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Abstract

An isomorphism certificate of a labeled tournament T is a labeled subdigraph of T which to-

gether with an unlabeled copy of T allows the errorless reconstruction of T . It is shown that any

tournament on n vertices contains an isomorphism certificate with at most n log2 n edges. This

answers a question of Fishburn, Kim and Tetali. A score certificate of T is a labeled subdigraph of

T which together with the score sequence of T allows its errorless reconstruction. It is shown that

there is an absolute constant ε > 0 so that any tournament on n vertices contains a score certificate

with at most (1/2− ε)n2 edges.

1 Introduction

A tournament is an oriented complete graph. An isomorphism certificate of a labeled tournament

T is a labeled subdigraph D of T which together with an unlabeled copy of T allows the errorless

reconstruction of T . More precisely, if V = {v1, . . . , vn} denotes the vertex set of T , then a subdigraph

D of T is such a certificate if for any tournament T ′ on V which is isomorphic to T and contains D, T ′

is, in fact, identical to T . The size of the certificate D is the number of its edges, and D is a minimum

certificate if no isomorphism certificate has a smaller size.

Note that the unique directed Hamilton path in a transitive tournament on n vertices is an iso-

morphism certificate of size n − 1 for the tournament. It is also not difficult to check that any edge
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of the cyclic triangle is an isomorphism certificate for it, and that there are three edges of the regular

tournament on 5 vertices which form an isomorphism certificate for it. Besides these examples, it

seems that any other tournament on n vertices does not have certificates with less than n− 1 edges.

This was conjectured by Rubinstein [5], motivated by certain questions in Economics.

Conjecture 1.1 ([5]) There exists an integer n0 such that the minimum isomorphism certificate of

any tournament on n > n0 vertices is of size at least n− 1.

As observed by the first author (cf. [5] for a proof), the assertion of the conjecture is at least

nearly correct, in the sense that for any ε > 0 there exists some n0 = n0(ε) so that the minimum

isomorphism certificate of any tournament on n > n0(ε) vertices is of size at least (1− ε)n. Fishburn,

Kim and Tetali [2] showed that the only tournaments with n ≤ 7 vertices that contain isomorphism

certificates of size smaller than n − 1 are the regular tournaments on 3 and on 5 vertices, and it is

thus reasonable to suspect that one may take n0 = 5 in the above conjecture.

Kim, Spencer and Tetali [4] proved that most tournaments on n vertices contain isomorphism

certificates of size at most O(n logn), and Fishburn, Kim and Tetali [2] wondered whether there are

any tournaments on n vertices in which the size of the minimum isomorphism certificate is much larger.

Here we show that there are no such tournaments.

Theorem 1.2 Any tournament on n vertices contains an isomorphism certificate of size at most

log2 n! ≤ n log2 n.

The score of a tournament on n vertices is the vector (d1, d2, . . . , dn) of outdegrees of its vertices,

ordered so that d1 ≥ d2 ≥ . . . ≥ dn. A score certificate of a labeled tournament T on a set V of n

vertices is a subdigraph D of T such that any tournament on V that contains D and has the same

score sequence as T is identical to T . A score certificate is minimum if no other score certificate has

less edges. This notion was introduced by Kim, Tetali and Fishburn [3], who proved that the minimum

size of a score certificate of any tournament on n > 5 vertices is at least n − 1. They also showed,

together with the first author (see [2]), that there are tournaments on n vertices whose minimum score

certificates contain at least (7/24 + o(1))n2 edges, that is, significantly more than half the edges of

the tournaments. The proof combines the fact that the quadratic tournaments on p vertices do not

contain score certificates with less than (1/2 − o(1))p2 edges, as follows easily from Theorem 1.1 in

Chapter 9 of [1], with some additional arguments.

Here we show that the maximum possible size of a minimum score certificate of a tournament on

n vertices is a fraction which is bounded away from that of the total number of edges. This is stated
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in the following result.

Theorem 1.3 There exists an ε > 0 so that any tournament on n vertices contains a score certificate

of size at most (1/2− ε)n2 edges.

In the rest of this note we prove the above two theorems. All logarithms from now on are in base 2.

