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Abstract

For every finite graded poset P with 0̂ and 1̂ we associate a certain formal power series
FP (x) = FP (x1, x2, . . .) which encodes the flag f -vector (or flag h-vector) of P . A relative
version FP/Γ is also defined, where Γ is a subcomplex of the order complex of P . We are
interested in the situation where FP or FP/Γ is a symmetric function of x1, x2, . . .. When
FP or FP/Γ is symmetric we consider its expansion in terms of various symmetric function
bases, especially the Schur functions. For a class of lattices called q-primary lattices the
Schur function coefficients are just values of Kostka polynomials at the prime power q,
thus giving in effect a simple new definition of Kostka polynomials in terms of symmetric
functions. We extend the theory of lexicographically shellable posets to the relative case
in order to show that some examples (P,Γ) are relative Cohen-Macaulay complexes. Some
connections with the representation theory of the symmetric group and its Hecke algebra
are also discussed.
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1 Basic definitions.

Let P be a finite graded poset of rank n, with 0̂ and 1̂. (For undefined poset terminol-
ogy, see [26].) Let ρ denote the rank function of P , so ρ(0̂) = 0 and ρ(1̂) = n. Write
ρ(s, t) = ρ(t)− ρ(s) when s ≤ t in P . R. Ehrenborg [9, Def. 3] suggested looking at
the formal power series (in the variables x = (x1, x2, . . .))

FP (x) =
∑

0̂=t0≤t1≤···≤tk−1<tk=1̂

xρ(t0,t1)
1 xρ(t1,t2)

2 · · ·xρ(tk−1,tk)
k , (1)

where the sum is over all multichains from 0̂ to 1̂ such that 1̂ occurs exactly once. It
is easily seen that FP (x) makes sense as a formal power series, i.e., the coefficient of
every monomial is finite. (If we had summed over arbitrary multichains 0̂ = t0 ≤ t1 ≤
· · · ≤ tk−1 ≤ tk = 1̂, then we would obtain infinite coefficients.) Our main concern in
this paper will be with posets P for which FP (x) is a symmetric function of x. Such
a poset P we say is flag-symmetric. We now explain the reason for this terminology.

For any integer m ≥ 1, let [m] = {1, 2, . . . ,m}. Write S = {m1, . . . ,mj}< to
mean that S = {m1, . . . ,mj} and m1 < · · · < mj. If S = {m1, . . . ,mj}< ⊆ [n − 1],
then define αP (S) to be the number of chains 0̂ < t1 < · · · < tj < 1̂ in P such that
S = {ρ(t1), . . . , ρ(tj)}. The function αP is called the flag f-vector of P (sometimes
denoted f̃P ).

We will use symmetric function notation and terminology from Macdonald [15].
In particular, mλ denotes the monomial symmetric function and sλ the Schur function
indexed by the partition λ of n (denoted λ ` n or |λ| = n).

1.1 Proposition. Let P be as above. Then

FP (x) =
∑

S={m1,...,mj}<
S⊆[n−1]

∑
1≤i1<···<ij+1

xm1
i1
xm2−m1
i2

· · ·xn−mjij+1
αP (S). (2)

In particular, P is flag-symmetric if and only if

FP (x) =
∑
λ`n

αP (Sλ)mλ, (3)

where if λ = (λ1, . . . , λ`) with λ` > 0, then Sλ = {λ1, λ1 +λ2, . . . , λ1 +λ2 + · · ·+λ`−1}.

Proof. Equation (2) is an immediate consequence of (1) (by considering the
support of the multichain 0̂ = t0 ≤ t1 ≤ · · · ≤ tk−1 < tk = 1̂), while (3) follows
immediately from (2). 2
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1.2 Corollary. Let P be as above. Then P is flag-symmetric if and only if for
all S = {m1, . . . ,mj}< ⊆ [n − 1], we have that αP (S) depends only on the multiset
{m1,m2 −m1,m3 −m2, . . . , n−mj}, not on the order of its elements.

For instance, if n = 4 then P is flag-symmetric if and only if α(1) = α(3) and
α(1, 2) = α(1, 3) = α(2, 3).

An important function related to the flag f-vector αP is the flag h-vector βP
(sometimes denoted h̃P ), defined for all S ⊆ [n− 1] by

βP (S) =
∑
T⊆S

(−1)|S−T |αP (T ). (4)

Equivalently,
αP (S) =

∑
T⊆S

βP (T ). (5)

The flag h-vector often has combinatorial or algebraic significance. See for example
[26, §3.12] for the combinatorial significance. If P is a Cohen-Macaulay poset (defined
in [4] or [26, p. 123]), then βP (S) is the dimension of a certain homology group and
is therefore nonnegative. In general, however, βP (S) may be negative. For instance,
if P consists of two disjoint 2-element chains with a 0̂ and 1̂ adjoined, then P is
flag-symmetric and βP (1, 2) = −1.

We would like to express FP (x) in terms of the flag h-vector βP . To do this, let
S ⊆ [n−1] and following Gessel [10] define a homogeneous power series G(x) of degree
n (say with rational coefficients) in the variables x = (x1, x2, . . .) to be quasisymmetric
if xa1

i1 · · · x
ak
ik

has the same coefficient as xa1
j1 · · · x

ak
jk

whenever i1 < · · · < ik and j1 <
· · · < jk. Thus every symmetric function is quasisymmetric, but not conversely. For
instance,

∑
i<j xix

2
j is quasisymmetric but not symmetric. Given S ⊆ [n − 1], define

the quasisymmetric function QS,n(x) by

QS,n(x) =
∑

1≤a1≤a2≤···≤an
ai<ai+1if i∈S

xa1xa2 · · ·xan . (6)

Sometimes we write QS for QS,n when it is clear that we are dealing with power series
of degree n. It is easy to see that the QS,n’s form a linear basis for the space of
all quasisymmetric functions of degree n with rational coefficients, so this space has
dimension 2n−1.

1.3 Proposition. Let P be as above. Then

FP (x) =
∑

S⊆[n−1]

βP (S)QS(x).
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Proof. In view of (2) and (5) we need to show that for each T ⊆ [n− 1],∑
S⊇T

S={m1,...,mj}<

∑
1≤i1<···<ij+1

xm1
i1 x

m2−m1
i2 · · ·xn−mjij+1

= QT (x).

