indices r, s, then

ik
...
i2
i1

= 0 ,

(R2) for w ∈ Sk and i1 < i2 < · · · < ik, we have

iwk

...
iw2

iw1

= (−q)−`(w)

ik
...
i2
i1

,

(R3) for k ≤ l and j1 < j2 < · · · < jl, we have
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Figure 2: Crystal graph of the Uq(gl 4)-module V(2, 2)

i1

...

ik

j1

...

jk

jk+1

...

jl

i1

...

ik

jwk+1

...

jwl

jw1

...

jwk
=

∑
w

(−q)`(w)

where the sum runs through all w ∈ Sl such that w1 < · · · < wk and wk+1 < · · · < wl,

(R4) for k + s ≤ l − 1 and j1 < j2 < · · · < jl, we have
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i1

...

ik−1

jwk+1

jwk+2

...

jwl

jw1

...

jwk−1

jwk

r1

...

rs

∑
w

(−q)`(w) = 0

where the sum runs through all permutations w ∈ Sl such that w1 < · · · < wk and
wk+1 < · · · < wl.

Relations (R1), (R2) express the q-alternating property of quantum minors, while relations
(R3), (R4) are the natural q-analogues of Sylvester’s and Garnir’s identities respectively
(cf. [22]). Using (R1), (R2), (R3) one can express every element of Fq[GLn/B] as a linear
combination of products of columns, the size of which weakly decreases from left to right.
After that, following the same strategy as in the classical straightening algorithm, one can
by means of (R4) express all such products as linear combinations of quantum tableaux.
Note that it follows from (R3), (R4) that all the quantum tableaux (τ) appearing in the
straightening of a given tabloid (δ) have the same shape λ obtained by reordering the
sizes of the columns of δ, which means that (δ) falls in the irreducible component Vλ of
Fq[GLn/B].

Example 4.1 We apply the q-straightening algorithm to

(δ) =
1
5

2
3
6

It follows from (R1), (R2), (R3) that

1
5

2
3
6

1
5
6

2
3

1
3
5

2
6

1
2
5

3
6= + −q

Using (R4) for straightening the first term of the right-hand side, we obtain

1
5

2
3
6

=(1− q2)
1
3
5

2
6

1
2
5

3
6

1
3
6

2
5

1
2
3

5
6

1
2
6

3
5+(q3 − q) + q − q4− q2

Letting q tend to 0 in this expansion, we get an illustration of the next Theorem, which
can be regarded as a version of Theorem 1.1 for Fq[GLn/B].
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Theorem 4.2 Let B denote the linear basis of Fq[GLn/B] consisting of quantum tableaux,
and let L be the K[q]-lattice generated by B. Let λ be a partition, and (δ) a quantum tabloid
in Vλ. Denote by w the word obtained by reading the columns of δ from top to bottom and
left to right. Then,

(δ) ≡
{

(P (w)) mod qL if P(w) has shape λ
0 mod qL otherwise

.

We shall not try, though this might be interesting, to derive Theorem 4.2 from a precise
analysis of the q-straightening algorithm. The only consequence of this algorithm that we
shall need is the following:

Proposition 4.3 Any quantum tabloid lies in the K[q, q−1]-linear span of the set of quan-
tum tableaux.

Our proof of Theorem 4.2 will be derived from the following result which describes
several interesting bases of Vλ, and states that each of them gives rise to the same crystal
basis at q = 0. We first introduce some notations. Let λ be a partition, λ′ = (λ′

1, . . . , λ
′
r)

its conjugate, and σ(λ′) = (λ′
σ1

, . . . , λ′
σr

) the composition obtained by permuting the
parts of λ′ using the permutation σ ∈ Sr. A tabloid δ is said to have shape σ(λ′) if it is
a sequence of column-shaped Young tableaux (c1, . . . , cr), the size of the column ci being
equal to λ′

σi
, i = 1, . . . , r. The column reading of δ is the word uδ obtained by reading the

columns of δ from top to bottom and left to right.

Theorem 4.4 For any σ ∈ Sr, the set of quantum tabloids

Bσ = {(δ) | δ has shape σ(λ′) and P (uδ) has shape λ}

is a linear basis of Vλ. The A-lattice L spanned by Bσ is independent of σ as well as
the projection B of Bσ in L/qL, and (L, B) is a crystal basis of Vλ. For (δ) ∈ Bσ and
(γ) ∈ Bζ , we have

(δ) ≡ (γ) mod qL ⇐⇒ P (uδ) = P (uγ) .

