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En hommage à Dominique Foata, à l’occasion de son soixantième anniversaire.

Abstract
Let α be a formal variable and Fw be a weighted species of structures (class of structures closed

under weight-preserving isomorphisms) of the form Fw = E(F cw), where E and F cw respectively
denote the species of sets and of connected Fw-structures. Multiplying by α the weight of each F cw-
structure yields the species Fw(α) = E(F cαw). We introduce a “universal” virtual weighted species,
Λ(α), such that Fw(α) = Λ(α) ◦ F+

w , where F+
w denotes the species of non-empty Fw-structures.

Using general properties of Λ(α) , we compute the various enumerative power series G(x), G̃(x),
G(x), G(x; q), G〈x; q〉, ZG(x1, x2, x3, . . .), ΓG(x1, x2, x3, . . .), for G = Fw(α) , in terms of Fw. Special
instances of our formulas include the exponential formula, Fw(α)(x) = exp(αFw(x)) = (Fw(x))α,
cyclotomic identities, and their q-analogues. The virtual weighted species, Λ(α), is, in fact, a new
combinatorial lifting of the function (1 + x)α.

Résumé

Soit α une variable formelle et Fw une espèce de structures pondérée (classe de structures
fermée sous les isomorphismes préservant les poids) de la forme Fw = E(F cw), où E et F cw désignent
respectivement l’espèce des ensembles et celle des Fw-structures connexes. En multipliant par α le
poids de chaque F cw-structure, on obtient l’espèce Fw(α) = E(F cαw). Nous introduisons une espèce
virtuelle “universelle”, Λ(α), telle que Fw(α) = Λ(α) ◦ F+

w , où F+
w désigne l’espèce des Fw-structures

non-vides. En faisant appel à des propriétés générales de Λ(α), nous calculons les diverses séries
formelles énumératives G(x), G̃(x), G(x), G(x; q), G〈x; q〉, ZG(x1, x2, x3, . . .), ΓG(x1, x2, x3, . . .),
de G = Fw(α) , en fonction de Fw. Comme cas spéciaux des formules que nous développons, on
retrouve la formule exponentielle, Fw(α)(x) = exp(αFw(x)) = (Fw(x))α, les identités cyclotomiques,
ainsi que leurs q-analogues. L’espèce virtuelle pondérée, Λ(α), est, en fait, un nouveau relèvement
combinatoire de la fonction (1 + x)α.

1 Introduction

Let f (x) and g(x) be two functions or formal power series such that

f(x) = exp(g(x)). (1)

The expression f(x)α can then be given a meaning, for any variable α, by means of the “exponential
formula”

f (x)α = exp(αg(x)). (2)
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Figure 1: A graph g with w(g) = y11 and w(α)(g) = α5y11

D. Foata played a pioneer role in the interpretation and use of these formulas in enumerative combi-
natorics; see for example [3], [12], [16]. Essentially, if f(x) and g(x) are the exponential generating
series for the structure classes F and G, then equation (1) expresses the fact that the F -structures can
be identified with assemblies of G-structures, the latter being considered as “connected” F -structures.
In that case, the “weight” αc(s) can be assigned to any F -structure s, where c(s) denotes the number
of “connected components” of s; one says that the variable α acts as a counter for (or marks) the
connected components. Formula (2) then gives the exponential generating series of this new weighted
class. For example, it is immediately seen that the function (1 − x)−α is the generating series for
permutations, where α acts as a cycle counter. This approach is fundamental in the development of
combinatorial models for the classical orthogonal polynomials; see, for example, [13]–[15], [17].

In the following, we consider weighted structure classes (called species, see [2], [19], [24]) that are
closed under isomorphisms induced by relabellings, that is, by bijections of the underlying sets. In
that case, new generating series, symmetric functions (cycle index series), and q-analogues can be
associated, in relation with the enumeration of unlabelled (i.e., up to isomorphism) or asymmetric
(i.e., whose automorphism group is reduced to the identity) structures. When moreover the concept
of connected components can be introduced, there arises the question of determining the relations
analogous to (2) for these various series. As we will see, more complex exponential formulas appear,
involving polynomials in α related to the classical “cyclotomic identity” and to a new “cocyclotomic
identity” (see Corollary 2.3).