But this is a routine verification, looking at all possible ways of choosing each symbol
≤ to be either < or = in the definition (6). 2

There is a generalization of flag-symmetric functions which will arise in a natural
way in Sections 4 and 5. Given a poset P with 0̂ and 1̂, define its reduced order
complex ∆̃(P ) to be the set of chains of P −{0̂, 1̂}, regarded as an abstract simplicial
complex (see e.g. [26, p. 120]). Let Γ be a subcomplex of ∆̃(P ), i.e., a subset of ∆̃(P )
such that if σ ∈ Γ and σ′ ⊂ σ, then σ′ ∈ Γ. (Thus Ø ∈ Γ unless Γ = Ø.) The pair
(∆̃(P ),Γ) is an instance of a relative simplicial complex [27, p. 205], and the set

∆̃(P )/Γ = {σ : σ ∈ ∆̃(P ), σ 6∈ Γ}

is a cocomplex, i.e., a collection C of sets such that if σ, τ ∈ C and σ ⊆ σ′ ⊆ τ , then
σ′ ∈ C. A cocomplex is simply a convex subset (in the sense of [26, p. 98]) of a
boolean algebra. We will write simply P/Γ for ∆̃(P )/Γ and call P/Γ a P -cocomplex.

We can extend the definition of FP (x), αP (S), and βP (S) in an obvious way to
FP/Γ(x), αP/Γ(S), and βP/Γ(S). Namely, in (1) we sum only over multichains whose

support, with 0̂ and 1̂ removed, is contained in ∆̃(P )/Γ, while αP/Γ(S) counts only

chains in ∆̃(P )/Γ for which the ranks of their elements are the elements of S. We
define βP/Γ(S) in exact analogy with (4) or (5). Proposition 1.1, Corollary 1.2, and
Proposition 1.3 continue to hold with P replaced with P/Γ. As before, if FP/Γ is a
symmetric function then we say that the cocomplex P/Γ is flag-symmetric.

We now give a simple sufficient condition for a poset P to be flag-symmetric. A
graded poset P0 ∪ P1 ∪ · · · ∪ Pn of rank n is called rank-symmetric if pi = pn−i for all
i, where pi = #Pi. A graded poset P with 0̂ and 1̂ is called locally rank-symmetric
if every interval is rank-symmetric. In particular, P is locally rank-symmetric if it is
locally self-dual, i.e., every interval is self-dual.

1.4 Theorem. A locally rank-symmetric poset P (which is assumed to be finite,
graded, with 0̂ and 1̂) is flag-symmetric.

Proof. It is convenient, though not necessary, to use the language of incidence
algebras. Let I(P ) denote the incidence algebra of P , say over the real numbers, as
defined in [26, Ch. 3.6]. Let ηj ∈ I(P ) be defined by

ηj(s, t) =

{
1, if ρ(s, t) = j
0, otherwise.
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The statement that P is locally rank-symmetric is equivalent to the fact that ηjηk =
ηkηj for all j, k. Now note that if j1 +· · ·+jr = n, where ji > 0, then ηj1 · · · ηjr(0̂, 1̂) =
αP (S), where S = {j1, j1 + j2, . . . , j1 + · · · jr−1}. If the ηj’s commute then ηj1 · · · ηjr is
independent of the order of the factors, and evaluating at [0̂, 1̂] yields flag-symmetry
by Corollary 1.2. 2

Note. The above proof is essentially the same as that appearing in [26, solution
to Exercise 3.65].

Local rank-symmetry seems to be the most general “natural” condition for a
poset P to be flag-symmetric. A poset could “accidentally” have a flag f -vector
which would make it flag-symmetric, but local rank-symmetry forces every interval
to be well-behaved, not just the entire poset. Note that P is locally rank-symmetric
if and only if it is locally flag-symmetric, i.e., every interval is flag-symmetric.

We wish to give a generalization of Theorem 1.4 to P -cocomplexes. First we
must come up with the correct definition of a locally rank-symmetric P -cocomplex.
For this definition to make sense, it will be necessary to consider a restricted class of
subcomplexes Γ of ∆̃(P ). Let X be an order ideal of non-singleton intervals of P , i.e.,
a collection of intervals [s, t] with s < t such that if [s, t] ∈ X and s ≤ u < v ≤ t, then
[u, v] ∈ X. Define Γ = ΓX to consist of all chains t1 < t2 < · · · < tr−1 of P − {0̂, 1̂}
such that if we also set t0 = 0̂ and tr = 1̂, then [ti−1, ti] 6∈ X for some 1 ≤ i ≤ r. Note
that since X is an order ideal of non-singleton intervals, ΓX is a subcomplex of ∆̃(P ).
We then call P/ΓX a simple P -cocomplex. Define a simple P -cocomplex P/ΓX to
be locally rank-symmetric if for all s < t in P and all 0 < i < ρ(s, t), the number of
u ∈ [s, t] for which ρ(s, u) = i, [s, u] ∈ X , and [u, t] ∈ X is equal to the number of
v ∈ [s, t] for which ρ(s, v) = ρ(s, t)− i, [s, v] ∈ X, and [v, t] ∈ X.

1.5 Theorem. A locally rank-symmetric simple P -cocomplex P/ΓX is flag-sym-
metric.

Proof. Just as in the proof of Theorem 1.4, define ηj = ηj,X ∈ I(P ) by

ηj(s, t) =

{
1, if ρ(s, t) = j and [s, t] ∈ X
0, otherwise.

The statement that P/ΓX is locally rank-symmetric is equivalent to the fact that
ηjηk = ηkηj for all j, k. Now note that if j1 + · · · + jr = n where ji > 0, then
ηj1 · · · ηjr(0̂, 1̂) is equal to the number of chains 0̂ = t0 < t1 < · · · < tr = 1̂ in
P such that ρ(ti−1, ti) = ji and such that [ti−1, ti] ∈ X for 1 ≤ i ≤ r. This last
condition is equivalent to {t1, . . . , ti} 6∈ ΓX , so ηj1 · · · ηjr(0̂, 1̂) = αP/ΓX (S), where
S = {j1, j1 + j2, . . . , j1 + · · ·+ jr−1}. Just as in the proof of Theorem 1.4, we conclude
that P/ΓX is flag-symmetric. 2
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2 Schur positivity.