Finally, if (δ) is such that P (uδ) has not shape λ, then (δ) ≡ 0 mod qL.

Proof: We fix σ ∈ Sr and we write µ = (µ1, . . . , µr) := σ(λ′). Recall from Example 2.2
that the q-analogue V(1k) of the k th exterior power of the basic representation has a
natural basis labelled by column-shaped Young tableaux. We introduce the K(q)-linear
map ϕµ:

V(1µ1 ) ⊗ V(1µ2 ) ⊗ · · · ⊗ V(1µr ) −→ Vλ

b
...
a

⊗

d
...
...
c

⊗ · · · ⊗
f
...
e

−→
a

...
b

c

...

...
d

· · ·
e

...
f
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Comparing (12) (13) (14) to (18) (19) (20) we see immediately that ϕµ commutes with the
action of Uq(gl n) and hence is in fact a morphism of Uq(gl n)-modules. The image Vλ is
irreducible and by (15) it appears with multiplicity one in V(1µ1 )⊗· · ·⊗V(1µr ). Therefore,
the restriction of ϕµ to the irreducible component of V(1µ1 ) ⊗ · · · ⊗ V(1µr ) with highest
weight vector the tensor product yµ := (y(1µ1 ))⊗· · ·⊗ (y(1µr )) of all highest weight vectors
in V(1µ1 ), . . . , V(1µr ) is an isomorphism, and the kernel of ϕµ is the sum of all components
Vν , ν 6= λ appearing in V(1µ1 ) ⊗ · · · ⊗ V(1µr ).

We now turn to the crystal bases of these various Uq(gl n)-modules. It follows from
Example 2.2 and Theorem 3.4 that, if we choose u(1k) = y(1k), L(1k) is the A-lattice
spanned by the basis of column-shaped quantum tableaux, while B(1k) is the projection
of this basis in L(1k)/qL(1k). Using Theorem 3.7 we deduce that a crystal basis of
V(1µ1 )⊗· · ·⊗V(1µr ) can be constructed by tensoring the crystal bases of the factors. Denote
this basis by (Lµ, Bµ). Then ϕµ(Lµ) is a crystal lattice in Vλ. According to Theorem 3.4
such a lattice is unique up to an overall scalar multiple which can be determined by
considering the highest weight space. Here we have (Lµ)λ = A yµ and ϕµ(y

µ) = (yλ).
Therefore, ϕµ(L

µ) is the crystal lattice L of Vλ specified by Lλ = A (yλ), and it does not
depend on σ. Now ϕµ induces an isomorphism from the K-subspace of Lµ/qLµ spanned
by the subset of Bµ consisting of those b in the connected component of the crystal graph
with source yµ mod qLµ, to the K-space L/qL. It is easy to check from Theorem 3.7
and the explicit description of the operators êi, f̂i which follows it that this connected
component is labelled by the elements b = c1 ⊗ · · · ⊗ cr mod Lµ such that the word
ub obtained by reading c1 from top to bottom, then c2 from top to bottom, and so on,
satisfies: P (ub) has shape λ. Hence its image is Bσ mod qL. This proves that Bσ is a basis
of Vλ and that L =

∑
b∈Bσ
A b. Moreover, (L, Bσ mod qL) is a crystal basis, which proves

by unicity that Bσ mod qL does not depend on σ. On the other hand, the elements b of
Bµ which belong to the other connected components are sent to 0 in L/qL. This means
that the tabloids (δ) such that P (uδ) has not shape λ belong to qL.

Finally, if ζ is another permutation and γ a tabloid of shape ζ(λ′), the fact that
(δ) ≡ (γ) mod qL means exactly that the words uδ and uγ label the same vertex in the two
copies of Γ(Vλ) to which they belong in Γ(V ⊗k

(1) ), that is, by Theorem 3.8, P (uδ) = P (uγ).
2

Proof of Theorem 4.2: Let (δ) be a quantum tabloid in Vλ. Proposition 4.3 shows that (δ)
is a K[q, q−1]-linear combination of quantum tableaux. On the other hand, Theorem 4.4
shows that (δ) belongs to theA-lattice L spanned by the set B = Bid of quantum tableaux.
Therefore, (δ) is in fact an element of the K[q]-lattice L spanned by B. The other
statements of Theorem 4.2 follow immediately from Theorem 4.4. 2

We point out that the quantum tabloids (δ) ∈ Bσ are easily computed using Schützen-
berger’s jeu de taquin [28]. For example, the following graph shows the δ’s giving rise to
quantum tabloids (δ) which are congruent to the quantum tableau (τ) modulo qL:
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τ =

The edges labelled i connect tabloids δ, γ obtained one from the other by permuting the
column lengths of the i th and (i+1) th columns by means of jeu de taquin. The column
readings uδ of these tabloids are distinguished words of the plactic class of uτ , called frank
words [21]. The combinatorics of frank words occurs in several interesting problems (see
[21, 24, 8]).

