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Abstract

In an unpublished note Golomb proposed a family of “strange”
recursions of metafibonacci type, parametrized by k. Previously
we showed that contrary to Golomb’s conjecture, for each k there
are many increasing solutions, and an explicit construction for
multiple solutions was displayed. By reformulating our solution
approach using matrix dynamics, we extend these results to a
characterization of the asymptotic behaviour of all solutions of
the Golomb recursion. This matrix dynamics perspective is also
used to construct what we believe is the first example of a “non-
trivial” nonincreasing solution, that is, one that is not eventually
increasing.
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1. Introduction

In [3], Golomb introduced the recursion

b(b(n) + kn) = 2b(n) + kn (1)

with initial conditions b(1) = 1 and b(2) = 3 for k = 1 and b(2) = 2 for k > 1. Here
k is a fixed positive integer parameter and n ranges over the positive integers. This
recursion, which Golomb describes as “strange”, was suggested to him by Fraenkel
[2], who shows that one solution is given by b(n) = bnρc, where ρ is the positive
root of the equation

x2 + (k − 2)x− k = 0 . (2)

In the particular case that k = 1, ρ is equal to τ , the golden ratio which satisfies
τ2 = 1+τ and τ > 0. The sequence b(n) is called the homogeneous Beatty sequence
of ρ. See [3], where a considerably more general recursion that (1) is discussed,
based upon iterates of the floor function bnρc for any algebraic number ρ.

Golomb noted that the solution b(n) of (1) was not unique, but conjectured
that “it appears to be the only monotonically increasing solution” [4,p14]. In

[1], Barbeau and Tanny showed that the recursion (1) with the initial condition
b(1) = B for arbitrary positive integer B, has, in fact, many increasing solutions.

Golomb remarks that no finite set of initial conditions is sufficient to specify
uniquely the solutions for (1) for any given k. We have seen in [1] that the recursion
(1) together with each initial condition specifies an infinite subsequence on which
the solution must be increasing, and that any solution to (1) necessarily involves
the “piecing together” of these restricted functions. In particular, we showed that
it is possible to do so in many ways to generate different increasing solutions to (1).

Recently, an examination of the properties of several of these increasing solu-
tions has revealed that as n grows, all of them come close to the solution above
identified by Fraenkel. This inspired a reformulation of (1) using standard dynam-
ical theory of a matrix operator. Based on this approach, in Section 2, we are
able to characterize the asymptotic behaviour of all the solutions of (1), including
possibly nonincreasing ones (should they exist). Indeed, using this approach, we
also determine explicitly an (uncountably) infinite family of increasing solutions to
(1), all of which are closely related to Fraenkel’s solution.

It is easy to select a set of initial conditions for (1) so that the solution is
initially nonincreasing. However, since each initial condition specifies an infinite
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subsequence upon which the solution is increasing, it turns out to be more chal-
lenging to determine solutions for (1) that are eventually not increasing. In Section
3, we use the matrix dynamics perspective to show that this is possible, where, as
in [1], the Fibonacci numbers play a prominent role.

2. Matrix dynamics

For the positive integer u1, let v1 = b(u1). Then applying the recursion (1)

successively determines two sequences of values {un}, {vn}, where vn = b(un) and
the pairs (un, vn) satisfy the linear recursions

un+1 = kun + vn

vn+1 = kun + 2vn .
(3)

In [1], we call the sequence {un} the descendent sequence of the initial argument
or “seed” u1. It is easy to see that both {un} and {vn} are strictly increasing.

The pair of recursions (3) arising from the assignment v1 = b(u1) can be
written (

un+1

vn+1

)
=
(
k 1
k 2

)(
un
vn

)
.