2 Isomorphism certificates

In this section we prove Theorem 1.2. The proof is short, and implies a more general statement, as

described in the end of the section.

Proof of Theorem 1.2.

Let T be a fixed unlabeled tournament on n vertices. For an arbitrary set H of labeled edges on

the set V = {v1, . . . , vn} of n vertices, we say that a labeled tournament T ′ on V is consistent with H

if T ′ is isomorphic to T and contains all edges in H. Consider the following procedure for producing

an isomorphism certificate . Initially, define H0 = ∅ and let T0 be the set of all tournaments on V

which are consistent with H0 (that is; the set of all tournaments which are isomorphic to T .) Note

that T0 contains n!/|Aut(T )| tournaments, where Aut(T ) is the automorphism group of T . Assuming

i ≥ 1 and assuming Hi−1 is a set of i−1 edges that has already been defined, and Ti−1 is the set of all

tournaments on V which are consistent with Hi−1, proceed as follows. If |Ti−1| = 1 stop; Hi−1 is an

isomorphism certificate for the unique copy of T which lies in Ti−1. Otherwise, pick an arbitrary pair

j < k such that there are tournaments T1 and T2 in Ti−1, with (vj, vk) being a directed edge of T1 and

(vk, vj) being a directed edge of T2. Define, now, Hi = Hi−1 ∪{(vj , vk)} if the number of tournaments

consistent with Hi−1 ∪ {(vj, vk)} is at most |Ti−1|/2. Otherwise, define Hi = Hi−1 ∪ {(vk, vj)}. Note

that Ti−1 is the disjoint union of tournaments consistent with Hi−1 ∪ {(vj, vk)} and those consistent

with Hi−1 ∪ {(vk, vj)}. Therefore, if Ti is the set of all tournaments consistent with Hi it follows that

|Ti| ≤ |Ti−1|/2 for all i ≥ 1. Moreover, by our choice, no Ti is empty. Since |T0| = n!/|Aut(T )| it follows

that there exists some i ≤ log(n!/|Aut(T )|) ( ≤ logn!) for which |Ti| = 1. The corresponding set of

labeled edges Hi is of cardinality at most logn! and forms an isomorphism certificate for the unique

copy of T in Ti. Since T was an arbitrary tournament on n vertices, this completes the proof.

Remark. The argument above is general and has little to do with tournaments. In fact, a similar

argument applies for providing small certificates for arbitrary combinatorial structures. Instead of

stating the most general result of this type, we mention here only one additional example, and leave

the formulation of the obvious generalizations to the reader. A colored graph is a graph together with
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an assignment of a color to each of its edges. Two such graphs are isomorphic if there is a color-

preserving isomorphism between them. An isomorphism certificate for a labeled colored complete

graph K on a set of vertices V is a labeled colored subgraph H of it, such that any colored complete

graph on V which is isomorphic to K and contains H is identical to K. The argument above clearly

shows that any labeled colored complete graph on n vertices contains an isomorphism certificate of

size at most logn! = O(n logn). Moreover, this estimate is tight, up to a constant factor. To see

this, consider the following example. Let U denote the set of all 2k binary vectors of length k, and let

V = {x1, . . . , xk} ∪ {yu}u∈U be a set of n = k + 2k vertices. Let K be the colored, complete graph on

V in which all the edges connecting two vertices xi or two vertices yu are colored red, and the color

of each edge of the form xiyu is black if ui = 1 and white if ui = 0. We claim that each isomorphism

certificate for K contains at least k2k−1 = Ω(n logn) edges. To see this, fix an i, 1 ≤ i ≤ k and let u0

and u1 be two vectors in U which are identical in all coordinates besides the i− th coordinate, where

u0
i = 0 and u1

i = 1. Note that even if the colors of all edges besides those of the two edges xiyu0 and

xiyu1 are given, the colors of these two edges are not determined. This means that any isomorphism

certificate must contain at least one of these two edges. Since there are k2k−1 pairwise disjoint pairs

of edges of this form this proves the above claim. It is worth noting that the problem of finding a

similar example using only two colors (as well as that of showing that the assertion of Theorem 1.2 is

tight) seems to be a lot harder.

