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1 Introduction

In a classic paper, I. Schur [6] introduced a class of symmetric functions, now called Schur Q-
functions, in order to determine the irreducible spin (projective) characters of symmetric groups.
In the case of the ordinary characters of symmetric groups, going back to the early work of D.
E. Littlewood and A. R. Richardson [3], the corresponding Schur functions have been used to
give useful combinatorial formulae for determining explicit values for these characters (see for
example [2]). Our aim in this paper is to obtain combinatorial formulae for the spin characters.
We see that as always in the spin case, the formulae are considerably more complicated with a
number of new interesting phenomena arising.

2 Notation and Preliminaries

2.1 Compositions and partitions

If ` is a positive integer, then λ = (λ1, . . . , λm) is a composition of ` if λi(i = 1, . . . ,m) are
positive integers such that

m∑
i=1

λi = `.

If, in addition
λ1 ≥ λ2 ≥ . . . λm > 0

then λ is a partition of `; λ is called a strict partition if

λ1 > λ2 > . . . λm > 0.

When necessary, we write `(λ) form, the length of λ and |λ| for `, the weight of λ. Let P (`) denote
the set of partitions of `, SP (`) the set of strict partitions of ` and O(`) the set of partitions where
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all the parts λi are odd. Also, we write λ \ {λi} for the partition {λ1, . . . , λi−1, λi+1, . . . , λm},
that is, with the ith part deleted with an obvious extension to the deletion of more parts.

Partitions are also denoted as λ = (1m12m2 . . .), indicating that the part i is repeated mi

times.
If λ ∈ P (`), let

U(λ) = {µ ∈ P (|µ| ≤ `)|{µ1, . . . , µ`(µ)} ⊆ {λ1, . . . , λm},

that is, U (λ) is the set of sub-partitions of λ. For r ≤ `, let

U(λ, r) = {µ ∈ U (λ)|µ ∈ P (r)},

u(λ) = |U(λ)|, u(λ, r) = |U(λ, r)|. Then, clearly U(λ, `) = {λ} and u(λ) ≤ 2`(λ) and u(λ) = 2`(λ)

if and only if λ ∈ SP (`).

Definition 2.1 A separation of λ ∈ P (`) corresponding to the composition w = (w1, w2, . . . , wk)
of ` is a k-set of partitions (λ(1), λ(2), . . . , λ(k)) such that λ(i) ∈ P (wi) (i = 1, . . . , k).

A complete set of separations (λ(1), . . . , λ(k)) of λ corresponding to the composition w =
(w1, . . . , wk) can be obtained by the following algorithm.

λ(1) ∈ U(λ,w1), λ(2) ∈ U(λ \ λ(1), w2), . . . , λ
(k) ∈ U(λ \ (λ(1), . . . , λ(k−1)), wk)

where
U(λ) ⊃ U(λ \ λ(1)) ⊃ U(λ \ (λ(1), λ(2))) ⊃ . . . ⊃ U (λ \ (λ(1), . . . , λ(k))) = ∅.

In this way, we form a tree of partitions of 0, w1, . . . , wk and corresponding to each branch of the
tree is a separation of λ. For example, the separation of the partition λ = (17325) corresponding
to the composition w = (7, 5, 6) is represented by the following tree.
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2.2 Hall-Littlewood Symmetric Functions

Let x = {x1, x2, . . . , x`} be a set of ` independent indeterminates and t an independent param-
eter. If α = (α1, α2, . . . , α`) ∈ Z`, write eα := xα1

1 . . . xα`` and

θ`(x, t) =
∏

1≤i<j≤`

xi − txj
xi − xj

.

If λ is a partition with `(λ) = m ≤ `, put λi = 0 for i = m+ 1, . . . , `. Then the Hall-Littlewood
symmetric functions Pλ(x; t) are defined by

Pλ(x; t) = νλ(t)−1
∑
w∈S`

w(eλθ`(x; t)), (2.1)

where S` is the symmetric group acting on x,

νλ(t) =
∏
i≥0

νni(t), νr(t) = (1− t)−r
r∏
i=1

(1− tj)

and ni := ni(λ) is the multiplicity of i in λ. Alternatively, as shown by Macdonald [4]

Pλ(x; t) =
∑

w∈S`/Sλ`

w(eλθ`(x; t)), (2.2)

where Sλ` is the subgroup of w ∈ S` such that λw(i) = λi (1 ≤ i ≤ `), and the summation is
taken over left coset representatives of Sλ` in S`. In fact, Sλ` =

