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Abstract

In this paper we prove a conjecture stated in an earlier paper [ A-L]]. The conjecture states that
with respect to a rather natural operation, the set of N -dimensional magic cubes forms a free monoid
for every integer N > 1. A consequence of this conjecture is a certain identity of formal Dirichlet
series. These series and the associated power series are shown to diverge. Generalizations of the
underlying ideas are presented. We also prove variants of the main results for magic cubes with
remarkable power sum properties.
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§0 Introduction
According to the book of W.S.Andrews [ An], the study of magic squares is quite old and dates

back to ancient Tibet, to 12th century China, to 9th century Arab astrologers and perhaps much
further. Indeed, Andrews speculates that magic squares might even be prehistoric. Despite their
antiquity, they have often been regarded by serious mathematicians as a waste of time, although
many of the great mathematicians of the past, such as Euler [ E1], [ E2], Ramanujan [ R1],(cf. [
R2]) and Fermat [ F], found it to their liking to waste quite a lot of time on them. One possible
reason for this double standard is that although magic squares are a lot of fun, no one believes that
it is possible to prove general theorems about them. Indeed, until recently all work on magic squares
consisted in presenting methods of constructing magic N -cubes or of examining the properties of
particular magic N -cubes, with most attention being devoted to the case N = 2. Since no explicit
method has ever been given for constructing all magic N -cubes, the work of past researchers has
necessarily been limited to special classes of magic N -cubes. Even so, their work has in some
cases also drawn on interesting mathematics such as the related studies of Latin squares and finite
geometries. One can also mention the paper [ A-L], which used Prouhet sequences*

*Prouhet sequences have as a special case a sequence used by Morse [Mo1] (cf. [Mo2],[M-H 1] to give
a counterexample to the Poincaré-Bendixson theorem in higher genus and by Morse and Hedlund
[M-H 2] to give an example of unending chess.
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to construct an infinite class of magic cubes with remarkable power sum properties, and the
recent papers [ A1], [ A-W], in which p-adic L-functions [ Iw] are used to construct an infinite
class of magic p-dimensional cubes.1

In recent times, mathematicians concerned with areas quite different from magic squares have
been pleased and amused when they could report that their researches have led them to objects
which, if not actually magic squares, at any rate exhibit some of the properties of magic squares.
Thus it was that Ax [ Ax1], in his studies of quantum mechanics [ Ax2], enjoyed referring to doubly
stochastic matrices as “magic squares”; that André Weil [ W1] was able to point out properties
of the period matrices of Fermat curves [ W2] which made them like “magic squares”; and that
I.M. Gelfand in his lectures on generalized hypergeometric functions [ Ge] was happy to report that
some of the objects of his theory are described by “magic squares”. Some such “magic squares” then
become legitimate objects of study in their own right. For example, in his work on magic graphs,
Richard Stanley [ S1], [ S2] used the Hilbert syzygy theorem to study the growth as k → ∞ of
the number of arrays of positive integers with entries less than k and having many of the properties
of magic squares. Nevertheless, the study of magic N -cubes themselves remains disreputable and
probably always will.

It is not the purpose of this article, however, to survey the subject of magic N -cubes nor
to create enthusiasm for the topic where it does not already exist. It is instead to report on a
theoretical development in the subject of magic N -cubes, and here I mean genuine magic N -cubes,
not the imitations which were mentioned in the previous paragraph. The simple fact is that until
the paper [ A-L] appeared in 1977, no theorem had ever been published concerning the set of all
magic N -cubes as a whole. What was new in [ A-L], apart from a new construction of a remarkable
class of magic N -cubes, was the introduction ( [ A-L], p. 624) of an operation on the set of all magic
squares. This operation is associative and has an identity element and therefore makes the set of
magic squares into a monoid. Furthermore, it was conjectured that with respect to this operation,
the set of magic squares is a free monoid. It was also remarked in [ A-L], but not explicitly proved,
that the operation makes sense for magic N -cubes for all N and the conjecture was expected to hold
for all N > 1. In this paper, we show that the conjecture is true.2 By adapting the techniques of the
proof, we show that magic N -cubes satisfying certain remarkable power sum properties also form a
free monoid. We then consider various generating functions for the number of magic N -cubes and
show that they diverge. Although pleasant to know, the real significance of their divergence lies in
the estimates that one uses. For, what one really wants to know, either exactly or approximately,
is how many magic N -cubes there are of a given size. We therefore summarize the estimates we
obtain at the end of the article. Undoubtedly one can get much better estimates even from the
constructions we have used. Whether one can get accurate asymptotic estimates for the number of
magic N -cubes is another question. It is conceivable that the “sporadic” magic squares which do
not arise from general constructions form an infinite set larger in the sense of its growth than the
set of magic squares that do arise from such constructions. If this is the case, then the approach we
have taken to obtaining estimates cannot, even in principle, be made accurate through more careful
study of general constructions. In order to test for this possibility, it seems reasonable to suggest
that in addition to using computers to enumerate the magic squares of various sizes, as many people
are doing, one should also be trying to see whether the magic squares produced by these searches
have natural generalizations to new infinite families.

The contents of the paper are as follows. In §1, we prove (Theorem 1.26) that magic squares
form a free monoid. These ideas apply as well in the case of magic N -cubes, but since they only
involve trivial modifications of the proof for magic squares, the details are left to the reader. In §2,
which is devoted to generalizations, we note that the frames of the magic N -cubes form a monoid,

1 One can view this result as saying that one can use the Riemann zeta function and certain
Dirichlet L-functions to construct magic p-cubes.

