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The formula in question states that
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where µ is an indeterminate, ∆0(µ) = 2 and for j = 1, 2, . . . ,
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with (x)j = x(x+ 1) · · · (x+ j − 1) being the usual rising factorial.
The evaluation (1) was found by Mills, Robbins and Rumsey [3] in connection with some of their work

on plane partitions. Their original proof was “quite complicated.” In [1], George Andrews gave another
proof. The main idea of his proof was to exhibit a triangular matrix En, with 1’s on the diagonal, for which
MnEn is triangular, where Mn is the matrix on the left side of (1). He then showed that the diagonal entries
of MnEn were indeed the ∆’s of (2) above, proving the theorem.

For further developments in the theory of this interesting determinant see Andrews and Burge [2]. For
the combinatorial context in which determinants such as (1) arise, see the article [6] of Robbins. Zeilberger’s
algorithm, which we used to prove this result, is in [7]. The particular implementation of it that we used,
due to Peter Paule and Markus Schorn, is described in [4]. A discussion of the whole field of computer proofs
of identities is in the book [5].

Though the idea was beautiful and simple, its execution was anything but. Indeed, the proofs of the
triangularity of the product and of the nature of its diagonal entries required an argument that proved, by
twenty simultaneous inductions, twenty formidable hypergeometric identities!

We give here a short computer-assisted proof. This proof is conceptually very simple. The intrinsic
depth of the problem is reflected only in the very large polynomial that is contained in the proof certificate.

The Proof

The triangularizing matrix that Andrews discovered is the matrix En = (ei,j(µ))n−1
i,j=0, where ei,j = 0 if

i > j, and

ei,j(µ) =
1

(−4)j−i
(2j − i− 1)!(2µ+ 3j + 1)!(µ+ i)!(µ+ i+ j − 1

2)!
(j − i)!(i− 1)!(2µ+ 2j + i+ 1)!(µ+ j)!(µ+ 2j − 1

2 )!
, (3)

otherwise. En is an upper triangular matrix with unit diagonal. Define Ln = MnEn. We show first that Ln
is lower triangular by writing (Ln)i,j =

∑
k F (i, j, k, µ) and calling Zeilberger’s algorithm. If we abbreviate

(Ln)i,j by f(i), then that algorithm returns the recurrence

(2 + i+ µ) (−i+ 2 j + µ) (1 + i+ 2 j + µ) f(i)

+ 2 (−12− 26 i− 18 i2 − 4 i3 + 11 j + 5 i j + 22 j2 + 10 i j2 − 7 i µ

− 4 i2 µ+ 26 j µ+ 10 i j µ+ 8 j2 µ+ 7µ2 + 2 i µ2 + 8 j µ2 + 2µ3) f(i+ 1)
+ 4 (3 + 2 i) (−2− i+ j) (5 + 2 i+ 2 j + 2µ) f(i+ 2) = 0

(4)
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of order 2 that f satisfies. Because of the indeterminacy in the formula (3) when i ≥ 2j, this recurrence for
f(i) is valid only for i < 2j, but we need it only for i < j.

The recurrence (4) is certified by2 the rational function

R1(i, k) =
(k−1)(k−2j)(2k+µ−i−1)(−i+2k+µ)(1+2j+k+2µ)(−4−2i+16k+9ik+10µ+6iµ+3kµ+2µ2)

(−4−2i+k)(−3−2i+k)(−2−2i+k)(−1−2i+k)
.

From (4), to prove that Ln is lower triangular we fix some column j. It is easy to check that f(0) and f(1)
vanish. But then (4) tells us that f(i+ 2) vanishes as long as its coefficient in (4) is not zero, i.e., as long as
i ≤ j − 3.

It remains to establish that the ith diagonal entry of Ln is 1
2 ∆2i(2µ), and this is harder, even for

computers. This assertion is identical with the statement that dd(i) =def ∑
k FF (i, k, µ) = 1 for all i, µ, where

FF (i, k, µ) is

2(2µ+ 2i+ 1)!(µ+ 2i+ 1
2)!(2i− 1)!(µ+ i+ k)!(−1)i−k(µ+ k)!(µ+ k + i− 1

2)!
(2i− k)(µ− i+ 2k)!(µ+ 3i− 1

2 )!(i− 1)!(µ+ i+ 1
2)!(k − 1)!(2µ+ 2i+ k + 1)!4i−k(i− k)!(µ+ i)!