Let us illustrate our approach with the species Grw of (simple) graphs, weighted by an edge counter,
y. For instance, the graph g of Figure 1 has weight w(g) = y11 since it has 11 edges. Note that this
weighting is invariant under relabellings and multiplicative with respect to the natural concept of
connected components, in the sense that the weight of a graph is equal to the product of the weights
of its components. These facts are summarized by the equation Grw = E(Grcw), where E denotes
the species of sets and Grc denotes the connected graphs. Now the weight w can be refined to a
new weight w(α) by adjoining a counter α of connected components. Hence the previous graph g has
a refined weight w(α)(g) = α5y11 (see Figure 1). This refinement w 7→ w(α) transforms the species
Grw of graphs weighted by the number of edges into the species Grw(α) of graphs weighted by the
numbers of edges and of connected components. Since any graph is an assembly of connected graphs,
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the transformation can be described as

Grw = E(Grcw) 7→ Grw(α) = E(Grcαw), (3)

where αw expresses that the weight w of any connected component is multiplied by α.
It is clear that the transformation (3) can be extended to any weighted species Fw, of the form

Fw = E(F cw), where F cw denotes the species of connected Fw-structures:

Fw = E(F cw) 7→ Fw(α) = E(F cαw), (4)

Our goal is to analyse the general transformation Fw 7→ Fw(α) and to deduce a number of enumerative
results. We show, in section 2, that there exists a “universal” virtual (i.e., formal difference of species,
see [2], [20], [36]) weighted species, Λ(α), such that

Fw(α) = Λ(α) ◦ F+
w , (5)

where F+
w = Fw − 1 denotes the species of non-empty Fw-structures, and we compute the main

enumerative series associated with Λ(α). From this follows an explicit general form for the series
G(x), G̃(x), G(x), G(x; q), G〈x; q〉, ZG(x1, x2, x3, . . .), ΓG(x1, x2, x3, . . .), associated with the species
G = Fw(α) , in terms of the series associated with the species Fw. In section 3, we give a number of
identities (and q-identities) which follow for some particular choices of species Fw . We conclude, in
section 4, with an analysis of the species Λ(α). In particular, we give the first terms of the molecular
decomposition of Λ(α) which constitutes a new combinatorial lifting of the binomial formula for a
formal exponent α:

(1 + x)α = 1 + αx+ α(α− 1)
x2

2!
+ α(α− 1)(α− 2)

x3

3!
+ α(α− 1)(α− 2)(α− 3)

x4

4!
+ · · · . (6)

2 The transformation Fw 7→ Fw(α)

Many formal power series can be assigned to a weighted species F = Fw. The two main ones, ZF and
ΓF are called respectively the cycle index series of F (see [19]) and the asymmetry index series of F
(see [23]–[25]). They are power series in an infinity of variables x1, x2, x3, . . . :

ZF (x1, x2, x3, . . .) =
∞∑
n=0

1
n!

∑
σ∈Sn

fσ x
σ1
1 xσ2

2 x
σ3
3 · · · , (7)

ΓF (x1, x2, x3, . . .) =
∞∑
n=0

1
n!

∑
σ∈Sn

f∗σ x
σ1
1 xσ2

2 x
σ3
3 · · · . (8)

In these formulas, the coeficients fσ (resp. f ∗σ) are �-linear (resp. �-linear) combinations of the
weights given to the F -structures on [n] = {1, 2, . . . , n}, Sn is the symmetric group of degree n and
σk denotes the number of cycles of length k in the cyclic decomposition of any permutation σ ∈ Sn.
In fact, ZF and ΓF can be seen as symmetric functions of auxiliary variables ξ1, ξ2, ξ3, . . ., by making
the substitutions

xi := pi(ξ1, ξ2, ξ3, . . .) = ξi1 + ξi2 + ξi3 + · · · , i ≥ 1 (power sums). (9)

Other specializations of the variables x1, x2, x3, . . ., in the series (7)–(8) give (see [19], [23])

ZF (x, 0, 0, . . .) = ΓF (x, 0, 0, . . .) = F (x) =
∑
n≥0

fn
xn

n!
, (10)
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ZF (x, x2, x3, . . .) = F̃ (x) =
∑
n≥0

f̃nx
n, (11)

ΓF (x, x2, x3, . . .) = F (x) =
∑
n≥0

fnx
n, (12)

where

fn = total weight of the Fw-structures on [n] = {1, 2, . . . , n}, (13)
f̃n = total weight of the unlabelled Fw-structures on n points, (14)
fn = total weight of the unlabelled asymmetric Fw-structures on n points. (15)

Of course, when the weighting w is trivial (i.e., w = 1 for any structure), then the total weights (13)
– (15) give the numbers of corresponding structures.