2 For N = 1, every permutation of the interval [1, r] is a magic 1-cube, since there is only one
“side” and that side is also the only “diagonal”. In this case, the monoid is definitely not free, since
for example, the magic 1-cubes 1 2 3 and 1 2 are irreducible and commute with each other
under the monoid operation, the product being 1 2 3 4 5 6 . The generators of the monoid are
the irreducible elements of the monoid, but I don’t know the relations among them.
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as do the summation conditions to which they are subjected, and we formulate these observations
in a very general setting, motivated by the desire to understand the monoids SN (t, g) (see §3) from
an abstract point of view. In earlier draft of this article [ A2], these generalizations were worked
out in considerable detail including some discussion of infinite dimensional varieties. In the present
article, for reasons of space, the discussion is reduced to a brief sketch. In §3, we consider classes
of magic N -cubes that have certain remarkable power sum properties for their entries. We denote
these monoids SN (t, g) and prove in Theorem 3.1 that they are free on infinitely many generators.
In §4, we take up the question of the convergence of the generating functions and, after showing that
they diverge, conclude the article with a summary of the estimates we obtained. These estimates
can undoubtedly be greatly improved by a more careful application of the methods we are using.
However they are all based on the observation that certain methods of constructing magic N -cubes
are compatible with many permutations. More desirable than merely having better estimates would
be to have another observation of an essentially different nature.

Throughout this article, N will denote an integer greater than 1 and Z will denote the ring of
integers. We will often regard Z as a monoid either under addition or under multiplication, as the
situation requires. If a and b are integers, we will denote by [a, b] the set of integers which are ≥ a
and ≤ b. If S is a monoid, we will denote the identity element of S by 1S .

The author wishes to thank C.Cowsik for his help in proving the crucial Lemma 1.25 and P.Szüsz
for his help in proving the divergence of the generating functions. The author is also grateful to
Roger Howe and Walter Feit for making it possible for him to use facilities at Yale University.
Finally, the author is grateful to Michel Broué for making it possible to use a computer at the École
Normale Supérieure in Paris, where final changes were made in the manuscript.

§1 Magic Squares

Definition (1.1): By a magic square of order n, also called an n× n magic square, we mean
an n× n square array A = (aij), 0 ≤ i, j ≤ n− 1, of positive integers such that

(i) each of the integers from 1 to n2 inclusive occurs exactly once among the entries of A;

(ii) for 0 ≤ i ≤ n− 1, the sum
n−1∑
j=0

aij is independent of i;

(iii) for 0 ≤ j ≤ n− 1, the sum
n−1∑
i=0

aij is independent of j;

(iv) the sums
n−1∑
i=0

aii and
n−1∑
i=0

ai,n−i−1 are equal to the sums given in (ii) (and therefore to those

in (iii) as well).

For example,

8 1 6
3 5 7
4 9 2 , 1 and

1 15 14 4
12 6 7 9
8 10 11 5

13 3 2 16

Figure 1
are magic squares.

We let let M2 denote the set of all magic squares. We will define an operation on M2. The
operation will be denoted by ∗ and will be referred to as multiplication. Before defining our
operation on M2 formally, let us illustrate it with an example. Let A be the 3× 3 magic square in
Figure 1 above and let B be the 4× 4 magic square in Figure 1. To form the magic square A ∗ B,
note that B is 4× 4 in this case and make a big, empty 4× 4 frame, as in Fig.2 below.

3



the electronic journal of combinatorics 4 (1997), #R15 4

Fig. 2

8 1 6
3 5 7
4 9 2

Fig. 3
Now locate the square in B which contains the number 1 and place a copy of A in the corre-

sponding square of the frame we have just constructed, as in Fig.3 above. We can view this as a
way of counting out 9 consecutive numbers. Now locate the square in B containing 2 and in the
corresponding square of Fig. 3, count out the next 9 numbers in the same pattern. It is the same
to say that one adds 9 to all of the entries of A and places the result in the box corresponding to
the position of the 2 in B, as in Fig.4 below.

8 1 6
3 5 7
4 9 2

17 10 15
12 14 16
13 18 11

Fig. 4

8 1 6 134 127 132 125 118 123 35 28 33
3 5 7 129 131 133 120 122 124 30 32 34
4 9 2 130 135 128 121 126 119 31 36 29

107 100 105 53 46 51 62 55 60 80 73 78
102 104 106 48 50 52 57 59 61 75 77 79
103 108 101 49 54 47 58 63 56 76 81 74
71 64 69 89 82 87 98 91 96 44 37 42
66 68 70 84 86 88 93 95 97 39 41 43
67 72 65 85 90 83 94 99 92 40 45 38

116 109 114 26 19 24 17 10 15 143 136 141
111 113 115 21 23 25 12 14 16 138 140 142
112 117 110 22 27 20 13 18 11 139 144 137

Fig. 5
Next one finds the 3 of B and counts out the next 9 numbers in the corresponding place in the

frame. Continuing in this way, we eventually get the magic square in Fig.5 above.
The product square A ∗B has order 12, the product of the orders of A and B. It is convenient

to have an analytic expression for this operation and for that purpose we can work in somewhat
greater generality.

Let G be an abelian group and choose an element u of G once and for all. Denote by A(G)
the set of all square arrays of elements of G, the size of the arrays being arbitrary. If A = (aij),
0 ≤ i, j ≤ m − 1, and B = (bkl), 0 ≤ k, l ≤ n − 1 are elements of A(G) of sizes m ×m and n × n
respectively, their product A ∗ B will be the mn ×mn matrix E = (eαβ) whose (α, β)-th entry is
given by

(1.2) eαβ = m2 · (bkl + u) + aij

where

(1.3) (α, β) = m · (k, l) + (i, j).