5 Proof of Theorem 1.1

The proof of Theorem 1.1 follows the same lines as that of Theorem 4.2, namely we first
describe several realizations of the crystal basis of the bimodule Fq[Matn] and then deduce
Theorem 1.1 by comparing them, using the unicity property stated in Theorem 3.4.

We retain the notations of Section 4 (before Theorem 4.4). In particular, we fix a
partition λ of k, and set µ = σ(λ′) for σ ∈ Sr. We denote by Wλ the subspace of Fq[Matn]
whose decomposition as a Uq(gl n)-bimodule is Wλ ' ⊕ν≤λVν ⊗ Vν . Thus, W(k) is the
homogeneous component of degree k of Fq[Matn]. For each ν ≤ λ, we choose a standard
Young tableau τν of shape ν. We can now state

Theorem 5.1 Let Bλ,σ denote the following set of quantum bitabloids:

Bλ,σ = {(δ|δ′) | δ, δ′ have shape µ and Q(uδ) = Q(u′
δ) = τν for some ν ≤ λ} .

Then Bλ,σ is a basis of Wλ. The A-lattice Lλ spanned by Bλ,σ does not depend on σ or
on the particular choice of Young tableaux {τν}. The projection Bλ of Bλ,σ in Lλ/qLλ is
also independent of σ, and (Lλ, Bλ) is a crystal basis of Wλ. Moreover for (δ|δ′) ∈ Bλ,σ

and (γ|γ′) ∈ Bλ,ζ , we have

(δ|δ′) ≡ (γ|γ′) mod qLλ ⇐⇒ P (uδ) = P (uγ) and P (uδ′) = P (uγ′) .

Finally, the crystal graph attached to (Lλ, Bλ) is the coloured graph given by

(δ|δ′) i†
l−→ (γ|δ′) ⇐⇒ f †

i (δ|δ′) = (γ|δ′) ⇐⇒ f̂iuδ = uγ ,
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(δ|δ′) ir−→ (δ|γ′) ⇐⇒ fi(δ|δ′) = (δ|γ′) ⇐⇒ f̂iuδ′ = uγ′ .

Proof: We imitate the proof of Theorem 4.4 and introduce the K(q)-linear map Φµ:
(
V(1µ1 ) ⊗ · · · ⊗ V(1µr )

)
⊗

(
V(1µ1 ) ⊗ · · · ⊗ V(1µr )

)
−→ Wλ

(c1 ⊗ · · · ⊗ cr)⊗ (d1 ⊗ · · · ⊗ dr) −→ (c1 · · · cr|d1 · · · dr)

Here ci, dj denote elements of the canonical bases of V(1µi ), V(1µj ), i.e. columns of size
µi, µj, and (c1 · · · cr|d1 · · · dr) is the quantum bitabloid formed on these columns. The
map Φµ is in fact a homomorphism of Uq(gl n)-bimodules, and therefore sends the crystal
lattice Lλ,σ spanned by the tensors (c1 ⊗ · · · ⊗ cr)⊗ (d1 ⊗ · · · ⊗ dr) onto a crystal lattice
Lλ,σ in Wλ. To describe precisely Lλ,σ, it is enough to determine its submodule L+

λ,σ of
highest weight vectors. We shall prove that L+

λ,σ = ⊕ν≤λA (yν|yν).
To do this we have to introduce some notation. We write for short V µ := V(1µ1 )⊗· · ·⊗

V(1µr ), and we consider a source vertex

y =

y1
...

yµ1

⊗ · · · ⊗
yk−µr+1

...
yk

of the crystal graph of V µ. This means that y1 · · · yk is a Yamanouchi word on {1, . . . , n}
such that the columns of y are increasing from bottom to top. By definition of a crystal
basis, there exists a highest weight vector Ty in V µ such that Ty ≡ y mod qLλ,σ. Now, let

w =

w1
...