Finally, two q-series F (x; q) and F 〈x; q〉 can be canonically associated to the species F (see [7]–[9])
by setting

F (x; q) =
∞∑
n=0

fn(q)
xn

n!q
= ZF

(
(1− q)
(1− q)x,

(1− q)2

(1− q2)
x2,

(1− q)3

(1− q3)
x3, . . .

)
, (16)

F 〈x; q〉 =
∞∑
n=0

fn 〈q〉
xn

n!q
= ΓF

(
(1− q)
(1− q)x,

(1− q)2

(1− q2)
x2,

(1− q)3

(1− q3)
x3, . . .

)
, (17)

where

n!q =
(1− q)
(1− q) ·

(1− q2)
(1− q) ·

(1− q3)
(1− q) · · ·

(1− qn)
(1− q) (18)

denotes the q-analogue of n! (n! = lim
q→1

n!q). These q-series satisfy the following properties:

lim
q→1

F (x; q) = F (x), lim
q→0

F (x; q) = F̃ (x). (19)

lim
q→1

F 〈x; q〉 = F (x), lim
q→0

F 〈x; q〉 = F (x). (20)

Moreover their coefficients, fn(q) and fn 〈q〉, are polynomials in q of degree ≤ n(n− 1)/2. For F = E,
the species of sets, the q-series (16) and (17) take the form of the two classical q-analogues of the
exponential function:

E(x; q) =
∞∑
n=0

xn

n!q
=

1
(1− (1− q)x)(1− (1− q)qx)(1− (1− q)q2x) · · · , (21)

E〈x; q〉 =
∞∑
n=0

qn(n−1)/2 x
n

n!q
= (1 + (1− q)x)(1 + (1− q)qx)(1 + (1− q)q2x) · · · . (22)

The definition of the series ZF , ΓF , F (x), F̃ (x), F (x), F (x; q), F 〈x; q〉, can be extended to any
virtual weighted species F = Fw = Au −Bv, where Au and Bv are two weighted species, by setting
ZF = ZAu −ZBv , ΓF = ΓAu − ΓBv , and so on.

The transformations F 7→ ZF and F 7→ ΓF , from species to index series, have the remarkable
property of preserving the main combinatorial operations ([19], [23]): for any (virtual weighted) species
F and G, one has

ZF+G = ZF + ZG , ΓF+G = ΓF + ΓG , (23)
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ZF ·G = ZF · ZG , ΓF ·G = ΓF · ΓG , (24)

ZF◦G = ZF ◦ ZG , ΓF◦G = ΓF ◦ ΓG , (25)

ZF ′ =
∂ZF
∂x1

, ΓF ′ =
∂ΓF
∂x1

, (26)

In the right hand sides of (25), the operation used is the plethystic substitution of index series. It is
defined, for two arbitrary index series fw(x1, x2, x3, . . .) and gv(x1, x2, x3, . . .), with gv(0, 0, 0, . . .) = 0,
arising from weighted virtual species Fw and Gv, by

(fw ◦ gv)(x1, x2, x3, . . .) = fw((gv)1, (gv)2, (gv)3, . . .) , (27)

where (gv)k := gvk(xk, x2k, x3k, . . .) denotes the index series obtained by raising to the power k any
weight appearing in gv(x1, x2, x3, . . .) and by multiplying the index of any variable by k. The following
general principle follows immediately from the equations (23)–(26):

Principle 2.1 Any combinatorial equation (that is, a natural isomorphism, see [2]) between species
F , G, H, . . . gives rise—automatically—to seven corresponding equations between the series

F (x),G(x),H(x), . . . ,
ZF , ZG, ZH , . . . , F̃ (x), G̃(x), H̃(x), . . . , F(x; q),G(x; q),H(x; q), . . . , (28)
ΓF ,ΓG,ΓH , . . . , F (x),G(x),H(x), . . . , F〈x; q〉,G〈x; q〉,H〈x; q〉, . . . .

Here is the main result of this article.