Here one should note that as i, j run over the integers from 0 to m− 1 and k, l run over the integers
from 0 to n − 1, the numbers α, β will run over the integers from from 0 to mn − 1. So we have
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defined all the entries of E. A moment’s thought will show that if we take G to be the group Z of
rational integers and u = −1 and if we let A and B be magic squares, then we recover the operation
we have defined for magic squares. It is also easy to see that in general the 1×1 array u is a 2-sided
identity element for the operation ∗. Furthermore, the reader will easily verify that the operation
∗ is associative (see for example [ A-L]). A set S closed under an associative operation is called
a semigroup. A semigroup with an identity element is called a monoid. We therefore have the
following result.

Lemma (1.4): Let G be an abelian group. The set A(G) of all square arrays with entries in G is
a monoid with identity element u with respect to the operation ∗ defined by equations (1.2) and
(1.3).

If S is a monoid with identity element s with respect to an associative operation ◦ then a subset
T of S is called a submonoid of S if T contains the identity element s of S and is closed under the
operation ◦. Returning to the original construction involving magic squares, we have the following
result, whose straightforward proof is left to the reader (cf. [ A-L]).

Proposition (1.5): Let M2 denote the set of all magic squares. Let A(Z) denote the monoid
obtained by taking G to be the additive group of integers and u = −1 in Lemma (1.4). Then M2

is a submonoid of A(Z).

If we modify condition (i) of Definition 1.1 so that the entries of a magic square of order n run from
0 to n2 − 1 instead of from 1 to n2 and modify the product ∗, as given in Figures 2-6, accordingly,
then the analytic expression for the product becomes simpler. It is the product inherited from A(Z)
when we take u = 0 instead of u = −1.
The notationM2 and A(Z) introduced in Proposition (1.5) will be retained throughout this section.

Definition (1.6): Let S be a monoid with identity element s with respect to an operation ◦. We
say that S is is left cancellative if for any elements a, b, c of S, the identity

(1.7) a ◦ b = a ◦ c
implies b = c. Similarly we say that S is right cancellative if for any elements a, b, c of S, the
identity

(1.8) a ◦ c = b ◦ c
implies a = b.

Lemma (1.9): Let G be an abelian group and let u be an element of G. Then the monoid
(A(G), ∗, u) is right cancellative.

Proof: Let A, B and C be elements of A(G). Suppose that A is m×m, B is n× n and C is p× p.
If A ∗ C = B ∗ C then we must have mp = np and therefore m = n. We therefore have

(1.10) m2 · (ckl − 1) + aij = m2 · (ckl − 1) + bij

for 0 ≤ i, j ≤ m − 1 and 0 ≤ k, l ≤ n − 1, which implies that aij = bij for all i, j. Therefore
A ∗ C = B ∗ C implies A = B and we are done.

Lemma (1.11): Let G be an abelian group and let u be an element of G. Then the monoid
(A(G), ∗, u) is left cancellative if and only if the group G is torsion-free.

Proof: Let A,B,C be elements of A(G) and suppose that A is m×m, B is n× n and C is p× p. If
A ∗B = A ∗ C then we must have mn = mp and therefore n = p. It follows that

(1.12) m2 · (bkl − 1) + aij = m2 · (ckl − 1) + aij

for 0 ≤ i, j ≤ m− 1 and 0 ≤ k, l ≤ n− 1, which implies that m2 · (bkl− ckl) = 0 for all k, l. Since the
group G is torsion free, it follows that bkl = ckl for all k, l. Therefore, the equation A ∗ B = A ∗ C
implies B = C and we are done.
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Definition (1.13): Let S be a monoid with identity element s with respect to the law of compo-
sition ◦. Let T be a submonoid of S. We say that T is persuasive in S if the following condition
is satisfied: for any elements a, b, c of S such that a ◦ b = c, if two of the elements a, b, c belong to
T then so does the third. We say that T is inescapable in S if whenever the identity a ◦ b = c
holds in S with c in T , the elements a, b must also belong to T . It is easy to see that an inescapable
submonoid is persuasive.

Lemma (1.14): The submonoid M2 of A(Z) is persuasive. The arrays which satisfy conditions
(ii),(iii) of Definition 1.1 form an inescapable submonoid of A(Z)

Proof: Let A,B,C be elements of A(Z), where A is m ×m, B is n × n and C is mn ×mn, and
suppose that A ∗B = C. Then we have

(1.15)

mn−1∑
r=0

crs =
m−1∑
i=0

n−1∑
k=0

(
m2 · (bkl − 1) + aij

)

=
(
m3

n−1∑
k=0

bkl

)
−m3n+

(
n
m−1∑
i=0

aij

)
,

where (r, s) = m · (k, l) + (i, j). If in the above equations, we replace the row or column of A we
are using by another and keep the row or column of B fixed, we do not change the value of the
expression. That is because C belongs to M2(Z) and all we are doing is choosing another row or
column of C. Since we have kept the row or column of B fixed, its contribution is also unchanged.
It follows that the sum over the row or column of A is likewise unchanged, which proves that A
satisfies conditions (ii) and (iii) of Definition 1.1. Similarly, if one fixes the row or column of A
and varies the row or column of B, one proves that B satisfies conditions (ii) and (iii) of Definition
1.1. This proves that arrays satisfying conditions (ii) and (iii) form an inescapable submonoid. As
for condition (iv), the sum