A symmetric function f can be uniquely expanded as a linear combination f =
∑
cλsλ

of Schur functions sλ [15, (3.3) on p. 24]. We say that f is Schur positive if each cλ ≥ 0.
When P (or more generally P/Γ) is flag-symmetric, it is natural to expand FP in terms
of Schur functions and ask what can be said about the coefficients cλ = 〈FP , sλ〉 (where
〈·, ·〉 denotes the usual scalar product on symmetric functions [15, p. 34]).

2.1 Proposition. If FP (or FP/Γ) is Schur positive then βP (S) ≥ 0 (or βP/Γ(S) ≥
0) for all S ⊆ [n− 1].

Proof. Immediate from Proposition 1.3 and the fact (a consequence, e.g., of [10,
Thm. 3 and Thm. 7]) that sλ is a nonnegative linear combination of the QS,n’s. 2

2.2 Proposition. If FP is Schur positive then P is rank-unimodal, i.e., p0 ≤
p1 ≤ · · · ≤ pbn/2c. (Thus pbn/2c = pdn/2e ≥ pdn/2e+1 ≥ · · · ≥ pn since pi = pn−i).

Proof. It is easy to compute that for 0 ≤ 2i ≤ n, the coefficient of sn−i,i in FP is
αP (i)− αP (i− 1) (where αP (0) = 1). Since αP (j) = pj, the proof follows. 2

It is easy to find examples of locally rank-symmetric posets P for which βP (S) < 0
for some S, and hence by Proposition 2.1 FP is not Schur positive. For instance, P
can be any disjoint union of at least two chains with the same number m ≥ 2 of
elements, with a 0̂ and 1̂ adjoined. In fact, Bill Doran has given an example of
a locally rank-symmetric (in fact, locally self-dual) poset P of rank 4 which is not
rank-unimodal. This poset satisfies FP = m4 + 13m31 + 12m22 + 24m211 + 36m1111 =
s4 + 12s31 − s22 + s1111. Recall, however, that we mentioned in the previous section
that Cohen-Macaulay posets P do satisfy βP (S) ≥ 0. More generally, there is a
notion [27, p. 205] of a Cohen-Macaulay cocomplex ∆/Γ (or equivalently a relative
Cohen-Macaulay simplicial complex (∆,Γ)). This suggests the following conjecture.

2.3 Conjecture. Let P/Γ be a flag-symmetric Cohen-Macaulay P -cocomplex.
Then FP/Γ is Schur positive.

Possibly the hypothesis that P/Γ is flag-symmetric and Cohen-Macaulay in Con-
jecture 2.3 is too weak. The correct hypothesis may be that P/Γ is locally rank-
symmetric and Cohen-Macaulay.

Besides checking numerous examples (see Section 3), we have a small additional
piece of evidence for Conjecture 2.3. Suppose that P/Γ is flag-symmetric of rank ab,
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where a, b > 1. Define a cocomplex Ta(P/Γ) by

Ta(P/Γ) = {t ∈ P/Γ : ρ(t) is divisible by a}.

Thus Ta(P/Γ) is a Ta(P )-cocomplex, and Ta(P/Γ) has rank b. Moreover,

αTa(P/Γ)(c1, . . . , ci) = αP/Γ(ac1, . . . , aci). (7)

It follows that Ta(P/Γ) is also flag-symmetric. When Γ = Ø, Ta(P ) is a rank-selected
subposet of P [4, §0][26, Ch. 3.12]. Hence by [4, Thm. 5.2] or [25, Thm. 5.3], Ta(P ) is
Cohen-Macaulay whenever P is Cohen-Macaulay. By similar reasoning, Ta(P/Γ) is
Cohen-Macaulay whenever P/Γ is Cohen-Macaulay.

Define a linear operator Ta on homogeneous symmetric functions of degree ab by

Ta(mλ) =

{
mµ, if λ = aµ
0, otherwise.

In other words, Ta(f ) is obtained by writing f as a linear combination of monomials
xα, replacing xα with xα/a if α/a has integer coordinates, and otherwise replacing xα

with 0. Thus if deg f = ab, then deg Ta(f ) = b. It follows from (7) that

FTa(P/Γ) = Ta(FP/Γ). (8)

2.4 Theorem. If λ ` ab then Ta(sλ) is Schur positive.

Proof. Let sλ =
∑
µ`abKλµmµ, so Kλµ is a Kostka number. Thus

Ta(sλ) =
∑
ν`b

Kλ,aνmν .

Let 〈·, ·〉 denote the usual scalar product on symmetric functions. It follows that for
each ρ ` b we have

〈sρ, Ta(sλ)〉 = 〈sρ,
∑
ν`b

Kλ,aνmν〉

= 〈sρ,
∑
ν

〈sλ, haν〉mν〉

=
∑
ν

〈sρ,mν〉 · 〈sλ, haν〉

= 〈sλ,
∑
ν

〈sρ,mν〉haν〉,

using the bilinearity of the scalar product together with [15, (6.7)(vii) on p. 57].
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Consider the algebra endomorphism ϕa of the ring of symmetric functions defined
by ϕa(hi) = hai. If we apply ϕa to the Jacobi-Trudi matrix defining the Schur function
sρ [15, (3.4) on p. 25 and (5.4) on p. 40], then we obtain the Jacobi-Trudi matrix for
the skew Schur function of skew shape (aρ+(a−1)δ)/(a−1)δ, where if `(ρ) = ` then
δ = (`− 1, `− 2, . . . , 1, 0). Hence

ϕa(sρ) = s(aρ+(a−1)δ)/(a−1)δ.

Thus

∑
ν

〈sρ,mν〉haν = ϕa

(∑
ν

〈sρ,mν〉hν
)

= ϕa(sρ)

= s(aρ+(a−1)δ)/(a−1)δ.

It follows that 〈Ta(sλ), sρ〉 is just the Littlewood-Richardson coefficient

〈Ta(sλ), sρ〉 = 〈sλs(a−1)δ, saρ+(a−1)δ〉.

Since such coefficients are always nonnegative [15, (9.2) on p. 68], the proof follows.
2

2.5 Corollary. If FP/Γ is Schur positive, then FTa(P/Γ) is also Schur positive.

Proof. Immediate from (8) and Theorem 2.4. 2

3 Examples.

In this section we discuss numerous examples of flag-symmetric and locally rank-
symmetric posets. The most interesting examples known to us turn out to be dis-
tributive and modular lattices, so we will deal with them first.