∏
i≥0 Sni. We are going to be

more concerned with another version of the Hall-Littlewood symmetric functions, namely

Qλ(x; t) := bλ(t)Pλ(x; t), (2.3)

where bλ(t) :=
∏
i≥1

∏ni
j=1(1− tj). In particular, we put qk(x; t) = Q(k)(x; t) and note that from

(2.1) we have

qk(x; t) = (1− t)
∑̀
i=1

xki βi(x; t), (2.4)

where

βi(x; t) =
∏
j=1
i6=j

xi − txj
xi − xj

(i = 1, 2, . . . , `).

Macdonald [4] has given the following useful recurrence relation for the Qλ(x; t).

Qλ(x; t) = (1− t)
∑̀
i=1

xλ1
i βi(x; t)Qλ\{λ1}(x \ {xi}; t). (2.5)

We are, in particular, interested in the case corresponding to t = −1, as these are the so-called
Schur Q-functions which were introduced by I. Schur [6] to deal with the spin characters of
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symmetric groups. In this case, we have

(i) If λ ∈ P (`), then bλ(−1) =

{
2`(λ) ifλ ∈ SP (`) ,

0 otherwise,

(ii) Qλ(x;−1) =

{
2`(λ)Pλ(x;−1) if λ ∈ SP (`) ,

0 otherwise,

(iii) qk(x;−1) = 2
∑`
i=1 x

k
i βi(x;−1) (k = 1, 2, . . .).


(2.6)

From now on, unless otherwise stated, we assume that λ ∈ SP (`). Furthermore, in order to sim-
plify the notation, we write Qλ(x) for Qλ(x,−1), qk(x) for qk(x,−1), βk(x) for βk(x,−1), θ`(x)
for θ`(x,−1), etc.

I. Schur [6] defines Q-functions by a recursive formula and then determines a closed formula
similar to (2.2) above. We reverse the process and show that the Qλ(x) as defined above satisfy
certain properties, including the recurrence properties used in I. Schur’s definition.

If λ = (λ1, . . . , λm) ∈ SP (`), then from (2.2) and (2.6)(ii), we have

Qλ(x) = 2m
∑

w∈S`/S`−m
w(eλθ`(x)), (2.7)

where S`−m is the subgroup of S` which fixes xm+1, . . . , x` and the summation is over all left
coset representatives of S`−m in S`. Thus, we have

Qλ(x) = 2m
∑

w∈S`/S`−m
(−1)

m(m−1)
2 w

(
eλ

θm(x)∏m
i=1 βi(x)

)
, (2.8)

which is the form of the Q-function obtained by I. Schur.
We now proceed to show that the recurrence relations used to define Schur’s Q-functions

are satisfied. In order to do this, we need the following which was indeed proved by I. Schur [6,
p.226].

θm(x) =
m∑
i=2

(−1)iθ2(x1, xi)θm−2(x \ {x1, xi}) if m is even (2.9)

and

θm(x) =
m∑
i=1

(−1)i−1θm−1(x \ {xi}) if m is odd. (2.10)

Theorem 2.2 Let λ = (λ1, . . . , λm) ∈ SP (`). Then

(i) Q(r,s)(x) = qr(x)qs(x) + 2
∑s
i=1(−1)sqr+i(x)qs−i(x).

(ii) If m is even

Qλ(x) =
m∑
i=2

(−1)iQ(λ1,λi)(x)Qλ\{λ1,λi}, (x).

(iii) If m is odd

Qλ(x) =
m∑
i=1

(−1)i−1qλi(x)Q
λ\{λi}(x).
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Proof (i) From (2.5) we have

Q(r,s)(x) =
∑`
i=1 x

r
iβi(x)qs(x \ {xi})

=
∑`
i=1 x

r
iβi(x)

(∑`
j=1 x

s
jβj(x)xj−xi

xj+xi

)
=
∑`
i=1 x

r
iβi(x)

(∑`
j=1 x

s
jβj(x)

(
1− 2xi

xj+xi

))
,

from which we deduce that

Q(r,s)(x) = qr(x)qs(x)− 2
∑̀
i=1

xr+1
i βi(x)

∑̀
j=1

xsjβj(x)
1

xj + xi

 . (2.11)

A similar calculation, but now writing xj−xi
xj+xi

= −1 + 2xj
xj+xi

gives

Q(r+1,s−1)(x) = −qr+1(x)qs−1(x) + 2
∑̀
i=1

xr−1
i βi(x)

∑̀
j=1

xsjβj(x)
1

xj + xi

 . (2.12)

Now, adding (2.11) and (2.12), we have

Q(r+1,s−1)(x) = qr(x)qs(x)− qr+1(x)qs−1(x)−Q(r,s)(x).