∑
cii over the main diagonal of C is m2

∑
(bjj − 1) plus

∑
akk. If we

change to the other diagonal, the sum for C doesn’t change and therefore it doesn’t change for A
if and only if it doesn’t change for B. This shows that condition (iv) is persuasive. It remains to
verify condition (i) of Definition (1.1). If A and B are magic squares then by Proposition (1.5) so
is C. Therefore if two of A,B,C are magic squares then C is a magic square and therefore satisfies
condition (i) of Definition (1.1). We can write

(1.16) crs = m2 · (bkl − 1) + aij

where

(1.17) (r, s) = m · (k, l) + (i, j)

and 0 ≤ i, j ≤ m − 1 and 0 ≤ k, l ≤ n − 1. If A satisfies condition (i) of Definition (1.1) then in
equation (1.16) the elements aij are determined by the condition that crs− aij must be divisible by
m2 and therefore we have

(1.18) bkl =
[
crs +m2 − 1

m2

]
which implies that

(1.19) 1 ≤ bkl ≤ n2.

Since the (mn)2 numbers crs in equation (1.16) must be distinct, the same must be true of the n2

numbers bkl. Therefore, B satisfies condition (i) of Definition (1.1). Conversely, suppose that B
satisfies condition (i) of Definition (1.1). By equation (1.16), the m2 elements aij must be a full set
of representatives for the residue classes modulo m2 and for each crs there is a unique aij such that
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crs − aij is divisible by m2. If some aij is less than 1, choose (r, s) such that crs − aij is divisible by
m2 and such that crs is as large as possible. Then we have

(1.20) crs − aij ≥ crs ≥ (mn)2

which by equation (1.16) implies that

(1.21) bkl ≥ n2 + 1,

contradicting the fact that B satisfies condition (i) of Definition (1.1). Therefore we must have
aij ≥ 1 for all i, j. A similar argument, which we leave to the reader, shows that aij ≤ m2 for all i, j.
Since the aij represent all of the m2 residue classes modulo m2, it follows that A satisfies condition
(i) of Definition (1.1). This proves the lemma.

Remark (1.22): I don’t know whether M2 is an inescapable submonoid of A(Z).

The following definition is motivated by the corresponding notions from elementary number
theory.

Definition (1.23): Let S be a monoid with identity element s with respect to an operation ◦.
We will say that element t of S is irreducible if t 6= s and if for any elements u, v of S such that
t = u◦v we have either u = s or v = s. An element t of S is said to be left prime if for any elements
u, v, w of S such that t ◦ u = v ◦ w, there is an element x of S such that v = t ◦ x. This definition
of irreducibility is more restrictive than the one generally accepted. However since the monoids
in which we wish to study irreducible elements have no units other than the identity element, our
definition will in practice coincide with the usual one.

The following lemma follows by an obvious induction on the order of the order of the magic
square.

Lemma (1.24): The set of all irreducible magic squares generates the monoid M2 of all magic
squares. In other words, every magic square can be written as a product of irreducible magic squares.

In order to prove that the monoid M2 is free, we only have to prove that every magic square is
uniquely a product of magic squares. Indeed, a monoid is free if and only if it is freely generated
by its irreducible elements. That this is the case for M2 follows, in analogy with the proof of
the fundamental theorem of arithmetic, by a simple induction as soon as one has proved that an
irreducible magic square is left prime. Therefore, the freeness ofM2 is a consequence of the following
simple lemma.

Lemma (1.25): (Irreducible Implies Prime) Let A,B,C,D be magic squares such that A∗B =
C ∗D. Suppose A is m×m, B is n× n, C is p× p where m ≤ p. If A is irreducible then there is a
magic square E such that C = A ∗ E.

Proof: We will first show that m must divide p. Here we prefer to give a geometric argument since
the key insight is geometrical and is lost in analytic formulations of the proof. We will therefore
refer to the geometric description of the operation on magic squares, as illustrated in Figures 2-6.
Let F = A ∗B = C ∗D. If we view F is the product C ∗D then F is partitioned into p× p squares.
Let C1 denote the p × p square which contains the number 1 in F . Then C1 is an exact replica of
the magic square C and in particular contains all of the entries of F which are ≥ 1 and ≤ p2 and
none of the entries of F which are > p2. If we now view F as the product A ∗ B then F is instead
partitioned into m ×m squares. The first such square contains the numbers from 1 to m2 and is
denoted A1. The second such square contains the numbers from m2 + 1 to 2m2 and is denoted A2

and so on. If m does not divide p then in particular m < p and m2 does not divide p2. Let h be
the smallest integer such that h · m2 ≥ p2. Then the square Ah lies partly in the square C1 and
partly outside of it. Let g > 0 be an integer. If g < h then the square Ag lies entirely inside C1 and
if g > h then Ag lies entirely outside of C1. Since Ah is m × n and C1 is p × p with m < p, there
must be a column of C1 which does not meet the square Ah. Since that column must be covered by
disjoint squares Ag lying entirely inside of C1, it follows that m does divide p after all. Retaining
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the definition of h, we see that h ·m2 = p2 and therefore h = t2 for some positive integer t. The
square C1 is therefore covered by squares Ag and is therefore of the form A ∗ E where E is a t × t
array of nonnegative integers. Since A and C are magic squares, it now follows from Lemma (1.14)
that E is a magic square and we are done.

Theorem (1.26): The monoid M2 of all magic squares is freely generated by the set of all
irreducible magic squares.