The eigenvalues µ and ν for the matrix satisfy the characteristic equation x2 −
(k + 2)x + k = 0. It is straightforward to check that µ = 1

2 (k + 2 +
√
k2 + 4) and

ν = 1
2 (k + 2−√k2 + 4). Observe that 0 < ν < 1 < µ. It turns out that, for ρ the

positive root of (2),
(

1
ρ

)
is an eigenvector for µ. Thus,

k + ρ = µ

k + 2ρ = µρ

so that µ = ρ
ρ−1 = 1 + 1

ρ−1 , and ρ = 2−k+
√
k2+4

2 .
Similarly

(
1
ζ

)
is an eigenvector for ν, where ζ is the negative root of (2), ν =

1 + 1
ζ−1 , and

ζ =
2− k −√k2 + 4

2
.

Observe that ζ < 0 < ρ.
Since k <

√
k2 + 4 < k + 2, then 2 < 2− k +

√
k2 + 4 < 4, whence 1 < ρ < 2.

Suppose that u1 and v1 = b(u1) are both positive. Then, using the fact that
(ρ2 − 2ρ) + (kρ− k) = 0, we find that, for n ≥ 1,

ρun+1 − vn+1 = ρ(kun + vn)− (kun + 2vn)

= (kρ− k)un + (ρ− 2)vn = (2− ρ)ρun + (ρ− 2)vn

= (2− ρ)(ρun − vn) = (2− ρ)n(ρu1 − v1) (4)
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This leads to the following propositions:

Proposition 1. Let u1 and v1 be positive integers for which v1 = b(u1) and de�ne

un and vn by (3). Then

(a) limn→∞ |ρun − b(un)| = 0 ;

(b) there exists an integer N such that, for n ≥ N ,

b(un) = bρun + 0.5c

=
{ dρune if v1 > ρu1,
bρunc if v1 < ρu1. .

That is, for large n, b(un) is the nearest integer to ρun, which turns out to be
the ceiling of ρun if v1 > ρu1 and the floor of ρun otherwise.

Proof. Observe that, since 0 < 2 − ρ < 1, (a) holds and ρun − vn always has
the same sign as ρu1 − v1. Since, for each n, vn = b(un) is an integer and since
|ρun − vn| < 0.5 for n sufficiently large, (b) now follows.

Proposition 2. Let 0 ≤ α ≤ 1 and de�ne

Bk,α(n) = bnρ+ αc

where n ∈ N. Then Bk,α(n) is a solution of (1). In particular, bnρc and dnρe are

solutions corresponding to α = 0, 1 respectively.

Proof. Let u1 be any positive integer and let v1 = Bk,α(u1). If u2 = Bk,α(u1)+
ku1 = v1 + ku1 and v2 = 2Bk,α(u1) + ku1 = 2v1 + ku1, we have to show that
v2 = Bk,α(u2).

Since u1ρ− (1− α) ≤ v1 ≤ u1ρ+ α, it follows that

−(1− α) ≤ v1 − u1ρ ≤ α ,

whence

−(1− α) < −(2− ρ)(1− α) ≤ (2− ρ)(v1 − u1ρ) = v2 − u2ρ ≤ (2− ρ)α < α .

Since u1 and v1 are integers, then so are u2 and v2. Hence v2 = bρu2 + αc =
Bk,α(u2). Thus (1) is satisfied by b = Bk,α.
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We will denote the solution Bk,1/2 simply by Bk.

Remark. In a similar way, it can be shown that setting b(n) equal to bnρc for
all n or to dnρe for all n will also yield solutions to (1).

3. Generating sets and non-increasing solutions

The results of the previous section show that there are uncountably many
natural increasing solutions to (1). In this section, we use the matrix dynamics
perspective developed above to construct a solution b which decreases infinitely
often.

We have already noted that b is increasing on the descendants of any single
seed. Experimentation shows that we can choose values for finitely many seeds in
such a way that b is well-defined (on the union of the descendant sets of the seeds)
but not initially increasing. Since Proposition 1 shows that any b constructed in
this manner will ultimately be increasing on this domain, we will need to consider
infinite sets of seeds in order to find a b that decreases infinitely often.