A similar calculation to the above shows that

Q(r,1)(x) = qr(x)q1(x)− 2qr+1(x)

and the proof is now completed by induction on s.
(ii) If m is even, by substituting (2.9) in (2.8), we obtain

Qλ(x) = 2m
∑
w∈S`/S`−m(−1)m(m−1)/2w

(
eλ
∑m

i=2
(−1)iθ2(x1,xi)θm−2(x\{x1,xi})∏m

j=1
βj (x)

)

=
∑m
i=2(−1)i

(
22∑

w∈S`/S`−2
−w

(
e(λ1,λi) θ2(x1,xi)

β1(x)βi(x)

))
(

2m−2∑
w∈S`/S`−m+2

(−1)(m−2)(m−3)/2w

(
(e(λ\{λ1,λi})θm−2(x\{x1,xi})∏m

j=2
j 6=i

βj (x)

))

=
∑m
i=2(−1)iQ(λ1,λi)(x)Qλ\{λ1,λi}(x)

The proof of (iii) is similar, but using (2.10). 2

Macdonald [4, p.109] has shown that the inductive formula (2.5) can be used to extend the
definition of the Schur Q-functions to any Qµ(x), where µ = (µ1, . . . , µk) ∈ Zk, for any k.
Furthermore, Theorem 2.1(i) has been used to reduce such a Qµ(x) to a linear combination of
Qλ(x) such that λ ∈ SP (`) (see also Morris [5]). The reduction rules are as follows.
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Theorem 2.3 (i) Q(...,r,s,...)(x) = −−Q(...,s,r,...)(x) with Q(...,i,...,i,...)(x) = 0.
(ii) Q...,r,−r,...)(x) = 0, Q(µ1,...,µi−1,−r,r,µi+1,...,µn)(x) = 2(−1)rQ(µ1,...,µi−1,µi+1,...,µn)(x);
in particular Q(s,r)(x) = −Q(r,s)(x), r 6= s and Q(−r,r)(x) = 2(−1)r.

A consequence of (i) is that if λ = (λ1, . . . , λm) ∈ SP (`), then

Qλ(x) = ε(σ)Q(λσ(1),...,λσ(m)) (2.13)

for all σ ∈ Sm, where ε(σ) is the sign of the permutation σ.

3 Further Results on Schur Q-functions

¿From now on, it will be essential that it is clear on what sets our symmetric groups act, thus
the notation will be modified. We denote by Sm the symmetric group which acts on the set
m = {1, 2, . . . ,m} and Sm\k the symmetric group which acts on m \ k = {k + 1, . . . ,m}. Also,
we need to determine certain explicit left coset representations of certain groups. These are
given by the following.

Lemma 3.1 For k = 2, . . . ,m, put wk = (2k) ∈ Sm and for k = 1, 2, . . . ,m, put uk = (1k) ∈
Sm. Then

(i) {wk|k = 2, . . . ,m} is a set of left coset representatives of Sm\2 in Sm\1.

(ii) {uk|k = 1, . . . ,m} is a set of left coset representatives of Sm\1 in Sm.

We can now use the following lemma to give an alternative form for the Qλ(x).

Lemma 3.2 If λ = (λ1, . . . , λm) ∈ SP (`), then

Qλ(x) =
∑

η∈Sm\1/Sm\2

ε(η)Q(λ1,λη(2))(x)Q(λη(3),...,λη(m))(x) (3.14)

if m is even, and
Qλ(x) =

∑
η∈Sm/Sm\1

ε(η)qη(1)(x)Q(λη(2),...,λη(m))(x) (3.15)

if m is odd.