. (5)

We call Zeilberger’s algorithm once more (using the implementation by Peter Paule and Markus Schorn)
and it returns a recurrence of order 2 that is satisfied by the sums dd(i). That recurrence is

p(i) dd(i)− (p(i) + q(i)) dd(i+ 1) + q(i) dd(i+ 2) = 0 (6)

where

p(i) = (1 + 2 i) (1 + 3 i+ µ) (2 + 3 i+ µ) (3 + 3 i+ µ) (3 + 4 i+ 2µ) (5 + 4 i+ 2µ) r(i+ 1),
q(i) = (5 + 3 i+ 2µ) (6 + 3 i+ 2µ) (7 + 3 i+ 2µ) (7 + 6 i+ 2µ) (9 + 6 i+ 2µ) (11 + 6 i+ 2µ) r(i),

r(i) = 354 + 1808 i+ 3394 i2 + 2772 i3 + 828 i4 + 791µ+ 3021 i µ+ 3762 i2 µ+ 1524 i3 µ

+ 655µ2 + 1660 i µ2 + 1028 i2 µ2 + 238µ3 + 300 i µ3 + 32µ4.

This recurrence is certified by2 a rational function R2(i, k) whose numerator is of the form

(1 + 2i)(−1 + k)(−2i+ k)(−1− i+ 2k + µ)(−i+ 2k + µ)(3 + 4i+ 2µ)(5 + 4i+ 2µ)P15(i, k, µ),

where P15 is a certain (quite unpleasantly large) polynomial of degree 15 in its arguments, and whose
denominator is

(−4− 2i+ k)(−3− 2i+ k)(−2− 2i+ k)(−1− 2i+ k)(−2− i+ k)(−1− i+ k)(1 + 6i+ 2µ)×
(3 + 6i+ 2µ)(5 + 6i+ 2µ)(2 + 2i+ k + 2µ)(3 + 2i+ k + 2µ)(4 + 2i+ k + 2µ).

The polynomial P15 is in the “Comments” file associated with this paper. Hence any reader who wishes
to do so can cut-and-paste it from there and verify that it does indeed certify the recurrence. It can also be
computed by using the Paule-Schorn implementation of Zeilberger’s algorithm.

To verify that the diagonal entries are as required we need to check that dd(0) = dd(1) = 1, both of
which are trivial, and then check that the recurrence (6) admits only the solution dd(i) = 1. This will surely
be true unless the coefficient q(i) of the term dd(i+ 2) should vanish for some nonnegative integer i. Now
q(i) is given above in completely factored form over the field of rational numbers. (We rely on our computer
algebra systems for the truth of this fact.) Since we see no linear factors of the form ai+ b with rational a
and b, q(i) has no rational zeros. Note that being an indeterminate, µ is transcendental over the rationals.

A note on certification. We quickly review here the meaning of an assertion of the form “The recurrence
xxx is certified by the rational function R(n, k).” Suppose we are interested in a sum f(n) =

∑
k F (n, k), and

we assert that the sum f(n) satisfies a recurrence Lnf(n) = 0, where Ln is some linear difference operator

2 See “A note on certification” below.

2



��� ��������	� 
������ �
 ����	�����	�� � ��� ������� ���� �

in n with polynomial coefficients. To certify such an assertion by giving a rational function R(n, k) means
precisely the following. Write out the equation

LnF (n, k) = G(n, k + 1)−G(n, k), (7)

where F is the given summand and G = RF . This equation can now be routinely (though possibly tediously)
checked because it does not involve any summation. Hence one can cancel out all of the factorials in it and
verify the polynomial identity that remains. Having verified (7), we can sum it over all integer k, provided
that F either has finite support or vanishes at ±∞, and immediately find that f(n) does indeed satisfy
the claimed recurrence Lnf(n) = 0. Hence the rational function R(n, k), by itself, implicitly contains the
complete proof.
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