3 Score certificates

In this section we prove Theorem 1.3. We make no attempt to optimize our estimate for ε and prove

the theorem for ε = 1/160 and n ≥ 80. (The last inequality can clearly be omitted by reducing ε). To

simplify the presentation, we omit all floor and ceiling signs whenever these are not crucial.

Proof of Theorem 1.3. Let T be a labeled tournament on the n vertices v1, v2, . . . , vn, where the

outdegree of vi is di and d1 ≥ d2 ≥ . . . ≥ dn. Call an edge (vi, vj) a back edge if i > j. A score

reversible set is a subset E ′ of the set of edges of T so that the tournament obtained by reversing the

direction of all edges in E′ has the same score sequence as T . Obviously, any score certificate has to

intersect all score reversible sets of a given tournament and vice versa: any set of edges that intersects

all score reversible subsets is a score certificate . To complete the proof it thus suffices to show that

T contains a set of εn2 edges which does not contain (as a set) any score reversible subsets, since this

implies that the set of all edges besides those form a score certificate of the required size.

Claim 1: A score reversible set of edges cannot contain only back edges.
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Proof. Suppose this is false, and reversing a subset E ′ of back edges one can get a tournament with

the same score sequence. Let vi (1 ≤ i ≤ n) be the vertex of smallest index for which a back edge of

the form (vj , vi) ∈ E′ has been reversed. Then in the new score sequence the sum of the outdegrees

of the first i vertices is strictly bigger than in the original one, supplying the desired contradiction.

Therefore, if the number of back edges is at least εn2, the desired result follows. Thus we may and

will assume that there are less than εn2 back edges.

Claim 2: There exist at least n/2 vertices each of which is incident with at most 4εn back edges.

Proof. Otherwise, there are more than 1
2
n
2 4εn = εn2 back edges, contradicting the preceding assump-

tion. 2

Let V ′ denote such a set of n/2 vertices. Clearly, for every vi ∈ V ′

n− i− 4εn ≤ di ≤ n− i+ 4εn.

Note that the number of non-back edges in the graph spanned on the vertices V ′ is at least(n/2
2

)
− εn2. For a non-back edge (vi, vj), call the quantity j − i the length of the edge. Note that the

number of non-back edges of length at least 17εn in the induced subgraph on V ′ is at least(
n/2

2

)
− εn2 −

n

2
· 17εn ≥ n2/16,

where we used the fact that ε is sufficiently small (say, ε = 1/160 ) and n is sufficiently large (say,

n ≥ 80.)

It is not difficult to partition the set of all non-back edges in V ′ into n/2− 1 classes, where in each

class the maximum indegree and maximum outdegree is at most 1. (In fact, the edges of any digraph

D in which all indegrees and all outdegrees are at most h can be partitioned into at most h such

classes. To see this, construct a bipartite graph H whose color classes are two copies A = {a1, . . . , am}

and B = {b1, . . . , bm} of the vertex set of D, and for each directed edge ij of D, add the edge aibj to

H. By the Hall-König Theorem the edges of of H can be partitioned into at most h matchings, which

give the desired partition of the edges of D.) Therefore, by the pigeon-hole principle there are some

8εn classes which contain together at least

n2

16
·

8εn

n/2− 1
≥ εn2

non-back edges among those of length at least 17εn on V ′. Let E′ denote the set of these edges. We

complete the proof by showing that all edges besides those in E′ form a score certificate . Suppose



the electronic journal of combinatorics 4 (1997), #R12 6

this is false. Then there exists a score reversible set E? ⊆ E′. Let vk be the vertex with smallest

index incident with an edge of E?. Then vk is the initial vertex of each such edge, and after reversing

the edges in E? the outdegree of vk will decrease. This means that in the new tournament some

other vertex vp must have its outdegree increased to the value of the outdegree of vk. However, by

construction, reversing edges in E? may increase the outdegree of a vertex by at most 8εn and if vp is

any vertex whose outdegree increases at all then p− k ≥ 17εn. This implies that

dk − dp > 17εn− 2 · 4εn > 8εn,

and shows that the outdegree of vp in the new tournament cannot increase to reach that of vk in the

original one. This completes the proof.
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