3.1 Theorem Let L be a finite distributive lattice. The following four conditions
are equivalent.

(a) L is locally self-dual.

(b) L is locally rank-symmetric.

(c) L is flag-symmetric.

(d) L is a product of chains.
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Proof. It is easy to see that (d) ⇒ (a), while (a) ⇒ (b) is obvious and Theorem
1.4 shows that (b)⇒ (c). The difficult implication is (c)⇒ (d), but this is equivalent
to Exercise 4.23 of [26] (solution on p. 285). 2

We wish to compute FL when L is a product of chains. We use the following
lemma, whose proof is an immediate consequence of the relevant definitions.

3.2 Lemma. Suppose that P and Q are flag-symmetric (respectively, locally rank-
symmetric). Then the direct product P×Q is also flag-symmetric (respectively, locally
rank-symmetric). Moreover, FP×Q = FPFQ. 2

Let ν = (ν1, ν2, . . . , ν`) ∈ �
`, where � = {1, 2, . . .}. Let Lν denote the product

of chains of lengths ν1, ν2, . . . , ν`, so #Lν = (ν1 + 1)(ν2 + 1) · · · (ν` + 1), and Lν has
rank |ν| = ν1 + · · ·+ν`. Let hν denote the complete homogeneous symmetric function
hν1hν2 · · ·hν`.

3.3 Proposition. We have FLν = hν.

Proof. By Lemma 3.2, it suffices to assume that ` = 1 (i.e., Lν is a chain). The
proof is now evident from the definition (1) of FP . 2

Next we consider the case of modular lattices. All lattices L considered here are
assumed to be finite. A (finite) lattice L is semiprimary [14] if L is modular, and
whenever t ∈ L is join-irreducible (respectively, meet-irreducible) then the interval
[0̂, t] (respectively, [t, 1̂]) is a chain. A semiprimary lattice is primary if every interval
is either a chain or contains at least three atoms. We also say that a lattice L is a
q-lattice [22, §6] if every complemented interval is isomorphic to a projective geometry
of order q (or to a boolean algebra when q = 1). A modular lattice L is a q-lattice if
and only if every interval of rank two is either a chain or has q+1 elements of rank one.
(A modular 1-lattice is just a distributive lattice). We say that L is q-semiprimary
if L is both semiprimary and a q-lattice, and similarly we define q-primary. (Note
that a q-semiprimary lattice for q ≥ 2 is in fact q-primary.) Primary lattices have
been almost completely classified by Baer, Inaba, and Jónsson-Monk. See [14] for
further information. Some interesting recent work on semiprimary lattices appears
in [29]. Every primary lattice L of rank n has a well-defined type λ ` n; see [14][29,
Def. 4.8] for the definition. The main example of a q-primary lattice is the lattice LM
of submodules of a module M of finite length over a discrete valuation ring R with
a finite residue class field �q. Let us call such lattices Hall lattices, since Philip Hall
developed their basic enumerative properties, an exposition of which appears in [15,
Chs. 2 and 3]. Tesler [29, Thm. 4.81ff] has shown that the enumerative properties
of Hall lattices described in [15] carry over to arbitrary q-primary lattices. Two
prototypical examples of q-Hall lattices are (a) the lattice of subgroups of a finite
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Figure 1: A flag-symmetric modular lattice which is not locally rank-symmetric

abelian p-group of type λ = (λ1, . . . , λ`) (for which R = �p, the p-adic integers,
q = p, and M = (�p/pλ1�p) ⊕ · · · ⊕ (�p/pλ`�p)); and (b) the lattice of submodules
of the �q[[x]]-module M = �q[[x]]/(xλ1) ⊕ · · · ⊕ �q [[x]]/(xλ`). In both these two
examples the Hall lattice L is of type λ. (The two lattices are not isomorphic, e.g.,
for λ = (2, 2, 2); see [7, Theorem 4 and Lemma 5] for further details.) More generally,
the type of a Hall lattice is λ = (λ1, λ2, . . .), where L = LM and M is a product of
cyclic R-modules of lengths λ1, λ2, . . ..

3.4 Theorem. (F. Regonati [20]) Let L be a finite modular lattice . The following
three conditions are equivalent.

(a) L is locally rank-symmetric.

(b) Every interval of L of rank three is rank-symmetric.

(c) L is a product P1×P2×· · ·×Pm of qi-primary lattices Pi (including the possibility
qi = 0, in which case Pi is a chain).

Unlike the case for distributive lattices (Theorem 3.1), a flag-symmetric modular
lattice need not be locally rank-symmetric. See Figure 1 for an example. We
will now determine the symmetric function FL for a q-primary lattice L (and thus
by Lemma 3.2 and Theorem 3.4 for any locally rank-symmetric modular lattice).We
assume knowledge of the Hall-Littlewood symmetric functions Pλ(x; q) and Qλ(x; q)
and of the Kostka polynomials Kλµ(q), as defined in [15, Ch. III] (using t instead of
q). Following [15, p. 132], we write

K̃λµ(q) = qn(µ)Kλµ(q−1),

where n(µ) =
∑

(i− 1)µi =
∑(

µ′i
2

)
.
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3.5 Theorem. Let L = LM be a q-primary lattice of type µ ` n. Then

FL =
∑
λ`n

K̃λµ(q)sλ. (9)

Proof. All matrices considered here will have rows and columns indexed by
partitions of n in some fixed order. Given a basis b = {bλ : λ ` n} for the abelian
group Λn of symmetric functions of degree n with integer coefficients, we identify b
with the vector whose components are the bλ’s (in the fixed order considered above).
Write e.g. K(q) for the matrix [Kλµ(q)], and let ′ denote transpose. Thus

s = K(q)P, (10)

by definition of Kλµ(q). It’s easy to see (e.g. [6, §4]) that if we define

αµν(q) = αLµ(Sν),

where `(ν) = ` and Sν = {ν1, ν1+ν2, . . . , ν1+ν2+· · · ν`−1}, then αµν(q) is a polynomial
in q of degree at most n(µ). Set α̃µν = qn(µ)αµν(1/q). It is an immediate consequence
of [15, (3.4) on p. 112], (see [6, equation (4)]) that

h = α̃′P. (11)

(The references [6] and [15] deal only with Hall lattices, but the work of Tesler men-
tioned after Proposition 3.3 shows that these results carry over to arbitrary q-primary
lattices.) Comparing (10) and (11) and using h = K ′s yields α̃′ = K ′K(q), or equiv-
alently α̃ = K(q)′K. Since Km = s, we have α̃m = K(q)′s, i.e.,∑

ν

qn(µ)αµν(1/q)mν =
∑
λ

Kλµ(q)sλ.

