
COUNTING FORESTS BY DESCENTS AND LEAVES

Ira Gessel

Department of Mathematics
Brandeis University

Waltham, MA 02254-9110
ira@cs.brandeis.edu

Submitted: January 26, 1995; Accepted: June 14, 1995

Dedicated to Dominique Foata

��������� A descent of a rooted tree with totally ordered vertices is a vertex that
is greater than at least one of its children. A leaf is a vertex with no children. We
show that the number of forests of rooted trees on a given vertex set with i+1 leaves
and j descents is equal to the number with j+1 leaves and i descents. We do this by
finding a functional equation for the corresponding exponential generating function
that shows that it is symmetric.

Introduction. By a forest we mean a forest of rooted labeled trees in which the
labels are totally ordered. A descent of a tree is a vertex that is greater than at
least one of its children. A leaf is a vertex with no children.

For a forest F , let d(F ) be the number of descents of F and let l(F ) be the
number of leaves of F . For n > 0, let

un(α, β) =
∑
F

αd(F )βl(F )−1,

where the sum is over all forests F with vertex set [n] = {1, 2, . . . , n}. Since a forest
of rooted trees on [n] may be identified with the (unrooted) tree on {0, 1, . . . , n}
obtained by joining all the roots of the forest to the new vertex 0, un(α, β) may
also be interpreted in terms of unrooted trees rather than forests of rooted trees.

Our main result is that un is symmetric; i.e., un(α, β) = un(β, α). More precisely,
we shall prove that the exponential generating function

U (x;α, β) =
∞∑
n=1

un(α, β)
xn

n!

satisfies the functional equation

1 + U = (1 + αU )(1 + βU )ex(1−α−β−αβU),
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which implies that U is symmetric in α and β.
We first discuss what is already known about the polynomials un(α, β). Since

there are (n+ 1)n−1 forests of rooted trees with vertex set [n] (see, e.g., Moon [8]
for many proofs) we have un(1, 1) = (n+ 1)n−1. It is also known that the number
of forests of rooted trees on [n] with i leaves is (n!/i!)S(n, n− i+ 1), where S(n, k)
is the Stirling number of the second kind. (See Moon [8, p. 20, Theorem 3.5] or
Knuth [7; exercise 19, p. 397; solution, p. 585].) Thus

un(1, β) =
n−1∑
i=0

n!
(i+ 1)!

S(n, n− i)βi.

A forest with only one leaf consists of a single “linear” tree, which may be
viewed as a permutation, and the descents of the forest are the same as those of the
permutation, so un(α, 0) = An(α)/α, where An(α) is the nth Eulerian polynomial
[4; 9, p. 22].

A tree with no descents is called an increasing tree and a forest of increasing
trees is called an increasing forest . There is a well-known bijection from increasing
forests on [n] to permutations of [n] that takes leaves to descents (but we must
count an extra descent at the end of the permutation); see, for example, [9, p. 25].
Thus un(0, β) = An(β)/β. Descents of trees seem first to have been considered
in [5], where it is shown that un(α, 1) = un(1, α). This result, together with the
other special cases mentioned above, provided the motivation for studying un(α, β),
and suggested that it might be symmetric.

The functional equation. Rather than counting forests directly, we first count
some related objects. A marked forest is an ordered pair (F,M) where F is a
nonempty forest and M is a set of vertices of F containing all of the descents and
none of the leaves. We call the vertices in M marked vertices . For n > 0, let

cn(β, γ) =
∑

(F,M)

βl(F )γ|M |, (1)

where the sum is over all marked forests (F,M) with vertex set [n]. Since the set
of marked vertices in a marked forest consists of all the descents together with an
arbitrary subset of the vertices that are neither leaves nor descents, we have

cn(β, γ) =
∑
F

βl(F)γd(F )(1 + γ)n−l(F )−d(F)

= (1 + γ)n
∑
F

(
β

1 + γ

)l(F )(
γ

1 + γ

)d(F)

= β(1 + γ)n−1un

(
γ

1 + γ
,

β

1 + γ

)
,

and thus

un(α, β) = β−1(1− α)ncn

(
β

1− α,
α

1− α

)
. (2)
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Now let

C = C(x; β, γ) =
∞∑
n=1

cn(β, γ)
xn

n!
,

and let

U (x;α, β) =
∞∑
n=1

un(α, β)
xn

n!
.