For an infinite set of seeds, ensuring that b is well-defined is problematic. On
the one hand, descendants of any finite set of seeds spread out ever more sparsely
among the integers, leaving room to introduce new seeds. But on the other hand, if
we have already defined b on a subset S of N, and b remains to be defined at some
value u less than a value s in S, then setting b(u) > b(s) may lead to a situation
in which u and s have a descendant in common for which b ought to take different
values.

To illustrate what might be possible, consider the similar recursion

f(f(n) + n) = f(n) + 4n (5)

This has an increasing solution given by f(n) = 2n. But there is an additional
nonincreasing solution

f(1) = 2 and f(2× 3m + r) = 8× 3m − 2r

for m = 0, 1, 2, · · · and 0 ≤ r ≤ 4× 3m − 1.

To check this, note that, if n = 2× 3m + r and 0 ≤ r ≤ 4× 3m − 1, then

f(n) + n = 10× 3m − r = 2× 3m+1 + [4× 3m − r]
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where 1 ≤ 4× 3m − r ≤ 4× 3m+1 − 1. Hence

f(f(n) + n) = 8× 3m+1 − 2[4× 3m − r] = 16× 3m + 2r

= (8× 3m − 2r) + 4(2× 3n + r) = f(n) + 4n

as desired. The following table illustrates what happens:

n 1 2 3 4 5 6 7 8
f(n) 2 8 6 4 2 24 22 20

n 9 10 11 12 13 14 15 16
f(n) 18 16 14 12 10 8 6 4

n 17 18 19 20 21 22 23 24
f(n) 2 72 70 68 66 64 62 60

In particular, f(3m) = 2× 3m for m ≥ 0.
The recursion (5) provides more room to manoeuvre than Golomb’s recursion,

so (1) will require more delicate handling. For a pair
(
u
v

)
of positive integers, let

Dk

((
u

v

))
=
{(

k 1
k 2

)n(
u

v

)
: n = 0, 1, 2, · · ·

}
,

the set of pairs involving u and its descendents, together with their corresponding
values under b. For a set S of such pairs of positive integers, let

Dk(S) = ∪{Dk

((
u

v

))
:
(
u

v

)
∈ S} .

Define S to be a generating set for a solution b of the Golomb recursion with
parameter k if

b(n) =
{
r if

(
n
r

) ∈ Dk(S)
Bk(n) otherwise

(6)

is well-defined and satisfies (1).
A function b that is well-defined by (6) satisfies (1) for those n for which there

exists
(
n
r

)
in Dk(S) by the construction of Dk(S), and for other n by Proposition

2. It is however possible that (6) may fail to define a function b at some n. This
can happen in one of two ways: a generator may be incompatible with the default
function Bk(n), or two generators may be mutually incompatible with each other.

For example, if k = 1 and ρ = τ , {(14)} as a possible generating set is incom-
patible with the Bk(n) in that, since b(2) = B1(2) = 3, b(5) is ill-defined by the
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conflicting recursions b(5) = b(b(2) + 2) = 2b(2) + 2 = 8 and b(5) = b(b(1) + 1) =
2b(1) + 1 = 9. Note however that this conflict can be resolved by adding

(
2
2

)
to

form the generating set {(14), (22)}.
Again with k = 1, we see that the two generators in the set {( 1

14

)
,
(

6
9

)} are
incompatible. Each on its own could constitute a generating set, but together they
lead to b(15) being ill-defined by the recursions b(15) = b(b(1)+1) = 2b(1)+1 = 29
and b(15) = b(b(6) + 6) = 2b(6) + 6 = 24.

Thus, to check that S is generating, we need to verify the conditions
(i) if

(
n
r1

)
and

(
n
r2

)
belong to Dk(S), then r1 = r2;

(ii) if
(
n
r

)
=
(
k 1
k 2

)(
x
y

)
belongs to Dk(S), then either r = Bk(n) or y 6= Bk(x).

Since, by Proposition 1, Dk(
(
u
v

)
) contains only finitely many pairs

(
n
r

)
for which

r 6= Bk(n), it suffices to check (i) and (ii) for a finite number of initial elements of
Dk(

(
u
v

)
) for each

(
u
v

)
in S.