Proof If η ∈ Sm\1, then by Lemma 3.1(i) we have η = wkνk, where wk = (2k), νk ∈ Sm\2 for
some 2 ≤ k ≤ m, and so η =

(2k)

(
3 . . . k . . . s . . . m

η(3) . . . η(k) . . . η(2) . . . η(m)

)
=

(
2 3 . . . k . . . s . . . m
k η(3) . . . η(k) . . . 2 . . . η(m)

)

= (k, η(k))

(
2 3 . . . k . . . s . . . m

η(k) η(3) . . . η(2) . . . η(s) . . . η(m)

)
,
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where η(2) = k and η(s) = 2. Hence, if m is even∑
η∈Sm\1/Sm\2

ε(η)Q(λ1,λη(n))(x)Q(λη(3),...,λη(m))(x)

=
m∑
k=2

ε(k, η(k))ε

(
2 3 . . . k . . . s . . . m

η(k) η(3) . . . η(2) . . . η(s) . . . η(m)

)
Q(λ1,λk)(x)Q(λη(3),...,λη(m))(x)

=
m∑
k=2

ε(k, η(k))Q(λ1,λk)(x)Q(λ3,...,λ2,...,λm)(x),

with λ2 in the k position inQ(λ3,...,λ2,...,λm)(x), where we have used (2.13). Now, by using Theorem
2.3(i) repeatedly, we have that the right hand side of the above reduces to

m∑
k=2

(−1)k−2Q(λ1,λk)(x)Qλ\{λ1,λk}(x) = Qλ(x)

by Theorem 2.2(ii). A similar argument can be used to prove (ii). 2

Lemma 3.3 If m is even and λ ∈ SP (`), then

Qλ(x) =
1

m

∑
σ∈Sm/Sm\2

ε(σ)Q(λσ(1),λσ(2))(x)Q(λσ(3),...,λσ(m))(x)

Proof If m is even, then from (2.13), Theorem 2.2(ii) and Lemma 3.2, we have

Qλ(x) = 1
m

∑
σ∈Sm/Sm\1 ε(σ)Q(λσ(1),...,λσ(m))(x)

= 1
m

∑
σ∈Sm/Sm\1 ε(σ)

∑m
i=2(−1)iQ(λσ(1),λσ(i))(x)Q(λσ(2),...,λσ(m))\{λσ(1),λσ(i)}(x)

= 1
m

∑
σ∈Sm/Sm\1 ε(σ)

∑
η∈Sm\1/Sm\2 ε(η)Q(λση(1),λση(2))(x)Q(λση(3),...,λση(m))(x)

= 1
m

∑
σ∈Sm/Sm\2 ε(σ)Q(λσ(1),λσ(2))(x)Q(λσ(3),...,λσ(n))(x).

2

We can now use this result as the basis for an inductive proof of the following.

Theorem 3.4 (i) If m = 2µ is even, then

Qλ(x) =
1

2µµ!

∑
σ∈Sm

ε(σ)Q(λσ(1),λσ(2))(x)Q(λσ(3),λσ(4))(x) . . . Q(λσ(m−1),λσ(m))(x)

(ii) If m = 2µ+ 1 is odd, then

Qλ(x) =
1

2µµ!

∑
σ∈Sm

ε(σ)qλσ(1)
(x)Q(λσ(2),λσ(3))(x)Q(λσ(4),λσ(5))(x) . . . Q(λσ(m−1),λσ(m))(x)
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Proof (i) The proof is by induction on m. If m = 1, then clearly

Q(λ1,λ2)(x) =
1

2

∑
σ∈S2

ε(σ)Q(λσ(1),λσ(2))(x).

If m > 1, then by Lemma 3.3 and the inductive assumption, we have

Qλ(x) = 1
2µ

∑
σ∈Sm/Sm\2 ε(σ)Q(λσ(1),λσ(2))(x) 1

2µ−1(µ−1)!

∑
ρ∈S(m)\σ(2)

ε(ρ)Q(λρσ(3),λρσ(4))(x)

. . . Q(λρσ(m−1),λρσ(m)
(x)

= 1
2µµ!

∑
σ∈Sm/Sm\2 ε(σ)Q(λσ(1),λσ(2))(x)

∑
σ′∈Sm\2 ε(σ

′)Qλσ′(3),λσ′(4))
(x)

. . . Qλ(σ′(m−1),λσ′(m))
(x)

= 1
2µµ!

∑
σ∈Sm ε(σ)Q(λσ(1),λσ(2))(x)Q(λσ(3),λσ(4))(x) . . . Q(λσ(m−1),λσ(m))(x),

as required. The proof of (ii) is similar. 2

The above result can be interpreted in terms of wreath products of certain groups; in fact, the
hyperoctahedral group.