Theorem 2.2 There exists a “universal” virtual weighted species, Λ(α), such that for any species of
the form Fw = E(F cw), we have

Fw(α) = Λ(α) ◦ F+
w , (29)

where F+
w = Fw − 1 denotes the species of non-empty Fw-structures and Fw(α) = E(F cαw) denotes the

species of Fw-structures with the adjunction to the weight of a counter α of connected components.
The main series associated to Λ(α) are given by the formulas

Λ(α)(x) = (1 + x)α,

ZΛ(α) =
∏
n≥1

(1 + xn)λn(α), Λ̃(α)(x) =
∏
n≥1

(1 + xn)λn(α), Λ(α)(x; q) =
∏
n≥1

(
1 +

(1− q)n
(1− qn)

xn
)λn(α)

(30)

ΓΛ(α) =
∏
n≥1

(1 + xn)γn(α), Λ(α)(x) =
∏
n≥1

(1 + xn)γn(α), Λ(α)〈x; q〉 =
∏
n≥1

(
1 +

(1− q)n
(1− qn)

xn
)γn(α)

,

where the exponents λn(α) and γn(α) are polynomials of degree n in α defined by

λn(α) =
1
n

∑
d|n

µ(n/d)αd, (31)

γn(α) = −λn(−α)− λn/2(−α)− λn/4(−α)− · · · − λn/2k (−α)− · · · . (32)

In (31), µ denotes the classical Möbius function and in (32), the sum ranges over all integers k ≥ 0
for which n/2k is an integer.
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Before proving Theorem 2.2, observe that when α is a positive integer, λn(α) , given by (31), is
equal to the number of primitive circular words (Lyndon words) of length n over an alphabet of α
letters (c.f. [29]). It also represents the number of irreducible unitary polynomials of degree n over
the finite field Fq of cardinality q, when α = q (c.f. [11], [31]). The polynomials (31) are known as
Lyndon polynomials (see [34]) and also as (primitive) necklace polynomials (see [30]). Finally, note
that formula (29) permits the extension of the transformation Fw 7→ Fw(α) to all the weighted species
Fw for which Fw(0) = 1. Indeed, it suffices to substitute F+

w = Fw − 1 into Λ(α). The species Fw can
even be virtual. In fact, as long as Fw(0) = 1, a concept of connected components can be defined (see
(34) below) and the associated series can be computed (see [2], [20], [22], [25]).

Proof of Theorem 2.2. Consider the species Xα of singletons of weight α and E+ = E − 1, of
non-empty sets. A. Joyal [20] has shown that the species E+ possesses an inverse (E+)<−1> under
substitution, given by the formula

(E+)<−1> = X −∆X + ∆2X −∆3X + · · · , (33)

where X is the species of singletons (of weight 1) and ∆ is the combinatorial difference operator
defined by ∆G = G ◦E+ −G, for any (virtual) species G. Since Fw = E(F cw) = 1 + E+(F cw), we get
F+
w = Fw − 1 = E+(F cw), whence

F cw = (E+)<−1> ◦ F+
w . (34)

Let us define Λ(α) by the formula

Λ(α) := E ◦Xα ◦ (E+)<−1>. (35)

A short computation, based on (33), gives the first few terms of the molecular expansion of Λ(α) (see
also Section 4):

Λ(α) = 1 +Xα + (E2)α2 − (E2)α + · · · , (36)

where (E2)α and (E2)α2 denote the species of sets of cardinality 2 weighted by α and by α2, respectively.
This shows that Λ(α) is a virtual weighted species. We then have successively

Fw(α) = E(F cαw) = E ◦Xα ◦ F cw = E ◦Xα ◦ (E+)<−1> ◦ F+
w = Λ(α) ◦ F+

w (37)

which gives (29). By taking the generating series of both sides of (35), we get

Λ(α)(x) = eα log(1+x) = (1 + x)α. (38)

The explicit formula for the cycle index series ZΛ(α) is obtained by substituting the known expressions
(see [19], [20], [22])

ZE = exp(
∑
n≥1

xn/n) , Z(E+)<−1> =
∞∑
n=1

µ(n)
n

log(1 + xn) (39)

in the formula ZΛ(α) = ZE◦Xα◦(E+)<−1> = (ZE) ◦ (αx1) ◦ (Z(E+)<−1>). The explicit computation of
the asymmetry index series ΓΛ(α) = ΓE◦Xα◦(E+)<−1> = (ΓE) ◦ (αx1) ◦ (Γ(E+)<−1>) is more delicate. It
is known [23] that