The following result provides an interesting infinite family of singleton gener-
ating sets.

Proposition 3. Consider the case k = 1. Let τ be the golden ratio (i.e., τ > 0
and τ2 = τ + 1), let c be one of the integers −1, 0, 1, 2 and let u be any integer

exceeding 1 that is not of the form bmτ2 +0.5c for an integer m. Then the singleton{(
u

bτuc+ c

)}
is a generating set for a solution of (1).

Proof. Observe that, since k = 1, ρ = τ . There is nothing to check for (i). Let
u1 = u, v1 = bτuc+ c, and define un and vn by (3). Since

|τu− (bτuc+ c)| < 2 ,

it follows from (4) with ρ = τ and (2− τ)2 < (0.382)2 < 0.15, that |τu3− v3| < 0.5
and v3 = bτu3 + 0.5c. Therefore, to check (ii), it suffices to check that

(
u1
v1

)
and(

u2
v2

)
cannot arise from applying the matrix to a pair

(
x
y

)
with y = Bk(x).

If (
u1

v1

)
=
(

u

bτuc+ c

)
=
(

1 1
1 2

)(
x

y

)
with y = Bk(x), then

u = x+ bτx+ 0.5c = b(τ + 1)x+ 0.5c = bτ2x+ 0.5c ,
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contrary to assumption.
Consider u2 = u + bτuc + c and v2 = u + 2bτuc + 2c. To check (ii), we need

show only that

(u− 1) + b(u− 1) < u2 < (u+ 1) + b(u+ 1)

since B1(n) is increasing in n. Now

τ(u− 1) + 0.5 = τu− (τ − 0.5) < τu− 1

so that

(u− 1) + b(u− 1) = (u− 1) + bτ(u− 1) + 0.5c ≤ (u− 1) + bτuc − 1

= u+ bτuc − 2 < u+ bτuc+ c .

Also
τ(u+ 1) + 0.5 = τu+ (τ + 0.5) > τu+ 2

so that

(u+ 1) + b(u+ 1) = (u+ 1) + bτ(u+ 1) + 0.5c ≥ u+ 1 + bτuc+ 2

= u+ bτuc+ 3 > u+ bτuc+ c .

The result follows.
We now apply the generating set idea to construct a solution of (1) in the case

k = 1 which is not eventually increasing. In this case, as we remarked above, the
generating set for the solution must be infinite.

Proposition 4. Let Fn be the nth Fibonacci number, with F1 = F2 = 1 and

Fn+1 = Fn + Fn−1 for n ≥ 2. Then, for the case k = 1,{(
F2n+1 + 1
F2n+2 − 2

)
: n = 1, 2, · · ·

}
is a generating set.

Proof. Observe that

D1

({(
F2n+1 + 1
F2n+2 − 2

)})
=
{(

F2n+1 + 1
F2n+2 − 2

)
,

(
F2n+3 − 1
F2n+4 − 3

)
,

(
F2n+5 − 4
F2n+6 − 7

)
,

(
F2n+7 − 11
F2n+8 − 18

)
, · · ·

}
.
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We first establish that each entry beyond the third has the form
(
u
v

)
with v = B1(u),

so that conditions (i) and (ii) have to be checked only for the first three terms.
Observe that, for each positive integer n,

τF2n+1 − F2n+2 = τ(F2n + F2n−1)− (2F2n + F2n−1)

= (τ − 1)F2n−1 − (2− τ)F2n = (τ − 1)τ−1(τF2n−1 − F2n)

= (τ − 1)nτ−n(τF1 − F2) = (τ − 1)n+1τ−n = τ−(2n+1)

so that 0 < τF2n+1 − F2n+2 < 0.25 for n ≥ 1. Hence

|τ(F2n+1 + 1)− (F2n+2 − 2)| ≤ 0.25 + τ + 2 < 4 < [2(2− τ)3]−1

so that, from (3), |τu− v| < 0.5 for each entry
(
u
v

)
beyond the third.