Substituting 1/q for q and multiplying by qn(µ) yields (9) (i.e., αm = K̃(q)′s). 2

Since q-primary lattices are modular they are Cohen-Macaulay [4, Ex. 2.5 and
Thm. 3.2], so we can ask whether Conjecture 2.3 holds for them. By a well-known
result of Lascoux and Schützenberger (see [15, (6.5) on p. 129]) the coefficients of
Kλµ(q) (or K̃λµ(q)) are nonnegative, so Theorem 3.5 implies that Conjecture 2.3 is
valid for q-primary lattices (and so for locally rank-symmetric modular lattices).

Since FL has a simple combinatorial definition, we could use (9) as the definition
of the Kostka polynomial Kλµ(q). This gives a definition using symmetric functions
considerably simpler (though not any easier to work with) than the usual definition
s = K(q)P in terms of the Hall-Littlewood symmetric functions.

We know of numerous other examples of locally rank-symmetric posets, though
they don’t seem as interesting as q-primary lattices. First suppose that P and Q
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are locally rank-symmetric of the same rank n. Let P +̂Q denote the direct sum (=
disjoint union) of P and Q, with the 0̂’s identified and 1̂’s identified. The following
proposition is self-evident.

3.6 Proposition. With P and Q as above, we have that P +̂Q is locally rank-
symmetric of rank n, and FP +̂Q = FP + FQ −mn.

A simple class of Cohen-Macaulay locally rank-symmetric posets are the ladders
Hnj of rank n and width j. They have j elements of each rank 1, 2, . . . , n − 1, and
x < y whenever ρ(x) < ρ(y). It’s easy to see that

FHnj =
∑
λ`n

j`(λ)−1mλ =
n−1∑
i=0

(j − 1)isn−i,1i.

Hence Conjecture 2.3 is valid for ladders.

A class of posets even more restrictive than locally rank-symmetric posets are
(finite) binomial posets [8][26, Ch. 3.15]. For these posets P , all intervals of length
k have the same number B(k) of maximal chains. If follows that any interval of P
of rank k has B(k)/B(i)B(k − i) elements of rank i, so P is indeed locally rank-
symmetric. It was also observed by Ehrenborg [9, p. 10] that FP is a symmetric
function for binomial posets P . Numerous examples of binomial posets are given in
[8] and [26], but the only examples which are Cohen-Macaulay are included among
the posets we have already considered or have rank equal to three. It might be an
interesting problem to try to classify all Cohen-Macaulay binomial posets.

Another interesting class of posets are the Eulerian posets [26, Ch. 3.14][28], de-
fined by the condition µ(s, t) = (−1)ρ(s,t) for all s ≤ t in P , where µ denotes the
Möbius function of P . In particular, face lattices of convex polytopes are Eulerian.
Any simplex, polygon, or three-dimensional polytope with the same number of ver-
tices as two-dimensional faces has a locally rank-symmetric face lattice. Moreover,
products of such lattices remain locally rank-symmetric and remain face lattices of
polytopes. Recently Bisztriczky [2] has constructed a class of polytopes of arbitrary
dimension d whose face lattices are irreducible (i.e., not a direct product of smaller
lattices) and locally self-dual. Curiously, these lattices have the same flag f-vectors
as products of face lattices of two-dimensional polytopes. If we don’t insist that our
locally rank-symmetric Cohen-Macaulay Eulerian poset is a lattice, then the only new
irreducible ones we know are the ladders Hn2 together with additional examples of
rank four. The following question may be worth pursuing: What is the dimension
of the linear span of all flag f -vectors of (a) locally rank-symmetric face lattices of
(n − 1)-dimensional convex polytopes, (b) locally self-dual face lattices of (n − 1)-
dimensional convex polytopes, (c) locally rank-symmetric Eulerian posets of rank n,
and (d) locally self-dual Eulerian posets of rank n? (Conceivably all four answers
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could be the same.)

Two additional classes of locally rank-symmetric posets were pointed out by V.
Welker and F. Regonati, respectively. The two classes, especially the second, remain
to be investigated. The members of the two classes are given by (a) the poset of
nondegenerate subspaces of a finite-dimensional vector space over �q with respect to
a symmetric or skew-symmetric form, and (b) the poset of complemented elements
of a Hall lattice.

4 A locally-rank symmetric P -cocomplex and rel-

ative lexicographic shellability.

In this section we give a fundamental example of a locally rank-symmetric Cohen-
Macaulay P -cocomplex. Recall [26, p. 168] that Young’s lattice Y consists of all
partitions of all nonnegative integers n, with the ordering µ ≤ λ if µi ≤ λi for all i.
Let Pλ/µ denote the interval [µ, λ] of Y . Let X = Xλ/µ consist of all intervals [ρ, σ]
of Pλ/µ such that ρ < σ and σ/ρ is a horizontal strip, i.e., the Young diagram of σ/ρ
does not contain two cells in the same column [15, p. 4]. Write Γλ/µ = ΓX , and let
P/Γ = Pλ/µ/Γλ/µ be the corresponding simple P -cocomplex. Thus P/Γ consists of all
chains µ = ν0 < ν1 < · · · < νr = λ such that each skew shape νi/νi−1 is a horizontal
strip.

4.1 Theorem. Let µ ⊂ λ. Then the P -cocomplex P/Γ = Pλ/µ/Γλ/µ is locally
rank-symmetric (and hence flag-symmetric by Theorem 1.5) and Cohen-Macaulay.
Moreover, FP/Γ = sλ/µ, the skew Schur function of shape λ/µ.