ΓE = exp(
∑
n≥1

(−1)n−1xn/n) (40)
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and we must determine Θ := Γ(E+)<−1> . Since E ◦ (E+)<−1> = 1 +E+ ◦ (E+)<−1> = 1 +X, we have
ΓE ◦Θ = 1 + x1 . Substituting Θ in both sides of (40) and taking logarithms, we find

Θ1 −
1
2

Θ2 +
1
3

Θ3 − · · ·+
(−1)i−1

i
Θi + · · · = log(1 + x1), (41)

where Θi = Θ(xi, x2i, x3i, · · ·), i ≥ 1. By summation, we obtain the remarkable relation

Θ1 −Θ2 = Ω , where Ω := Z(E+)<−1> =
∞∑
k=1

µ(k)
k

log(1 + xk) (42)

since the Möbius function satisfies the property

1
n

∑
d|n

µ(n/d)(−1)d−1 =


1, if n = 1,
−1, if n = 2,

0, if n ≥ 3.
(43)

Another summation, based on (42), gives

Θ = Ω1 + Ω2 + Ω4 + · · ·+ Ω2i + · · · . (44)

We then get, by collecting terms properly,

ΓΛ(α) = (ΓE) ◦ (αx1) ◦ (Γ(E+)<−1>) = ΓE ◦ (αΩ1 + αΩ2 + αΩ4 + · · ·) =
∏
n≥1

(1 + xn)γn(α) (45)

where

γn(α) =
∑

2i·j·k=n

(−1)j−1µ(k)
kj

αj (46)

and equation (32) is satisfied. The other series associated to Λ(α) follow directly from the formulas for
ZΛ(α)

and ΓΛ(α)
. 2

The following corollary gives the general explicit form of the series associated to the species Fw(α)

in terms of the series for Fw . The proof is straightforward and left to the reader.

Corollary 2.3 Let Fw be a weighted virtual species such that Fw(0) = 1 and set Fw(α) = Λ(α) ◦ F+
w .

Then we have

Fw(α)(x) = Fw(x)α, (47)

ZF
w(α)

(x1, x2, x3, . . .) =
∏
n≥1

ZFwn (xn, x2n, x3n, . . .)λn(α), (48)

F̃w(α)(x) =
∏
n≥1

F̃wn(xn)λn(α), (49)

Fw(α)(x; q) =
∏
n≥1

Fwn
(

(1− q)n
(1− qn)

xn; qn
)λn(α)

, (50)

ΓF
w(α)

(x1, x2, x3, . . .) =
∏
n≥1

ΓFwn (xn, x2n, x3n, . . .)γn(α), (51)

Fw(α)(x) =
∏
n≥1

Fwn(xn)γn(α), (52)

Fw(α)〈x; q〉 =
∏
n≥1

Fwn
〈

(1− q)n
(1− qn)

xn; qn
〉γn(α)

. (53)
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2

The special case α = −1 is particularly interesting. In the simplest case of the series (47), it
corresponds to the computation of the excess weight of the Fw-structures having an even number of
connected components over those having an odd number:

Fw(−1)(x) =
∑
n≥0

(f+
n − f−n )

xn

n!
, (54)

where

f+
n = total weight of Fw-structures on [n] with an even number of connected components, (55)
f−n = total weight of Fw-structures on [n] with an odd number of connected components. (56)

The behavior of the seven main series with respect to the transformation Fw 7→ Fw(−1) is described in
the following corollary.

Corollary 2.4 Let Fw be a weighted virtual species such that Fw(0) = 1 and set Fw(−1) = Λ(−1)◦F+
w .

Then we have

Fw(−1)(x) = 1/Fw(x), (57)

ZF
w(−1)

(x1, x2, x3, . . .) =
ZFw2 (x2, x4, x6, . . .)
ZFw(x1, x2, x3, . . .)