If λ = (λ1, . . . , λm) where m = 2µ is even, let

M = {{λ1, λ2}, {λ3, λ4}, . . . , {λm−1, λm}}

and if σ ∈ Sm, let

σ(M) = {{λσ(1), λσ(2)}, {λσ(3), λσ(4)}, . . . , {λσ(m−1), λσ(m)}}.

If H = {σ ∈ Sm|σ(M) = M}, then H is a subgroup of Sm of order 2µµ!. In fact, if π =
(12)(34) . . . (m − 1,m) ∈ Sm, then H is the centralizer CSm(π) of π in Sm, which implies that
H ∼= S2 oSm (see [2,p.135]), the wreath product of S2 by Sm, which is the hyperoctahedral group
or the Weyl group of type Bµ. Thus, the above results can be rewritten as

Theorem 3.5 For m ≥ 1, we have
(i) if m = 2µ is even

Qλ(x) =
∑

σ∈Sm\S2oSµ
ε(σ)Q(λσ(1),λσ(2))(x) . . . Q(λσ(m−1),λσ(m))(x)

(ii) if m = 2µ + 1 is odd

Qλ(x) =
∑

σ∈Sm\S2oSµ
ε(σ)qλσ(1)

Q(λσ(2),λσ(3))(x) . . . Q(λσ(m−1),λσ(m))(x)
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4 Application to the Spin Characters of Symmetric

Groups

As was mentioned earlier, Schur Q-functions were first introduced by Schur [6] in his work
on the spin (projective) characters of symmetric groups (see also [1]). He showed that the
irreducible spin characters of S` were parameterised by strict partition λ ∈ SP (`), but that this
correspondence is not one-to-one. In fact, if we say that λ is even (odd) if `− `(λ) is even (odd),
there is one irreducible self-associate spin character ζλ corresponding to λ ∈ SP (n) if λ is even
and two irreducible associate spin characters ζλ and ζλ

′
if λ is odd. The connection with Schur

Q-functions is given by

Qλ(x) =
∑

π∈O(`)

2
1
2

(`(λ)+`(π)+ε(λ))z−1
π ζλπpπ(x) (4.16)

where zπ =
∏
i≥1 i

mimi!, where mi is the multiplicity of i in the partition π = (1m13m3 . . .),
pπ(x) = p1(x)m1p3(x)m3 . . . (pi(x) =

∑`
k=1 x

i
k), ζ

λ
π is the value of the character ζλ at the class π

and

ε(λ) =

{
0 if `− `(λ) is even
1 if `− `(λ) is odd.

This formula gives the value of ζλ on the classes π ∈ O(`) only; however, if λ is even ζλπ = 0 if
π ∈ P (`) \ O(`) and if λ is odd ζλπ = ζλ

′
π = ζλ

′
π if π ∈ O(`), while if π 6∈ O(`), ζλπ 6= 0 only if

π = λ and then ζλλ is given explicitly by

ζλλ = (−1)(−`(λ)+1)

√
λ1λ2 . . . λ`(λ)

2
(4.17)

and ζλ
′

λ = −ζλλ . Thus, formula (4.16) gives all the information required. In addition, we require

ζ(`)
π = 2

1
2

(`(σ)−1−ε) (4.18)

where

ε =

{
1 if ` is odd
0 if ` is even

and
q`(x) =

∑
π∈O(`)

2`(π)z−1
π pπ(x). (4.19)

Both results are originally due to Schur [6]; in fact (4.19) is (4.16) for the particular case λ = (`)
using the value given by (4.18) for the character ζ(`)

π .
Our intention now is to give a recursive formula for the calculation of the ζλπ based on the

preceding work on Schur Q-functions.
We shall assume from now on that π = (1m13m3 . . .) ∈ O(`). Let {π1, π2, . . ., πm} be a

separation of π; then we note that

zπ
zπ1zπ2 . . . zπm

=
yπ

yπ1yπ2 . . . yπm
, (4.20)

where yπ =
∏
i≥1 mi! (recall that zπ =

∏
i≥1 i

mimi!).
We first give an explicit formula for ζπ(r, s) (r > s), that is for two part partitions. We prove
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Theorem 4.1 If λ = (r, s) ∈ SP (`) (r > s), π ∈ O(`), then

ζ(r,s)
π = 2

1
2

(`(π)−2−ε)yπ

 ∑
(πr ,πs)=π

y−1
πr y

−1
πs + 2

s∑
j=1

(−1)j

 ∑
(πr+j ,πs−j)

y−1
r+jy

−1
s−j

 ,
where the sums are taken over all separations (πr+j, πs−j) of π corresponding to the composition
(partition) (r + j, s− j) and ε = 0(1) if ` is even (odd).