Proof. The proof that P/Γ is locally rank-symmetric is essentially the same
argument used by Bender and Knuth [1, p. 47] to show that Schur functions are
symmetric functions. We refer the reader to [1] for the details. The definition of FP/Γ

coincides with the usual combinatorial definition [15, (5.12)] of sλ/µ.

We sketch two proofs that P/Γ is Cohen-Macaulay. Both proofs work in the
following more general context. Let Q be an n-element poset, and let J(Q) denote
its lattice of order ideals [26, Ch. 3.4]. A labeling of Q is a injection ω : Q → �.
Let ∆(J(Q), ω) be the set of all chains Ø = I0 ⊂ I1 ⊂ · · · ⊂ Ik = Q of J(Q) such
that every subposet Ii − Ii−1 is naturally labelled by ω, i.e., if s, t ∈ Ii − Ii−1 and
s < t, then ω(s) < ω(t). Thus ∆(J(Q), ω) is the J(Q)-cocomplex J(Q)/Γω, where
Γω consists of all chains I1 ⊂ · · · ⊂ Ij of J̃(Q) = J(Q) − {0̂, 1̂} such that for some
1 ≤ i ≤ j+1, the restriction of ω to Ii−Ii−1 is not natural (where I0 = Ø, Ij+1 = Q).
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If we take Q to be a skew diagram of shape λ/µ (regarded as a subposet of �×� with
the standard cartesian product order), and if we choose the labeling ω to increase
along rows from left to right and to decrease down columns, then Γω = Γλ/µ and
∆(J(Q), ω) = Pλ/µ/Γλ/µ.

4.2 Proposition. For any labelled poset (Q,ω), the cocomplex P/Γ = ∆(J(Q), ω)
is Cohen-Macaulay.

First proof. It follows from the proof of [23, Prop. 8.3] and from [23, second
paragraph on p. 225] that P/Γ has a geometric realization |P/Γ| which is a convex
polytope P with a subset Q of its boundary removed, where Q consists of all points
of ∂P visible from some (properly chosen) point outside P . There are two exceptions:
if ω is order-preserving then Q = Ø, and if ω is order-reversing then Q = ∂P . Thus
either Q is topologically a ball on ∂P with dimQ = dimP−1, or Q = Ø, or Q = ∂P.
It follows from [27, Cor. 5.4(ii)] that in all cases P/Γ is Cohen-Macaulay. 2

Second proof. A powerful tool for showing that posets are Cohen-Macaulay
is the theory of lexicographic shellability [3][4, §2][5]. Here we outline a “relative”
version of this theory. The proofs are straightforward generalizations of those in
[3]. For simplicity we deal only with edge labelings and not the more general chain
labelings of [5]. The theory can easily be extended to chain labelings, but we don’t
need them to prove Propostion 4.2.

Let P be a finite graded poset of rank n with 0̂ and 1̂. Let E(P ) = {(s, t) :
t covers s in P}, the set of (directed) edges of the Hasse diagram of P . A func-
tion λ : E → � is called an E-labeling. If σ : s = s0 < s1 < · · · < sk = t
is a saturated chain (i.e., a maximal chain of the interval [s, t]), then we write
λ(σ) = (λ(s0, s1), λ(s1, s2), . . . , λ(sk−1, sk)). The chain σ is increasing if λ(s0, s1) ≤
λ(s1, s2) ≤ · · · ≤ λ(sk−1, sk). The descent set of λ(σ) = (a1, . . . , ak) is defined by
D(λ(σ)) = {i : ai > ai+1}. We let ≤L denote lexicographic order on finite integer
sequences, so for example 111 <L 112 <L 113 <L 121 <L 122 <L 131 <L 211.

4.3 Definition. (a) Let P be a finite graded poset of rank n with 0̂ and 1̂. A
labeling λ : E → � is called a relative ER-labeling if the following two conditions are
satisfied:

(i) Every interval [s, t] has at most one increasing maximal chain.

(ii) If the interval [s, t] has an increasing maximal chain and s ≤ s′ ≤ t′ ≤ t,
then [s′, t′] has an increasing maximal chain.

(b) If in addition for every interval [s, t] with an increasing maximal chain σ, the
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sequence λ(σ) is strictly less (in lexicographic order) than λ(τ ) for any other maximal
chain τ of [s, t], then we call λ a relative EL-labeling.

Suppose now that λ : E → � is a relative ER-labeling. Let X = X(P, λ) be
the set of all non-singleton intervals of P which possess an increasing maximal chain.
Clearly by (ii) above X is an order ideal of non-singleton intervals of P . Hence we
can define a simple P -cocomplex ∆(P,λ) = P/ΓX . We then have the following main
theorem on relative labelings.

4.4 Theorem. (a) Let λ : E(P )→ � be a relative ER-labeling. For S ⊆ [n−1], let
γP,λ(S) be the number of maximal chains σ of P with descent set S. Then β∆(P,λ)(S) =
γP,λ(S).

(b) Let λ : E(P )→ � be a relative EL-labeling. Let σ1, σ2, . . . , σm be any ordering
of the maximal chains of P such that λ(σ1) ≤L λ(σ2) ≤L · · · ≤L λ(σm). Then
σ1, σ2, . . . , σm is a shelling of ∆(P, λ) (as defined in [27, §6]). The standard arguments
for showing that shellable simplicial complexes are Cohen-Macaulay (e.g., [24]) extend
without difficulty to the relative case, so we conclude that ∆(P,λ) is Cohen-Macaulay.
2

A trivial example of a relative EL-labeling is as follows. Let P be any finite graded
poset of rank n with 0̂ and 1̂, and choose λ so that every maximal chain is strictly
decreasing (e.g., λ(s, t) = ρ(t), the rank of t). Then only intervals of length zero and
one have increasing maximal chains, so the conditions of Definition 4.3 are vacuously
satisfied. Topologically, ∆(P, λ) is a disjoint union of m open balls of dimension n−2,
where m is the number of maximal chains of P .