It follows from (2) that

βU(x;α, β) = C

(
x(1− α);

β

1− α,
α

1− α

)
. (3)

Next, we describe a decomposition for marked forests that allows us to count
them. Let (F,M) be a marked forest and let V0 be the set of vertices v of F with
the property that no (proper) ancestor of v is marked. It is clear that the induced
subgraph of F on V0 is an increasing forest F0, which we call the initial forest of F .
Note that every leaf of F0 is either a leaf or a marked vertex of F , and that if a leaf
of F0 is a marked vertex of F , then its descendents form a marked forest. Thus we
can decompose any marked forest into its initial forest together with a (possibly
empty) set of marked forests. This decomposition will yield a functional equation
for C(x;β, γ).

To a marked forest (F,M) we assign the weight βl(F)γ|M|, as in (1). Let F0 be
the initial forest of F and let v be a leaf of F0. If v is a leaf of F then v contributes
a factor of β to the weight of F , and if v is a marked vertex of F then v and its
descendents contribute to the weight of F a factor of γ times the weight of the
marked forest made up of the descendents of v. Now let An,i be the number of
increasing forests on [n] with i leaves. By the properties of exponential generating
functions (see, for example, Foata [3], Goulden and Jackson [6, Chapter 3], or Berg-
eron, Labelle, and Leroux [1, Chapter 5]), it follows that the exponential generating
function for marked forests in which the initial forest has n vertices and i leaves is

An,i
xn

n!
(β + γC)i.

As noted in the introduction,
∑
iAn,it

i = An(t) is the nth Eulerian polynomial.
Let

A(x; t) =
∞∑
n=0

An(t)
xn

n!
,

where A0(t) = 1. Then we have

1 + C =
∞∑

n,i=0

An,i
xn

n!
(β + γC)i = A(x;β + γC). (4)

It is well known [2, p. 51, equation 14v] that the Eulerian polynomials have the
exponential generating function

A(x; t) =
∞∑
n=0

An(t)
xn

n!
=

1− t
1− te(1−t)x . (5)
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From (3), (4), and (5) we find that U = U(x;α, β) satisfies

1 + βU =
1− α − β − αβU

1− α− β(1 + αU)ex(1−α−β−αβU)
.

Simplifying, we obtain

1 + U = (1 + αU )(1 + βU )ex(1−α−β−αβU). (6)

Since (6) is symmetric in α and β, and determines U uniquely, it follows that U is
also symmetric.

It is possible to solve (6) by Lagrange inversion to get an explicit formula for
the coefficients of U , but this formula seems too complicated to be useful. If we set
α = 1, (6) reduces to

1 + βU = exβ(1+U),

which can be solved by Lagrange inversion to give (1). If we set β = 0 or α = 0
in (6), so that we are counting increasing trees by endpoints or permutations by
descents, U reduces to a generating function for the Eulerian polynomials. (It
differs slightly from (5) since it is normalized differently.)

Tables. Here are the coefficients un,i,j in un(α, β) =
∑

i,j un,i,jα
iβj for n ≤ 6.

n = 1 i \ j 0
0 1

n = 2 i \ j 0 1
0 1 1
1 1 0

n = 3 i \ j 0 1 2
0 1 4 1
1 4 5 0
2 1 0 0

n = 4 i \ j 0 1 2 3
0 1 11 11 1
1 11 44 17 0
2 11 17 0 0
3 1 0 0 0

n = 5 i \ j 0 1 2 3 4
0 1 26 66 26 1
1 26 237 288 49 0
2 66 288 146 0 0
3 26 49 0 0 0
4 1 0 0 0 0
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n = 6 i \ j 0 1 2 3 4 5
0 1 57 302 302 57 1
1 57 1020 2718 1476 129 0
2 302 2718 3858 922 0 0
3 302 1476 922 0 0 0
4 57 129 0 0 0 0
5 1 0 0 0 0 0
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