Proof: In view of the Irreducibility Implies Prime Lemma and the remarks preceding it, the proof
may safely be entrusted to the reader.

§2 Generalizations
In the preceding section, we have stated our result in the case of magic squares because of

the highly geometric and visual nature of the operation and proof and the comparatively simple
notation in that case. One can also define magic N-dimensional cubes (also known as magic
N-cubes) in a similar way to that given in Definition 1.1 and the reader is invited to provide the
definition herself, the only caution being that the condition (iv) on the sum over the diagonals is
generalized in N dimensions to the sum over the longest diagonals, the ones joining opposite corners
of the N -cube. Similarly one can, with only minor changes, define the operation ∗ on the set MN

of all magic N -cubes. The same arguments then apply with only minor modifications to prove that
the set MN of all magic N -cubes forms a free monoid. We omit the details of this generalization,
whose only complications are notational.

One can in fact generalize much further with no essential difficulty. Since some of these gener-
alizations might be of independent interest, and since to some extent they facilitate the discussion
of §3, we will indicate some of them briefly, leaving the verification of the elementary details to the
reader.
(1) Let S,H be monoids and suppose that H is an S-module, i.e. we have a homomorphism from

S into the monoid of endomorphisms of the monoid S. Denote by F(S,H) the set of all pairs
(F, σ) consisting of a finite subset F of H and an element σ of S. The pair (F, σ) is called a
frame, F is called the turf of the frame and σ is called the nominal order of the frame. Then
F(S,H) forms a monoid in which the product of (F1, σ1) and (F2, σ2) is the frame (F3, σ1σ2),
where F3 is the set of all elements of the form σ1(f2)f1 with f1 ∈ F1 and f2 ∈ F2. If we view
a magic N -cube as an array, hence a function defined on a certain cubical subset of ZN , this
definition allows us to consider domains which instead are finite subsets F of arbitrary monoids
H. It should be clear that the monoid F(S,H) is simply the semidirect product of S and the
monoid P(H) of finite subsets of H.

(2) Let S,H be as in (1) and let G be a commutative S-module. Let u be an element of G which
will be fixed throughout the discussion. If (F, σ) ∈ F(S,H), then by an array of type (F, σ)
with entries in G, we mean a triple (F, σ, λ) where λ is a function from F to G. If we do not
wish to specify the type (F, σ) of the array, we will refer to it as an array framed in F(S,H).
We call σ the order of the array (F, σ, λ). We denote by A(S,H,G) the set of all arrays framed
in F(S,H). Then A(S,H,G) is naturally a semigroup in which the product of (F1, σ1, λ1) and
(F2, σ2, λ2) is the array (F3, σ3, λ3), where (F3, σ3) is the product of (F1, σ1) and (F2, σ2) in
F(S,H) and where the function λ3 is defined by

λ3(h3) =
∑′

(σ1(λ2(h2) + u) + λ1(h1))

where the summation runs over all elements (h1, h2) ∈ F1 × F2 such that h3 = σ1(h2)h1. If g
is an element of G, we will denote by g the framed array g = ({e}, s, λ : {e} → G) defined by
λ(e) = g, where e is the identity element of H. This notation generalizes and supersedes the
notation u introduced in §1. If g is taken to be an element of G such that g + u = 1G, where
1G is the identity element of G, then A(S,H,G) is actually a monoid whose identity element
is g . Assume that such an element g exists. The monoid A(S,H,G) may then be described as
the semidirect product of S with the monoid P(H;G) of all finite partial functions from H to
G, this being the kernel of the homomophism (F, σ, λ) 7→ σ of A(S,H,G) onto S.
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(3) In order to introduce the notion of a magic frame, we have to be able to specify the summation
conditions. To do so in our present generality, we observe that the summation conditions
traditionally considered in the study of magic N -cubes also form a monoid and use that insight
in order to formulate our generalization. More precisely, let S,H,G be as in (1) and let n be a
positive integer. We introduce the following monoids.

M
(1)
1 = F(S,H) M

(n)
1 =

n∏
i=1

M
(1)
1

M
(1)
2 = F(S,P(H)) M

(n)
2 =

n∏
i=1

M
(1)
2 .

In the definition of M (n)
1 and M

(n)
2 we use the product notation to denote the fibre product

over S, not the cartesian product. In practice, an element of M (1)
1 will be a subset of H over

which we wish to sum the entries of an array. In the case of magic N -cubes, such a subset might
be an orthogonal or a great diagonal of the N -cubes, but one considers other subsets as well.
In general, we will want to sum over various subsets and we wish to handle all such subsets
simultaneously. For example, if N is fixed and H = ZN , we can let n = 2N−1 and view the set
of n great diagonals of the N -cube as an element of M (n)

1 . In that case, if (Fi, σi) is an N -cube
for i = 1, 2 and if Ai is the element of M (n)

1 corresponding to the set of great diagonals of
(Fi, σi), then the product in M (n)

1 of A1 and A2 will be the set of great diagonals of the product
of (F1, σ1) and (F2, σ2). This is quite satisfying but does not suffice to describe the orthogonals.
The reason is that the number of orthogonals of an N -cube depends on the size of the N -cube
and not just on N . For this reason we introduced the monoid M

(1)
2 . The orthogonals parallel

to a particular axis of an N -cube form an element of M (1)
2 . If for i = 1, 2, Bi is the element of

M
(1)
2 corresponding to the orthogonals of an N -cube (Fi, σi) parallel to a particular axis (the

same axis for i = 1, 2), then the product in M
(1)
2 of B1 and B2 is the element corresponding

to the set of orthogonals in that same direction in the product of (F1, σ1) and (F2, σ2). This is
also satisfying, but since there are N directions in which to choose the orthogonals, the system
of all orthogonals is described by an element of M (N)

2 . Thus, the set of summation conditions
which a magic N -cube is expected to satisfy is an element of the monoid

M
(n)
1 ×M (N)

2 ,

where n = 2N−1. In order to simplify the notation, we observe that the monoid M
(1)
1 may be

embedded in the monoid M (1)
2 by associating to a subset F of H the singleton {F}. Therefore,

we may regard the set of summation conditions as an element of M (d)
2 where d = N + 2N−1.