A more substantial example, and the one which is relevant to Proposition 4.2, is
the following. Let Q be any n-element poset, and let ω : Q→ [n] be a labeling. Define
an E-labeling λ = λω : E(J(Q)) → [n] by letting λω(I, I ′) be the label ω(t) of the
unique element t ∈ I ′ − I. One easily checks that λω is an EL-labeling, and that the
cocomplex ∆(J(Q), λω) coincides with ∆(J(Q), ω) = J(Q)/Γω. Hence by Theorem
4.4, ∆(J(Q), ω) is Cohen-Macaulay, completing the second proof of Proposition 4.2
and thus also of Theorem 4.1. 2

We conclude this section by stating a partial “labelled analogue” of Theorem 3.1
which is equivalent to a result of C. Malvenuto [16][17, Thm. 6.4]. (A full analogue
is given by Conjecture 4.6.) Actually Malvenuto states a slightly weaker result than
Theorem 4.5 below, but her proof carries over to Theorem 4.5 (as she herself observes
in [17, p. 108]). If λ/µ is a skew shape, then we mentioned above that the labeling ω
of Pλ/µ which corresponds to the cocomplex P/Γ = Pλ/µ/Γλ/µ is characterized by the
conditions that it increases along rows and decreases down columns. We call such a
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Figure 2: A Schur labelled skew shape
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Figure 3: The eleven three-element labelled posets (C, ω) for which (J(C), λω) is
rank-symmetric

labeling a Schur labeling and say that (P, ω) is a Schur labelled skew shape. Figure 2
illustrates a Schur labeling of the skew shape 76441/31. Define two labelled posets
(Q,ω) and (Q′, ω′) to be isomorphic if there is a poset isomorphism f : Q→ Q′ such
that if s < t in Q then

ω(s) < ω(t) if and only if ω′(f(s)) < ω′(f (t)). (12)

(Note that if s and t are incomparable in Q then we don’t require that (12) holds.)
The J(Q)-cocomplex J(Q)/Γω depends only on the isomorphism type of (Q,ω).

4.5 Theorem (C. Malvenuto). Let ω : Q → [n] be a labeling of an n-element
poset Q. Assume that the cocomplex ∆(J(Q), ω) is locally rank-symmetric. Then
(Q,ω) is isomorphic to a Schur labelled skew shape.

Malvenuto actually shows that rather than using the full hypothesis that (J(C), λωC )
is rank-symmetric for every convex subset C of Q (with ωC denoting the restriction
of ω to C), one only needs this hypothesis for three-element convex subsets. In other
words, if every three-element convex subset of Q has the type of one of the labelled
posets of Figure 3, then (Q,ω) is isomorphic to a Schur labelled skew shape.
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Theorem 4.5 is a special case of the conjecture on page 81 of [21], which we repeat
below (in a different wording).

4.6 Conjecture. The conclusion to Theorem 4.5 remains true if we assume only
that ∆(J(Q), ω) is flag-symmetric (rather than locally rank-symmetric).

5 Connections with representation theory.

If a homogeneous symmetric function f (over �) of degree n is Schur positive, then
it is the (Frobenius) characteristic ch ψ of a character ψ of the symmetric group Sn
(see [15, I.7]). The degree ψ(1) of this character is the coefficient of m1n when f
is expanded in terms of monomial symmetric functions mλ. Hence if P/Γ is flag-
symmetric of rank n and FP/Γ is Schur positive, then by (3) FP/Γ = ch ψP/Γ for some
character ψP/Γ of Sn of degree α([n − 1]), the number of facets of P/Γ (which will
be the number of maximal chains in P if Γ doesn’t contain a maximal chain of P ).
Hence we may ask whether there is a “natural” linear action ϕ of Sn on the complex
vector space �F(P/Γ) with basis F(P/Γ), the set of facets of P/Γ, such that ϕ has
character ψP/Γ. We will discuss some interesting examples of such actions of Sn (or
in one case the Hecke algebra of Sn). However, it appears that such examples are
quite special, and that in general there is no nice connection between flag-symmetric
posets P (or P -cocomplexes P/Γ) and representation theory, even when FP or FP/Γ

are Schur positive.

First we discuss what we mean by a “natural” action of Sn on �F(P/Γ). Let
si = (i, i+1), the adjacent transposition which transposes i and i+1, for 1 ≤ i ≤ n−1.
Let P be any graded poset of rank n with 0̂ and 1̂, and let Γ be any subcomplex of
∆̃(P ). We say that a linear action of Sn on �F(P/Γ) is local if for each maximal
chain F : 0̂ = t0 < t1 < · · · < tn = 1̂ of P/Γ, si ·F is a linear combination of maximal
chains of P/Γ of the form F ′ : 0̂ = t0 < t1 < · · · < ti−1 < t′i < ti+1 < · · · < tn = 1̂,
i.e., F ′ agrees with F except possibly at the ith rank. This definition is motivated
by the definition of “local stationary algebra” in [30]. Now assume that P/Γ is flag-
symmetric. We say that an Sn-action ϕ on �F(P/Γ) is good if it is local and if its
character χϕ has characteristic ch χϕ = FP/Γ.

The simplest situation for a local Sn-action is the following. Suppose that P is
any finite graded poset of rank n with 0̂ and 1̂, such that every interval of rank two
contains three or four elements (i.e., is a 3-element chain or the boolean algebra B2).
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For 1 ≤ i ≤ n− 1 and a maximal chain F : 0̂ = t0 < t1 < · · · < tn < 1̂, define

si · F =

{
F, if [ti−1, ti+1] has three elements
(F − {ti}) ∪ {t′iS ′}, if [ti−1, ti+1] has the four elements ti−1, ti, t

′
i, ti+1.

(13)
When does this definition define an Sn-action? In other words, when are the Coxeter
relations s2

i = 1, sisj = sjsi if |j − i| ≥ 2, sisi+1si = si+1sisi+1 satisfied? The first
two are automatic, and one can check that the last is satisfied if and only if every
interval of rank three is isomorphic to a sum (in the sense of Proposition 3.6) of
intervals C4, C3 × C2, or C2 × C2 × C2, where Ci denotes an i-element chain. If P
is Cohen-Macaulay then intervals of rank three are irreducible with respect to +̂, so
only C4, C3 × C2, and C2 × C2 ×C2 can occur above. It is clear that any product of
chains Lλ = Cλ1+1× · · · ×Cλ`+1 has only C4, C3×C2, or C2×C2 ×C2 as rank three
intervals, and hence has a local Sn-action (where n =

∑
λi) defined by (13). This

action is isomorphic to the natural action of Sn on left cosets of the Young subgroup
Sλ = Sλ1 × Sλ2 × · · · × Sλ`, and its character ψλ has characteristic hλ. Since Lλ is
flag-symmetric (even locally self-dual) and FLλ = hλ, we have a satisfactory instance
of a good Sn-action. The following result, originally conjectured by this author, is
due to David Grabiner [11].