Proof For the partition (r, s) ∈ SP (`), (4.16) becomes

Q(r,s)(x) =
∑

π∈O(`)

2
1
2

(`(π)+2+ε)z−1
π ζ(r,s)

π pπ(x), (4.21)

where ε = 0(1) if ` is even (odd). Now, by substituting (4.19) and (4.21) in Theorem 2.2(i), we
obtain

∑
π∈O(`)

2
1
2

(`(π)+2+ε)z−1
π ζ(r,s)

π pπ(x) =

 ∑
πr∈O(r)

z−1
πr 2`(πr)pπr(x)

 ∑
πs∈O(s)

z−1
πs 2`(πs)pπs(x)



+2
s∑
j=1

(−1)j

 ∑
πr+j∈O(r+j)

z−1
πr+j

2`(πr+j)pπr+j(x)


=

∑
(πr,πs)=π∈O(`)

z−1
πr z

−1
πs 2`(π)pπ(x) + 2

s∑
j=1

(−1)j
∑

(πr+j ,πs−j )=π∈O(`)

z−1
πr+j

z−1
πs−j2

`(π)pπ(x),

where the sums are taken over all separations (πr+j, πs−j) of π corresponding to the composition
(r + j, s − j). Now, by comparing the coefficients of pπ(x) on both sides of this equation and
using (4.19), we obtain the required result. 2

Thus, the calculation of ζ(r,s)
π for π ∈ O(`), is reduced to a calculation involving the separation

of partitions and is given in combinatorial terms.
Example: We calculate ζ

(6,3)
(163). The separations of (163) corresponding to the composition

(6, 3), (7, 2), (8, 1) and (9) are ({(16), (3)}, {(133), (13)}), {(143), (12)}, {(153), (1)} and
{(163), ∅} respectively. Thus

χ(6,3)
(163) = 226!

{(
1
6!

+ 1
3!3!

)
+ 2

(
− 1

4!2!
+ 1

5!
− 1

6!

)}
= 4.

We now use the expansion of the Schur Q-functions Qλ(x) in terms of products of Schur Q-
functions corresponding to two-part partitions to give a combinatorial formula for ζλπ in the
general case. We use Theorem 3.5 (or Theorem 3.4). We prove

Theorem 4.2 (i) If m = 2µ is even and λ = (λ1, . . . , λm) ∈ SP (`), π = (1m13m3 . . .) ∈ O(`),
I = {1, 3, 5, . . . ,m− 1}, then

ζλπ =
∑

σ∈Sm/S2oSµ
ε(σ)

 ∑
(πσ1 ,π

σ
3 ,...)=π

yπ

(∏
i∈I
y−1
πσi

)
2

1
2

(−ε+
∑

i∈I ε
σ
i )
∏
i∈I
ζ

(λσ(i),λσ(i+1))

πσi

 ,
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where for each i ∈ I, πσi = π(λσ(i),λσ(i+1)) ∈ O(|λσ(i)| + |λσ(i+1)|), εσi = 0(1) if |λσ(i)|+ |λσ(i+1)| is
even (odd), ε = 0(1) if ` is even (odd), and the sum is taken over all separations (πσ1 , π

σ
3 , . . . , π

σ
m−1)

of π.
(ii) If m = 2µ+ 1 is odd and λ = (λ1, . . . , λm) ∈ SP (`), π = (1m13m3 . . .) ∈ O(`),
J = {2, 4, . . . ,m− 1}, then

ζλπ =
∑

σ∈Sm/S2oSµ
ε(σ)


∑

(πλσ(1)
,πσ2 ,π

σ
4 ,...,π

σ
m−1)=π

yπy
−1
πλσ(1)

∏
j∈J

y−1
πσj

2
1
2

(−ε+εσ(1)+
∑

j∈J ε
σ
j ))ζ

(λσ(1))
πλσ(1)

∏
j∈J

ζ
(λσ(j),λσ(j+1)

πσj
),

where for each j ∈ J , πσj = π(λσ(j),λσ(j+1)) ∈ O(|λσ(j)|+ |λσ(j+1)|), εσj = 0(1) if |λσ(j)|+ |λσ(j+1)| is
even (odd), εσ(1) = 0(1) if |λσ(1)| is odd (even), ε = 0(1) if ` is odd (even) and the summation is
over all separations (πλσ(1)

, πσ2 , π
σ
4 , . . . , π

σ
m−1) of π corresponding to the composition.