These considerations motivate the following definition: let (F, σ, λ) be an element of A(S,H,G),
let d be a positive integer and let C = (C1, . . . , Cd) be an element of M (d)

2 such that for 1 ≤ i ≤ d,
every element of Ci is a subset of F . We say that the array (F, σ, λ) is C-stochastic if for
1 ≤ i ≤ d and for E in Ci, the summation

∑
h∈E λ(h) is independent of i and E. Suppose that

φ is a homomorphism from a submonoid F of the monoid F(S,H) to the monoid M
(d)
2 such

that for every (F, σ, λ) in F the order of φ(F, σ, λ) is σ. We will say that an array (F, σ, λ) is
phi-stochastic if (F, σ) belongs to F and if (F, σ, λ) is φ(F, σ)-stochastic. If F and φ are such,
we denote by M(φ) the subset of A(S,H,G) consisting of all φ-stochastic arrays. Then M(φ)
is a submonoid of A(S,H,G). Now suppose that the only pair (σ, g) ∈ S × G with σ(g) = 1G
is (1S , 1G), where 1S is the identity element of S. Then then the monoid M(φ) is a persuasive
submonoid of A(S,H,G).
By placing some restrictions on the monoid G, one can generalize further the notions of stochas-

ticity introduced in (3). More precisely, one assumes that G is the additive group of an algebraically
closed field k. In that case, one can introduce monoids of summation conditions by means of certain
classes of infinite dimensional varieties over k and prove that they are free. Space does not permit
the detailed description of this general construction and we presently know only one interesting

9
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example of it, namely in connection with the monoids SN (t, g) defined in the next section. So we
will confine our attention to that example, which we describe in the next section without reference
to infinite dimensional varieties.

§3 Magic N-cubes with remarkable power sum properties
Let n ∈ [1, N ]. An n-cube contained in an N -dimensional cubical array f of order d is then the

intersection of that array with a certain number of hyperplanes parallel to the faces of the array. As
such it is completely described by selecting a subset J of cardinality N −n of [1, N ] and prescribing
a function h : J → [0, d− 1]. Two n-cubes having the same set J are said to be conjugate.

Let g : [1, N ] → Z be any nonnegative function and let t > 1 be an integer. We denote by
SN (t, g) the set of all magic N -cubes A satisfying the following two conditions:
(a) The order of A is a power of t, say ts.
(b) For 1 ≤ n ≤ N , conjugate n-dimensional subcubes have equal sums of the r-th powers of their

entries, for 0 ≤ r ≤ g(n).
We also denote byMN (t) the monoid of all magic N -cubes satisfying only condition (a) above.

In the proof, we will use notation introduced in (1) and (2) of §2.

Theorem (3.1): Let t, g be as above. Then SN (t, g) is an inescapable submonoid of the monoid
MN of all magic N -cubes. Furthermore, SN (t, g) is a free monoid on infinitely many generators.

Proof: Let A,B be elements of SN (t, g) and let C be their product. Any n-dimensional subcube
K of C is the product in F(Z,ZN ) of the corresponding subcubes K ′,K ′′ of A and B respectively.
Normally we think of the n-subcubes as subsets of A,B and C but we can view them as elements of
F(Z,ZN ) by replacing, e.g. K ′ by the pair (K ′, ts), where ts is the order of C. Here the action of
Z on ZN is the usual Z-module structure on ZN . Since we care about the entries of these n-cubes,
we are concerned with the elements of A(S,ZN , G), where S,G are Z under multiplication and
addition respectively and where G is viewed as an S-module via (s, g) 7→ sNg. Denote by f, f ′, f ′′

the functions that give the entries of the subcubes K,K ′,K ′′ respectively. We then have

(3.2)

∑
v∈K

f(v)r =
∑
v′∈K′

∑
v′′∈K′′

(tsNf ′′(v′′) + f ′(v′))r

=
r∑
j=0

(
r

j

)( ∑
v′∈K′

f ′(v′)r−j
)
·
( ∑
v′′∈K′′

tjsNf ′′(v′′)j
)