, (58)

˜Fw(−1)(x) =
F̃w2(x2)
F̃w(x)

, (59)

Fw(−1)(x; q) =
Fw2( (1−q)

(1+q)x
2; q2)

Fw(x; q)
, (60)

ΓF
w(−1)

(x1, x2, x3, . . .) = 1/
∏
k≥0

ΓF
w2k

(x2k , x2·2k , x3·2k , . . .), (61)

Fw(−1)(x) = 1/
∏
k≥0

F
w2k (x2k), (62)

Fw(−1)〈x; q〉 = 1/
∏
k≥0

F
w2k 〈

(1− q)2k

(1− q2k)
x2k ; q2k〉. (63)

Proof. It suffices to use the relations

λn(−1) =


−1, if n = 1

1, if n = 2
0, if n ≥ 3

and γn(−1) =

{
−1, if n = 2k, k ≥ 0

0, otherwise . (64)

2

Observe that the transformations described by (57)–(63) are involutive since w(−1)(−1) = w. It is
easily verified that the series associated to the universal virtual species Λ(−1) are given by

Λ(−1)(x) = (1 + x)−1,
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ZΛ(−1) =
1 + x2

1 + x1
, Λ̃(−1)(x) =

1 + x2

1 + x
, Λ(−1)(x; q) =

1 + 1−q
1+q x

2

1 + x
, (65)

ΓΛ(−1) =
∏
k≥0

(1 + x2k)
−1, Λ(−1)(x) = 1− x, Λ(−1)〈x; q〉 =

∏
k≥0

(1 +
(1− q)2k

1− q2k
x2k)−1.

3 Examples arising from particular choices of Fw

The corollaries 2.3 and 2.4 give rise to a multitude of identities and of interesting expressions, by
choosing particular species Fw. For example, in the case of the species Fw = E, of sets (trivially
weighted by w = 1), we have ZE = exp(

∑
n≥1 xn/n) and ΓE = exp(

∑
n≥1(−1)n−1xn/n). The formulas

(47)–(53) of Corollary 2.3 produce respectively the identities

eαx = (ex)α, (66)

exp(
∑
k≥1

αkxk/k) =
∏
n≥1

exp(λn(α)
∑
k≥1

xkn/k), (67)

(1− αx)−1 =
∏
n≥1

(1− xn)−λn(α), (68)

E(αx; q) = E(x; q)α E( (1−q)2
(1−q2)

x2; q2)λ2(α) E( (1−q)3
(1−q3)

x3; q3)λ3(α) · · · , (69)

exp(
∑
k≥1

(−1)k−1αkxk/k) =
∏
n≥1

exp(λn(α)
∑
k≥1

(−1)k−1xkn/k), (70)

1 + αx =
∏
n≥1

(1 + xn)γn(α), (71)

E〈αx; q〉 = E〈x; q〉α E〈 (1−q)2
(1−q2)

x2; q2〉γ2(α) E〈 (1−q)3
(1−q3)

x3; q3〉γ3(α) · · · . (72)

The reader will recognize, in (68), the classical cyclotomic identity of Gauss (see [10], [30]). The
identity (71) constitutes a kind of dual of (68) and could be called the cocyclotomic identity. The
identities (67) (due to F. Bergeron, see [1], p. 300) and (70) are extensions of (68) and (71) which also
yield (69) and (72) by specialization. Expressed in terms of the q-exponentials, the latter can be seen
as q-analogues of the cyclotomic and cocyclotomic identities.

In the case of the species Fw = S, of permutations, we have ZS =
∏
n≥1(1 − xn)−1 and ΓS =

(1− x2)/(1 − x1). Let us then denote by S(α), the transformed species of permutations, weighted by
the cycle counter α. Applications of Corollary 2.3 give for example, after a proper term collection,

ZS(α)
=

∏
n≥1

(1− xn)−νn(α), (73)

where νn(α) denotes the polynomial defined by

νn(α) =
1
n

∑
d|n

φ(n/d)αd, (74)

where φ(n) is the Euler totient function. When α is a positive integer, νn(α) is the number of circular
words of length n over an alphabet with α letters or, equivalently, the number of (not necessarily
primitive) necklaces of length n with α colors. Formula (73), due to H. Décoste, is the basis for the
computation of the cycle index series of combinatorial models of the classical orthogonal polynomials
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of Laguerre, Charlier, Meixner, Meixner-Pollaczek, and Jacobi, (see [7], [8], and also [6], [34] and [35])
and their canonical q-analogues. We also obtain

ΓS(α)
=

∏
n odd

(1− xn)−γn(α)
∏

n even

(1− xn)λn(−α). (75)

Taking the particular value α = −1, Corollary 2.4 gives the following formulas:

S(−1)(x) = 1− x, (76)
ZS(−1)

(x1, x2, x3, . . .) = (1− x1)(1− x3)(1− x5) · · · , (77)

S̃(−1)(x) = (1− x)(1− x3)(1− x5) · · · , (78)

S(−1)(x; q) = (1− x)(1− (1−q)3
(1−q3)

x3)(1− (1−q)5
(1−q5)

x5) · · · , (79)

ΓS(−1)
(x1, x2, x3, . . .) = 1− x1, (80)

S(−1)(x) = 1− x, (81)
S(−1)〈x; q〉 = 1− x. (82)

The reader is invited to give direct combinatorial proofs of these formulas.
In the case of the species Fw = Grw of graphs, weighted by an edge counter y, already seen in the

introduction, the series Grw(α)(x), ZGr
w(α)

, ˜Grw(α)(x), Grw(α)(x; q), of the associated species Grw(α)

can be computed with the help of (47)–(50), by using the known formula (see [2], [18])

ZGr(x1, x2, x3, . . .) =
∞∑
n=0

1
n!

∑
σ∈Sn

(1 + y)c1(1 + y2)c2(1 + y3)c3 · · · xσ1
1 x

σ2
2 xσ3

3 · · ·, (83)

where
ck =

1
2

∑
[i,j]=k

(i, j)σiσj + σ2k − σk +
1
2

(k mod 2)σk, (84)

and where [i, j] denotes the smallest common multiple of the integers i and j. However, the explicit
computation of the other series ΓGr

w(α)
, Grw(α)(x), Grw(α)〈x; q〉 is an open problem since no closed

formulas for the series ΓGrw , Grw(x), Grw〈x; q〉 are known up to now.
Other applications are possible, in addition to the various combinatorial models of orthogonal

polynomials already mentioned. An example is given by the species Fw = E(A) = A/X, of forests
of rooted trees (where A is the species of rooted trees). The transformation Fw 7→ Fw(α) is then
equivalent to the introduction of a counter for trees in the forests. Taking the coefficients of the seven
associated series yields families of polynomials in α: an(α), aσ(α), ãn(α), an(α; q), a∗σ(α), an(α) and
an〈α; q〉. The first is the family of classical Abel polynomials an(α) = α(α+ n)n−1 while the others
constitute generalized versions of it. Note that these generalized Abel polynomials are distinct from
those introduced in [26], since the species Fw(α) is different from the simple exponentiation (Fw)α,
even when α is an integer.

4 Some properties of the species Λ(α)

Recall that the universal virtual weighted species Λ(α) is defined by Λ(α) = E◦Xα◦(E+)<−1> and that
we have Fw(α) = Λ(α) ◦ F+

w , for any weighted species Fw such that Fw(0) = 1. Since the exponential
generating series of Λ(α) given by Λ(α)(x) = (1+x)α, it is natural to ask which properties of the function
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(1 + x)α carry over to the species Λ(α). For example, the algebraic identity ((1 + x)β)α = (1 + x)αβ

can be lifted to the combinatorial equality

Λ(α) ◦ (Λ(β))
+

= Λ(αβ), (85)

where (Λ(β))+ = Λ(β) − 1 = E+ ◦Xβ ◦ (E+)<−1> is the conjugate (for composition) of the species of
singletons of weight β by that of non-empty sets. Indeed, since Xα ◦Xβ = Xαβ , we have immediately

E ◦Xα ◦ (E+)<−1> ◦E+ ◦Xβ ◦ (E+)<−1> = E ◦Xαβ ◦ (E+)<−1>
. (86)

By taking the cycle and asymmetry index series of both sides of (85) the following identities are easily
obtained:

λn(αβ) =
∑
i·j=n

λi(αj)λj(β), γn(αβ) =
∑
i·j=n

γi(αj)γj(β), n ≥ 0. (87)

The identity on the left hand side of (87) is a variant of the well known relation (see [30])

λn(αβ) =
∑

[i,j]=n

(i, j)λi(α)λj(β). (88)

Of course, the algebraic identity Λ(α)(x) · Λ(β)(x) = (1 + x)α(1 + x)β = (1 + x)α+β = Λ(α+β)(x),
between generating series, is satisfied. However, we have, at the species level,

Λ(α) · Λ(β) 6= Λ(α+β) (89)