Proof We prove (i) only; the proof of (ii) is similar. ¿From Theorem 3.5(i) and (4.16) we obtain∑
π∈O(`)

2
1
2

(m+`(π)+ε)z−1
π ζλπpπ(x)

=
∑

σ∈Sm/S2oSµ
ε(µ)

∏
i∈I

∑
πσi

2
1
2

(2+`(πσi )+εσi )z−1
πσi
ζ

(λσ(i),λσ(i+1)

πσi
pπσi (x).

Since, if {π1, π2, π3, . . . , πm} is a separation of π ∈ O(`), we have `(π) =
∑m
i=1 `(π

i), pπ(x) =∏m
i=1 pπi(x), and using (4.20) and comparing the coefficients of pπ(x) on both sides of the above,

we obtain the desired formula. 2

Remark 1: We note that simplifications of the above formula can be obtained in most cases;
that is, in case (i)

2
1
2

(−ε+
∑

i∈I ε
σ
i ) = 1

in the following cases:

(a) if ` is even and the parts of λ are all even or are all odd,

(b) if ` is odd and all the parts of λ except one are even or are odd,

and in case (ii)

2
1
2

(ε+εσ(1)+
∑

j∈J ε
σ
j ) = 1

in the following cases

(a) if ` is even and all the parts of λ are either even or are odd except λσ(1),

(b) if ` is odd and all the parts of λ are either odd or are even except for λσ(1).
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Furthermore, in order to apply these formulae, we require to determine left coset represen-
tatives of S2 o Sµ in Sm for both m = 2µ and 2µ+ 1. We note that

[Sm : S2 o Sµ] =

{
1 · 3 · . . . .m− 1 if m = 2µ is even,

1 · 3 · . . . ·m if m = 2µ+ 1 is odd.

If m = 2µ is even, left coset representatives of S2 o Sµ in Sm are of the form ψ = x1x2 . . . xm−1,
where xi = (xi1, xi2) are transpositions determined inductively as follows:

(i) Put I1 = {2, . . . ,m}, then x11 = 2, x12 = k1, k1 ∈ I1.

(ii) Put I2 = I \ {x11, x12}, d2 = min I2, then x21 = d2, x22 = k2, k2 ∈ I2 unless k1 = 2, in
which case x21 = d2 + 1.

(iii) Put Ir = Ir−1 \ {xr−1,1, xr−1,2}, dr = min Ir, then xr1 = dr, xr2 = kr, kr ∈ Ir, unless
kr−1 = dr−1, in which case xr2 = dr−1 + 1.

For example, the left coset representatives of S2 o S3 in S6 are given as follows

(44)(45)(46) (44)(45)(46) (33)(35)(36) (33)(34)(36) (33)(34)(36)
¢
¢
¢
¢¢

¢
¢
¢
¢¢

¢
¢
¢
¢¢

¢
¢
¢
¢¢

¢
¢
¢
¢¢

A
A
A
AA

A
A
A
AA

A
A
A
AA

A
A
A
AA

A
A
A
AA

(22) (23) (24) (25) (26)
ÃÃÃ

ÃÃÃ
ÃÃÃ

ÃÃÃ
ÃÃÃ

!!
!!
!!
!!

aa
aa

aa
aa

```
```

```
```

``̀
e

that is, {e, (45), (46), (23), (23)(45), (23)(46), (24), (24)(35), (24)(36), (25),
(25)(34), (25)(36), (26), (26)(34), (26)(35)}.