Since the sums over K ′ and K ′′ are independent of the choices of the n-cubes K ′,K ′′ within their
conjugacy classes, the sum over K is independent of the choice of the n-cube K within its conjugacy
class. This proves that SN (t, g) is a submonoid of MN . Furthermore, the submonoid SN (t, g) is an
inescapable submonoid of MN . Indeed, suppose A,B,C are magic N -cubes such that A ∗ B = C
and suppose that C belongs to SN (t, g). Choose K,K ′,K ′′ as before and use the above identity for
the sum of the r-th powers of the entries of K, which we know is independent of the choice of the
n-cube K within its conjugacy class. If we fix the n-cube K ′′ and allow the n-cube K ′ to vary in
its conjugacy class, it follows by an easy induction on r that, for 1 ≤ r ≤ g(n), the sum of the r-th
powers of the entries of the entries of K ′ are independent of the choice of K ′ within its conjugacy
class. Similarly, by fixing K ′ and letting K ′′ vary in its conjugacy class we see that the sum of the
r-th powers of the entries of K ′′ is independent of the choice of the n-cube K ′′ within its conjugacy
class. This proves that SN (t, g) is an inescapable submonoid of MN . It follows that an irreducible
element of SN (t, g) is also irreducible when viewed as an element ofMN . To see that SN (t, g) is free,
it suffices to prove the analogue of the Irreducibility Implies Prime Lemma for this situation. So
suppose that A,B,C,D are elements of SN (t, g) of orders m,n, p, q where m ≤ p, and suppose that
A ∗B = C ∗D with A irreducible. In the proof of the freeness of MN , which we left to the reader,
one proves along the way thatMN satisfies the analogue of the Irreducibility Implies Prime Lemma.
Since A is also irreducible as a magic N -cube, it follows that we can write C as the product A ∗ E
of A and another magic N -cube E. It then follows that E belongs to SN (t, g). Therefore, SN (t, g)
is free. Finally, to see that SN (t, g) has infinitely many generators, we will show that it contains
infinitely many irreducible magic N -cubes. In Theorem 1 on p.620 of [ A-L], it is shown how to

10
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construct a magic N -cube of order tM for every positive integer M such that t divides MN and such
that M > 1 when t is even. We will call that construction the method of Prouhet sequences.
Hence infinitely many elements of MN (t) are constructed by the method of Prouhet sequences.
Furthermore, in Theorem 5 on p.626 of [ A-L] it is shown that for 1 ≤ n ≤ N every magic N -cube
A constructed in this way has the following property: for all n, conjugate n-dimensional subcubes
of A have equal sums of the k-th powers of their entries for k = 0, 1, . . . , nr − 1. It follows that all
but finitely many of the magic N -cubes inMN (t) constructed by the method of Prouhet sequences
belong to S(t, g). Therefore we will be done as soon as prove the following lemma.

Lemma (3.3): If M + 1 is divisible by t then the magic N -cube of order tM constructed by the
method of Prouhet sequences is irreducible.

Proof: We refer the reader to Theorem 1 of [ A-L] or to [ A1], pp.16-18, for details of the method of
Prouhet sequences. Let A = (ai1,...,iN ) be a magic N -cube of order tM constructed by the method of
Prouhet sequences. Let (i) = (i1, . . . , iN ) and (j) = (j1, . . . , jN ) be the N -tuples such that a(i) = 0,
a(j) = 1. Then we have (i) = (0, . . . , 0) and (j) = (tM − 1, . . . , tM − 1, 0). It follows that the entries
0 and 1 are on opposite faces of the N -cube and cannot lie in any proper subcube of dimension N .
Therefore A is irreducible.

§4 Divergence of generating functions
It is well known that the freeness of these monoids implies identities of formal Dirichlet series

of the form
∞∑
n=1

an
ns

=

(
1−

∞∑
n=3

bn
ns

)−1

where an denotes the number of elements of size n in the monoid and bn denotes the number of
irreducible elements of size n of the monoid. We will now consider the convergence properties of
these formal Dirichlet series and their associated power series.

Theorem (4.1): Let N , an (resp. bn) be the number of magic N -cubes (resp. irreducible magic
N -cubes) of order n. Then the formal power series

∞∑
n=1

ant
n,

∞∑
n=3

bnt
n

both have radius of convergence equal to 0. In particular, the formal Dirichlet series introduced
above are everywhere divergent for this monoid.

Proof: Let X = (Xk`), 0 ≤ k, ` ≤ N − 1 denote the N ×N matrix whose (k, `)-th entry is 1 +Nδk`.
If M is a positive integer relatively prime to (2N −1)! and if we view X as having entries in the ring
Z/MZ then X satisfies the following conditions: (1) X is invertible; (2) Every entry of X is a unit
of Z/MZ; (3) If e is a vector whose entries are all ±1 then the entries of the vector Xe are units of
Z/MZ.

For every such M , we can construct a magic N -cube

MA = (MAi1,...,iN )

of order M whose entries are defined by

MAi1,...,iN =
N−1∑
k=0

jkM
k,

where the digits jk are determined by the conditions 0 ≤ jk ≤M − 1 and

jk ≡
N−1∑
k=0

Xk`i` (mod M).

11
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For a discussion of the ideas behind this construction, see §1 of the author’s paper [ A1]. We will
merely remark that:

(I) condition (1) guarantees that each of the numbers 0, 1, . . . ,MN − 1 occurs exactly once in
MA;

(II) condition (2) guarantees that for any fixed k, the k-th digits of the entries of any orthogonal
of MA are 0, 1, . . . ,M − 1 in some order;

(III) condition (3) guarantees that for any fixed k, the k-th digits of the entries of any diagonal
of MA are 0, 1, . . . ,M − 1 in some order.