Since

D1

({(
F3 + 1
F4 − 2

)})
=
{(

3
1

)
,

(
4
5

)
,

(
9
14

)
, · · ·

}
D1

({(
F5 + 1
F6 − 2

)})
=
{(

6
6

)
,

(
12
18

)
,

(
30
48

)
, · · ·

}
,

and Fk+2 − Fk ≥ 6 for k ≥ 5, it can be seen that condition (i) is satisfied.
To check condition (ii), we must show that for each positive integer n, F2n+1+1,

F2n+3 − 1 and F2n+5 − 4 cannot be of the form x+B1(x) for any integer x. Now

F2n = bτF2n−1 + 0.5c,
so that F2n+1 = F2n−1 +B1(F2n−1). Since τ > 1, B1(n) is strictly increasing in n,
so that (F2n−1 + 1) +B1(F2n−1 + 1) ≥ F2n+1 + 2. Thus, F2n+1 + 1 cannot have the
form x+B1(x). Similarly, F2n+3 − 1 cannot have this form.

Finally

F2n+5 − 4 = (F2n+4 + F2n+3)− 4 < (τ + 1)F2n+3 − 4

= (τ + 1)(F2n+3 − 1)− (3− τ) < (F2n+3 − 1) + τ(F2n+3 − 1)− 1

< (F2n+3 − 1) +B1(F2n+3 − 1)

and
F2n+5 − 4 = F2n+4 + F2n+3 − 4 = (τ + 1)F2n+3 − τ−(2n+3) − 4

= (τ + 1)(F2n+3 − 2) + 2τ − τ−(2n+3) − 2

> (F2n+3 − 2) + τ(F2n+3 − 2) + 1

> (F2n+3 − 2) +B1(F2n+3 − 2) .

Since B1(n) is strictly increasing, F2n+5 − 4 cannot be of the form x+Bk(x).
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Notice that, since b(F2n+1) = F2n+2 > F2n+2 − 2 = b(F2n+1 + 1), the solution
obtained with this generating set decreases infinitely often, as required.

For k > 1, we believe that a similar approach will lead to a solution to (1)
which is not eventually increasing.

4. Concluding remarks

The matrix dynamics approach described in Section 2 can be applied to the
more general recursion

f(af(n) + bn) = cf(n) + dn

with integer coefficients a, b, c and d (the Golomb recursion has a = 1, b = d = k

and c = 2). Once again, a given value v1 = f(u1) imposes other values vn = f(un)
where

(
un
vn

)
satisfies the recursion(

un+1

vn+1

)
=
(
b a
d c

)(
un
vn

)
.

The transition matrix will have eigenvector(s)
(

1
ρ

)
where ρ satisfies aρ2+(b−c)ρ−d =

0 and f(n) = ρn satisfies the recursion. If 0 < c − aρ < 1, then the analogues of
Propositions 1 and 2 hold. Otherwise, depending on the signs and magnitudes of
a, b, c, d and ρ, a variety of behaviours are possible, as illustrated for example by
recursion (5). The tools developed for the Golomb recursion can be readily adapted
to analyze these situations, and it is not illuminating to simply go through the cases
in general.

Alternatively, one could introduce higher orders of recursion, such as occur in
equations of the type

f(a0n+ a1f(n) + a2f(f(n))) = b0n+ b1f(n) + b2f(f(n)) .

The matrix dynamics procedure suggests considering triples (un, vn, wn) with vn =
f(un) and wn = f(vn) = f(f(un)), so that

f(a0un + a1vn + a2wn) = b0un + b1vn + b2wn .

While we can define un+1 = a0un+a1vn+a2wn and vn+1 = b0un+b1vn+b2wn, we
would need further information on the type of recursion to sensibly define wn+1 and
utilize our techniques. Such information might be available in a specific context,
but it is beyond the scope of this paper to explore the hypothetical possibilities.
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