This behavior follows from the fact that Xα+Xβ 6= Xα+β. It is also reflected by the fact that although
λ1(α+ β) = α+ β = λ1(α) + λ1(β), we have

λn(α+ β) 6= λn(α) + λn(β), if n ≥ 2 . (90)

The difference operator ∆, defined by ∆G = G ◦ E+ − G, permits the expression of Λ(α) in the
form

Λ(α) = E(Xα)−∆E(Xα) + ∆2E(Xα)−∆3E(Xα) + · · · (91)

By using the computer algebra software Maple [4], Y. Chiricota (personal communication, see also
[5]) has computed the molecular decomposition of Λ(α), i.e., its expression as a �-linear combination
of molecular (i.e., indecomposable under addition) species, up to degree 7 . Here are the first terms,
up to degree 5:

Λ(α) = E ◦Xα ◦ (E+)<−1>

= 1 +Xα − (E2)α + (E2)α2 − (E3)α + (XE2)α − (XE2)α2 + (E3)α3

+ (E2 ◦E2)α − (E4)α + (XE3)α − (X2E2)α
+ (E2

2 )α2 − (XE3)α2 + (X2E2)α2 − (E2 ◦E2)α2 − (E2
2)α3 + (E4)α4 (92)

+ (E2E3)α + (XE4)α + (X3E2)α − (X2E3)α − (XE2
2)α − (E5)α

+ (E2E3)α2 + (X2E3)α2 − (XE4)α2 − (X3E2)α2 + (X E2 ◦E2)α2 − (XE2
2)α2

+ 2 (XE2
2)α3 − (E2E3)α3 − (X E2 ◦E2)α3 − (E2E3)α4 + (E5)α5

+ · · · ,
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where Ek denotes the species of sets of cardinality k. The molecular decomposition (92) can be seen
as a combinatorial lifting of the binomial formula

Λ(α)(x) = (1 + x)α

= 1 + αx+ α(α− 1)
x2

2!
+ α(α− 1)(α− 2)

x3

3!
+ α(α− 1)(α− 2)(α− 3)

x4

4!
+ · · · . (93)

The formulas (91) and (92) show that Λ(α) is a species of set-like type: all its molecular components
are obtained by products and compositions of species of the form Ek . For all n ≥ 0, set

mn = number of set-like molecular species of degree n, (94)
an = number of set-like atomic species of degree n. (95)

A species is atomic if it is molecular and indecomposable under the product. It can be shown that
the sequences (mn)n≥0 and (an)n≥0 satisfy the double recursive scheme

m0 = 1, m1 = 1,
a0 = 0, a1 = 1,


mn = 1

n

n∑
k=1

(
∑
d|k
dad)mn−k

an =
∑
k |n
k<n

mk
n ≥ 2, (96)

which is equivalent to the following relations:∑
n≥0

mn x
n =

∏
k≥1

1
(1− xk)ak

,
∑
n≥1

an
ns

= 1 + (ζ(s)− 1) ·
∑
n≥1

mn

ns
, (97)

where ζ(s) denotes the Riemann zeta function. In the case of all atomic and molecular species, the
first of these relations has an analogue (see [27], [28]) but not the second one. Here are the values of
mn and an, for 0 ≤ n ≤ 40:

mn = 1, 1, 2, 3, 7, 9, 20, 26, 54, 74, 137, 184, 356, 473, 841, 1154, 2034, 2742, 4740, 6405, 10874,

14794, 24515, 33246, 54955, 74380, 120501, 163828, 263144, 356621, 567330, 768854, 1212354, (98)
1644335, 2567636, 3478873, 5403223, 7314662, 11265825, 15258443, 23363143,

an = 0, 1, 1, 1, 3, 1, 6, 1, 10, 4, 12, 1, 33, 1, 29, 13, 64, 1, 100, 1, 156, 30, 187, 1, 443, 10, 476, 78,

877, 1, 1326, 1, 2098, 188, 2745, 36, 5203, 1, 6408, 477, 11084. (99)

These sequences do not appear in the 1973 edition of Sloane’s book [32] but they do in the new
edition [33]. The analytical properties of the functions (97) should prove useful for the asymptotic
analysis of the numbers mn, for n→∞.
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[20] A. Joyal, Foncteurs analytiques et espèces de structures. In: G. Labelle and P. Leroux, eds,
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