Similarly, if m = 2µ+ 1 is odd, the left coset representatives of S2 o Sµ in Sm are of the form
φ = φ1ψ, where φ1 can be any of the m transpositions (1, k) (1 ≤ k ≤ m) and ψ is obtained in
exactly the same way as the above but now applied to the set J = {3, 4, . . . ,m = 2µ + 1} in
place of I = {2, . . . , 2µ}. Thus, for example, the left coset representatives of S2 o S2 in S5 are
{e, (12), (13), (14), (15)}×{e, (34), (35)} = {e, (34), (35), 12), (12)(34), (12)(35), (13), (13)(34),
(13)(35),(14), (14)(34), (14)(35), (15), (15)(34), (15)(35)}.
Example 1: The values of the character ζ(6,4,3,2) of S15 are calculated at the classes (12327) and
(3, 5, 7). In this case, as (λ1, λ2, λ3, λ4) = (6, 4, 3, 2), the relevant left coset representatives are
e, (23), (24); thus, by Theorem 4.2(i) and Remark 1(i), we have

ζ(6,4,3,2)
(12327) =

2!2!

2!
ζ(6,4)

(3,7)ζ
(3,2)
(123) −

2!2!

2!2!
ζ(6,3)

(127)ζ
(4,2)
(32)

+
2!2!

2!
ζ(6,2)

(1,7)ζ
(4,3)
(1,32) +

2!2!

2!2!
ζ(6,2)

(1232)ζ
(4,3)
(7) ,
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noting that ((3, 7), (123, φ)) and ((127, φ), (32, φ)) are the only separations of (12327) correspond-
ing to ((6, 4), (3, 2)) and ((6, 3), (4, 2)) respectively, while there are two separations ((1, 7), (132, φ))
and ((1232), φ), ((7), φ) of (12327) corresponding to ((6, 2), (4, 3, 1)).

Now by means of Theorem 4.1, we find that

ζ
(6,4)
(3,7) = 0, ζ(3,2)

(12,3) = −1, ζ(6,3)
(127) = 0, ζ(4,2)

(32) = 2, ζ (6,2)
(17) = 0,

ζ
(4,3)
(132) = 2, ζ

(6,2)
(1232) = −2, ζ

(4,3)
(7) = −1.

Thus
ζ (6,4,3,2)

(12327) = ζ(6,2)
(1232)ζ

(4,3)
(7) = 2.

Since the partition (3, 5, 7) has no separations corresponding to π9 ∈ O(9), π6 ∈ O(6), we have

ζ
(6,4,3,2)
(3,5,7) = ζ

(6,4)
(3,7)ζ

(3,2)
(5) + ζ

(6,2)
(3,5)ζ

(4,3)
(7)

= 0 · 1− 2 · (−1) = +2.

Example 2: The values of the character ζ(5,4,3,2,1) of S15 are calculated at the classes (12327)
and (3, 5, 7). In this case, there are terms corresponding to the 15 left coset representatives of

S2 o S2 in S5 listed above. However, since ζ(5,3)
(1,7) = ζ(5,4)

(127) = ζ(4,1)
(123) = ζ(5,2)

(132 = 0, then by Theorem

4.2(ii) and Remark 1(ii) and taking the only possible separations of (12327) we obtain

ζ (5,4,3,2,1)
(12327) =

2!2!

2!
· 2ζ(5)

(123)ζ
(4,3)
(7) ζ(2,1)

(3) +
2!2!

1
· 2 · ζ(4)

(1,3)ζ
(5,2)
(7) ζ(3,1)

(1,3)

−(−2!2!

2!2!
· 2ζ(2)

(12)ζ
(2)
(12)ζ

(5,1)
(32) ζ

(4,3)
(7) ) +

2!2!

2!
· 2 · ζ (1)

(1)ζ
(5,2)
(7) ζ

(4,3)
(132).

Again, by Theorem 4.1, we have ζ
(4,3)
(7) = −1, ζ

(2,1)
(3) = −1, ζ

(5,2)
(7) = 1, ζ

(3,1)
(1,3) = −(−1), ζ

(5,1)
(32) = −2

and ζ
(4,3)
(132) = 2, and by (4.17), we have ζ(5)

(123) = 2, ζ(4)
(13) = 1, ζ(2)

(12) = 1 and ζ(1)
(1) = 1. Thus, we have

ζ(5,4,3,2,1)
(12327) = 4.

Due to the separation process, there are only two terms to be considered for the class (3, 5, 7)
and we obtain

ζ(5,4,3,2,1)
(3,5,7) = 2ζ(5)

(5)ζ
(4,3)
(7) ζ(2,1)

(3) − 2ζ(3)
(3)ζ

(5,2)
(7) ζ(4,1)

(5)

= 2 · 1 · (−1) · (−1)− 2 · 1 · 1 · (−1) = 4.
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