wµ1

⊗ · · · ⊗
wk−µr+1

...
wk

be any monomial tensor of the same weight ν as y. Then Φµ(Ty ⊗ w) = αy,w(q) (yν|yν)
for some scalar αy,w(q) ∈ K(q). Indeed,

e†iΦµ(Ty ⊗ w) = Φµ(e†iTy ⊗ w) = Φµ((eiTy)⊗ w) = 0 ,

and on the other hand Φµ(Ty ⊗ w) has weight (ν, ν). Therefore Φµ(Ty ⊗ w) is a scalar
multiple of the highest weight vector (yν|yν). But from the definition of Φµ, we have

Φµ(Ty ⊗ w) =
∑
u

κu(q) (u|w) . (33)

Here w is the tabloid made of the columns of w, u runs through the tabloids of the same
shape and weight as w, and κu(q) ∈ A. Moreover, κy(0) = 1 and κu(0) = 0 for u 6= y.
Expanding (33) on the basis

βw = {tu1w1 · · · tukwk
| u1 · · ·uk has weight ν and wi = wj =⇒ ui ≤ uj}

and comparing to the similar expansion of (yν|yν), we obtain by checking the coefficient
of tw1w1 · · · twkwk

that αy,w(q) = κw(q). Therefore, Φµ(Ty⊗w) ≡ δw y (yν|yν) mod q(yν |yν),
and if y′ is another source vertex of Γ(V µ), we have

Φµ(Ty ⊗ Ty′) ≡ δy y′ (yν|yν) mod q(yν|yν) . (34)
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This proves that L+
λ,σ = ⊕ν≤λA (yν|yν), as stated.

It follows that Lλ,σ does not in fact depend on σ or on {τν}, and we may write
Lλ,σ = Lλ. We can now consider the map induced by Φµ from Lλ,σ/qLλ,σ to Lλ/qLλ

(we still denote it by Φµ). By (34), it maps to zero all the connected components of
the crystal graph of V µ ⊗ V µ with source vertex y ⊗ y′ such that y 6= y′. This means
precisely that (δ|δ′) ≡ 0 mod qLλ whenever Q(uδ) 6= Q(uδ′). On the other hand, to each
τν corresponds a unique source vertex y = y(τν) such that Q(uy) = τν . The vertices
w⊗w′ of the connected components of Γ(V µ⊗V µ) with origin y(τν)⊗ y(τν), ν ≤ λ, span
a subspace of Lλ,σ/qLλ,σ isomorphic under Φµ to Lλ/qLλ. Therefore (Lλ, Bλ,σ mod qLλ)
is a crystal basis of Wλ, and this implies that Bλ,σ mod qLλ is independent of σ. The
other statements follow now easily from Theorem 3.8. 2

Proof of Theorem 1.1: Denote by L the crystal lattice of Fq[Matn] whose submodule of
highest weight vectors is equal to ⊕ν A (yν|yν). It follows from the proof of Theorem 5.1
that the crystal lattice Lλ of Wλ is nothing but L ∩Wλ. We also see that L is spanned
over A by the set of bitableaux (τ | τ ′). Indeed, if we choose τλ to be the standard
Young tableau whose first column contains 1, 2, . . . , λ′

1, whose second column contains
λ′

1 + 1, . . . , λ′
1 + λ′

2, and so on, we have

BTλ := {(τ | τ ′) | τ, τ ′ are Young tableaux of shape λ} ⊂ Bλ,id

and BTλ mod Lλ is the part of Bλ which labels the connected component of Γ(Wλ)
corresponding to Vλ ⊗ Vλ. Therefore, (L,tλBTλ mod L) is a crystal basis of Fq[Matn]
and L = ⊕λABTλ. On the other hand, taking λ = (k) in Theorem 5.1, we find that the
set of monomials

Bk = {ti1j1 · · · tikjk
| Q(i1 · · · ik) = Q(j1 · · · jk) = τν for some ν}

gives rise to the same crystal basis under the guise (L,tkBk mod L). Hence, applying
again Theorem 3.4, it follows from the description of the crystal graph that

ti1j1 · · · tikjk
≡

{
(P (i1 · · · ik)|P (j1 · · · jk)) mod qL if Q(i1 · · · ik) = Q(j1 · · · jk)

0 mod qL otherwise
(35)

Finally, Proposition 4.3 extends to the case of bitableaux [10], that is, the coefficients
of the straightening of a bitabloid belong to K[q, q−1]. Since we have just proved that
they also belong to A, we can replace in (35) the crystal lattice L by the K[q]-lattice L
spanned by the quantum bitableaux. 2
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