5.1 Proposition (D. Grabiner). Let P be a finite graded poset of rank n with 0̂
and 1̂, such that every interval of rank three is a product of chains, i.e., is isomorphic
to one of C4, C3 ×C2, or C2 × C2 × C2. Suppose also that for every interval [s, t] of
rank at least four, the open interval (s, t) is connected (which is the case, for example,
when P is Cohen-Macaulay). Then P is a product of chains.

5.2 Corollary. If P is a Cohen-Macaulay poset with a good Sn-action of the form
(13), then P is a product of chains.

We can now ask for examples of good actions of Sn on �F(P/Γ) which are not
of the form (13). It follows from the description of Young’s natural representation
of skew shape λ/µ given in [12] or [30] that there is a good action ϕλ/µ of Sn on
�F(Pλ/µ/Γλ/µ), so by Theorem 4.1 the character χλ/µ of ϕλ/µ has characteristic
ch χλ/µ = sλ/µ (where n = |λ/µ|). When λ/µ is a horizontal strip (as defined at
the beginning of Section 4) we recover the good action of Sn on a product of chains
defined by (13). We don’t know of any further examples of a good Sn-action on a
connected flag-symmetric P -cocomplex P/Γ which does not have a facet stabilized by
Sn.

When λ/µ consists of n disjoint squares, then Pλ/µ/Γλ/µ = Pλ/µ ∼= Bn, the boolean
algebra of rank n. The good action of Sn on Bn defined above is just the regular
representation of Sn. There is an interesting q-analogue of this action which we
now discuss. For a prime power q, let Bn(q) be the lattice of subspaces of an n-
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dimensional vector space Vn over �q. Bn(q) is well known to be “nice” q-analogue of
Bn. For 1 ≤ i ≤ n− 1, define linear transformations Ai on �F(Bn(q)) (the space of
formal linear combinations of maximal chains of Bn(q)) by

Ai(F ) =
∑
F ′
F ′, (14)

where if F is given by 0̂ = V0 ⊂ V1 ⊂ · · · ⊂ Vn = 1̂, then F ′ ranges over all flags
(maximal chains) 0̂ = V0 ⊂ V1 ⊂ · · · ⊂ Vi−1 ⊂ V ′i ⊂ Vi+1 ⊂ · · · ⊂ Vn = 1̂, where
V ′i 6= Vi. (There are exactly q such flags F ′.) One checks that

A2
i = (q − 1)Ai + qI

AiAj = AjAi, if |j − i| ≥ 2

AiAi+1Ai = Ai+1AiAi+1.

Let Hn(q) denote the Hecke algebra of Sn with standard generators T1, T2, . . . , Tn−1

corresponding to the simple reflections (adjacent transpositions) s1, s2, . . . , sn−1 in Sn
[13, §7.4][18] (though in [18] gi is used for our Ti). The defining relations for Hn(q)
imply that we have a representation

ϕ : Hn(q)→ End(�F(Bn(q)))

defined by ϕ(Ti) = Ai. In other words, we have a local action of Hn(q) on �F(Bn(q)).
The irreducible representations ϕλ of Hn(q) are indexed in a natural way by parti-
tions λ of n (e.g., [18]). The representation ϕ is well-known in the theory of Hecke
algebras (though perhaps not described in exactly the way we have done it), and
the multiplicity fλ(q) of ϕλ in ϕ is called a generic degree of Hn(q). Since ϕ is a
q-analogue of the regular representation of Sn, we may regard fλ(q) as a q-analogue
of the number fλ of standard Young tableaux of shape λ (i.e., the dimension of the
irreducible representation of Sn indexed by λ). In fact, it is known (see [19, Thm.
5.9] for a proof accessible to combinatorialists) that

fλ(q) =
qb(λ)(1− q)(1− q2) · · · (1− qn)

(1− qh1)(1− qh2) · · · (1− qhn)

=
∑
T

qmaj(T ),

where b(λ) =
∑(

λi′

2

)
=
∑

(i− 1)λi; h1, h2, . . . , hn are the hook-lengths of λ; T ranges

over all standard tableaux of shape λ; and maj(T ) denotes the major index of T ,
defined by maj(T ) =

∑
i, summed over all i for which i+ 1 appears in a lower row of

T than i.

In analogy to Sn-actions, we say that an action σ of Hn(q) on �F(P/Γ), where
P/Γ is flag-symmetric of rank n, is good if it is local (i.e., if F is a maximal chain
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then Ti ·F is a linear combination of maximal chains which agree with F at all ranks
except possibly rank i) and if FP/Γ =

∑
cλsλ, where cλ is the multiplicity of ϕλ in σ.

5.3 Proposition. The action ϕ of Hn(q) on �F(Bn(q)) defined above is good.

Proof. By definition ϕ is local. Now Bn(q) is a Hall lattice of type (1n), so by
Theorem 3.5 we have

FBn(q) =
∑
λ`n

K̃λ,1n(q)sλ.

It is known [15, Ex. 2 on p. 130] that K̃λ,1n(q) = fλ(q), and the proof follows. 2

It is natural to ask for other posets P (where P − {0̂, 1̂} is connected) with a
local Hn(q)-action, but except for the uninteresting case where Hn(q) acts trivially
we don’t know of any examples. A Hall lattice L of type λ is a “nice” q-analogue of
a product of chains of lengths λ1, λ2, . . .. Let F : 0̂ = t0 < t1 < · · · < tn = 1̂ be a
maximal chain in L. Define linear transformations Ai on �F(L) for 1 ≤ i ≤ n− 1 by
Ai(F ) = F if the interval [ti−1, ti+1] is a chain, and otherwise Ai(F ) is given by (14).
This seems to be the “natural” analogue of the Sn-action on Cλ1+1×Cλ2+1× · · ·, but
unfortunately it does not define an Hn(q)-action unless λ = (n) or λ = (1n).

A final question: For every λ ` n, is there a P -cocomplex P/Γ and a good action
of Hn(q) on �F(P/Γ) which is isomorphic to the irreducible representation ϕλ of
Hn(q)?
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