Peter Szüsz pointed out to the author that the observations (I),(II),(III) imply that if σ is any
permutation of the numbers 0, 1, 2, . . .M − 1 then the array MA

σ defined by

MA
σ
i1,...,iN = σ(MAi1,...,iN )

is also a magic N -cube. Therefore aM ≥M ! whenever M is relatively prime to (2N − 1)!, and that
already suffices to prove that the summation

∑∞
n=1 ant

n diverges for t 6= 0. To show that
∑∞
n=3 bnt

n

also diverges, we first prove that the magic N -cube MA is irreducible. Indeed, the number 0 is
placed in the center of MA and the number 1 is placed in the box indexed by (i) = (i0, . . . , iN−1)
where (i) satisfies 0 ≤ ik ≤M − 1 and

(4.2)
N−1∑
`=0

(1 +Nδk`) · ik ≡ δ0k (mod M)

for 0 ≤ k ≤ N − 1. It follows that i1 = i2 = . . . = iN−1 and

(N + 1) · i0 + (N − 1) · i1 ≡ 1 (mod M)
i0 + (2N − 1) · i1 ≡ 0 (mod M).

Solving these equations modulo M we obtain

i0 ≡ 2N − 1
2N2

(mod M) and i1 ≡ −1
2N2

(mod M).

In particular, since M is relatively prime to (2N − 1)!, both i0 and i1 are units modulo M . If MA
were reducible, we could tile it with subcubes of order R with 0 and 1 lying in a common N -cube
B of order R. Here R < M is a factor of M . The N cube B would have to contain all of the
nonnegative integers less than RN . For 0 ≤ ν ≤ R − 1, the integer ν occurs at the point ν · (i).
Therefore, for 0 ≤ ν ≤ R − 1 the N -cube B would contain the multiple ν · (i) of (i). In particular,
for 0 ≤ ν ≤ R− 1, both νi0 and νi1 must lie among the elements 0, 1, . . . , R− 1 of Z/MZ. Since i0
and i1 are units modulo M , they cannot be divisible by R. Therefore the only way all the multiples
νi0 and νi1 with 0 ≤ ν ≤ R − 1 can be < R is if i0 = i1 = 1. But then 1/N ≡ i0 − i1 ≡ 0 modulo
M , which is impossible. Therefore 0 and (i) cannot lie in a common subcube, which proves that
MA is irreducible. Furthermore, the proof that MA is irreducible depends only on the locations of
the numbers 0, 1, . . . , D− 1, where D is the largest divisor of M other than M itself. Therefore any
permutation σ that fixes these numbers will map MA to an irreducible magic N -cube MA

σ. Since
M is relatively prime to (2N − 1), we have D = M/p, where p is the smallest prime dividing M and
p ≥ (2N + 1). Therefore, we have

bM ≥ (M −D)! > Γ
(

2MN

2N + 1

)
≥ Γ(4M/5)

which implies that the series
∑∞
n=3 bnt

n diverges for t 6= 0.
We have a similar result for the monoids SN (t, g), but unfortunately somewhat weaker: we can

only prove that the Dirichlet series diverge.
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Theorem (4.3): Let N > 1 be an integer and let g : [1, N ] → S be any function. For every
positive integer n denote by cn (resp. dn) the number of magic N -cubes (resp. irreducible magic
N -cubes) of order n belonging to the monoid SN (t, g). Then the Dirichlet series

∞∑
n=1

cn
ns
,
∞∑
n=1

dn
ns

diverge for every complex number s.

Proof: Let n run over all positive integers M such that t divides MN and such that M > 1 if
t is even. If σ is a permutation on the integers 0, 1, . . . ,M − 1 and if x is an integer such that
0 ≤ x ≤ tM − 1, then we write σ(x) to denote the integer obtained by permuting the digits of x
in the base t according to the permutation σ. If (i) = (i1, . . . , iN ) is an N -tuple of integers such
that 0 ≤ iν ≤ tM − 1 for 1 ≤ ν ≤ N then we write σ · (i) to denote the N -tuple obtained from (i)
by replacing iN by σ(iN ). Let A = (ai1,...,iN ) be the magic N -cube of order tM constructed by the
method of Prouhet sequences (cf. [ A-L],Theorem 1). As noted in the proof of Theorem 3.1, for
all but at most finitely many M such that t divides MN , the magic N -cube lies in SN (t, g). If σ is
a permutation on 0, . . . ,M − 1 then we define the array Aσ = (aσi1,...,iN ) by the rule

aσ(i) = aσ·(i).

It is easy to see that for 1 ≤ k ≤ N the mapping (i) 7→ σ · (i) maps k-subcubes to k-subcubes and
preserves the relation of conjugacy of subcubes. It follows that Aσ also belongs to SN (t, g). This
shows that for n = tM with M sufficiently large and such that t divides MN , we have cn ≥ M !.
Furthermore, since the proof of Lemma 3.3 shows that Aσ is also irreducible, we actually have
dn ≥M !. Therefore we have, letting M run over sufficiently large multiples of t,

∞∑
n=1

cn
ns
≥
∞∑
n=1

dn
ns
≥
∑ M !

tMs

and the summation on the right diverges by the ratio test.
Since the problem of determining the numbers an, bn, cn, dn, and others like them, or at least

giving good estimates for them, is a matter of independent interest, we summarize in the following
theorem the estimates we have obtained. Undoubtedly one can easily do much better.

Theorem (4.4): We have the following inequalities.
(i) aM ≥M ! if M is relatively prime to (2N − 1)!.
(ii) bM ≥ (M −D)! if M is relatively prime to (2N − 1)!, where D is the largest proper divisor of

M ;
(iii) cn ≥ dn ≥M ! if n = tM .

The estimates (i) and (ii) could be improved by studying the question of how many matrices one
could have used instead of the matrix X we actually chose for the proof of Theorem 4.1. This would
only improve the estimate by at most a factor which is polynomial in M . We haven’t investigated
this in any detail since we believe that the actual growth of bM is much larger than any polynomial
multiple of M !.
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