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This paper is dedicated to Paul Erdős, on the sad occasion of his recent death.

Abstract. A primitive 3-smooth partition of n is a representation of n as the sum of numbers
of the form 2a3b, where no summand divides another. Partial results are obtained in the
problem of determining the maximal and average order of the number of such representations.
Results are also obtained regarding the size of the terms in such a representation, resolving
questions of Erdős and Selfridge.

0. Introduction

Recently Erdős proposed the following problem: let r(n) be the number of representa-
tions of n as the sum of 3-smooth numbers (integers of the form 2a3b with a, b ≥ 0), which
are primitive (no summand divides another). Determine

i. the maximal order of r(n),
ii. the average order of r(n).

It is easy to show that r(n) ≥ 1 for all n (see[1],[2]). In this paper partial results are
obtained for both of these problems. Specifically, we prove:

Theorem 1. For n ≥ 5,

r(n) ≤
1

2
· nα,

where α = log 2/ log 3 (≈ 0.631).

Theorem 2. Let R(x) =
∑
n≤x r(n). Then

xβ

(log x)β+3/2
¿ R(x)¿

xβ

(log x)3/2

where

β =
1

log 3
· log(

log 6

log 2
) +

1

log 2
· log(

log 6

log 3
) (≈ 1.570).

Define g(n) as the maximum, over all representations, of the minimum term (e.g.
11=8+3=9+2, so g(11) = 3). Erdős has asked if limn→∞ g(n) = ∞. We answer this
in the affirmative by proving:
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Theorem 3. g(n) ≥ 3
5 · n

γ, where γ = log 2
log 5 (≈ 0.431).

Concerning g(n), Selfridge has asked if, for each n, g(n) appears as the least term in
exactly one representation of n. We answer this in the negative by providing an infinite
number of counter-examples where it appears in two representations.

The author would like to thank Professor Carl Pomerance for suggesting these problems,
and also for his counsel as the work progressed.

1. Proof of theorem 1

Lemma 1. r(2a3bm) = r(m)

Proof. It is enough to show that r(2m) = r(m) and r(3m) = r(m). There cannot exist a
term 3β in any representation of 2m, for that would make the sum odd. Thus all terms
are even. Dividing through by 2 gives a 1-1 correspondence between representations of 2m
and m. Likewise, for 3m, a term 2α would mean the sum is not divisible by 3. Thus all
terms are divisible by 3. Dividing by 3 gives a similar correspondence between 3m and m.

The above lemma tells us that we need only deal with n coprime to 6 to determine an
upper bound. Each representation of a number coprime to 6 must have a term 3j . Define

k = [log3 n]

and for these n, define rj(n) = the number of representations with summand 3j , for j ≥ 0.

Note that

r(n) =
k∑
j=0

rj(n).

Also define

sj(n) =

j∑
i=0

ri(n),

(so that r(n) = sj(n) for j ≥ k).

Lemma 2. For n ≥ 5, and i = 1, 2, ..., k

si(n) ≤ 2i−1.

[Note that s0(n) = r0(n) = 0 if n 6= 1, and is 1 if n = 1.]

Proof. We use complete induction on n. For n=5 or 7, we have k = 1. Since 5=3+2, and
7=3+4 are their only representations,

s1(n) = r1(n) = 1 = 20
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so the inequalities hold. Note that for n > 1, s1(n) = r1(n) = the number of representations
of n in the form 3 + 2a. Obviously, then

s1(n) = 0 or 1 ≤ 20.

Now assume for all m < n and i = 1, 2, ..., k = k(m) that

si(m) ≤ 2i−1.

It is easy to see that, for j ≥ 2,

rj(n) = sj−1

(
n− 3j

2aj

)
where aj is defined by 2aj ||n − 3j . Therefore, from the inductive hypothesis, we deduce
that for j ≥ 2

rj(n) ≤ 2j−2.

Thus, for n ≥ 5 and i ≥ 2

si(n) =

i∑
j=1

rj(n) ≤ 1 +

i∑
j=2

2j−2 = 2i−1.

This completes the proof of the lemma.

The above lemma yields

r(n) = sk(n) ≤ 2k−1 ≤
1

2
· 2log3(n) =

1

2
· nα

which completes the proof of Theorem 1.

2. Proof of theorem 2

We introduce the following notation:

•
∑∗ indicates a sum over numbers prime to 6,

• R∗(x) =
∑∗
n≤x r(n),

• S(x) = the number of primitive sums
∑

2a3b = n with each term 2a3b ≤ x and
(n, 6) = 1,

• Sj(x) = the number of sums described above that have the summand 3j ,

• α = log 2
log 3 .

For any x ≥ 3, there exists L ∈ N such that 3L ≤ x < 3L+1. Obviously, if we prove
the theorem for x = 3L, the general result will follow from R(3L) ≤ R(x) ≤ R(3L+1).
Therefore, we henceforth assume that x = 3L.
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Note that every n ≤ x can be uniquely written as n = 2a3bm with (m, 6) = 1, and
m ≤ x/2a3b. Since r(n) = r(m), by lemma 1, it follows that

R(x) =
∑
a,b≥0

2a3b≤x

R∗
( x

2a3b

)
.

Using this fact, the theorem will follow once we prove, for x ≥ 2,

(2.1)
xβ

(log x)β+3/2
¿ R∗(x)¿

xβ

(log x)3/2
.

Specifically, the theorem’s lower bound follows trivially from this, and on the other hand
we would have

R(x)¿
∑

2a3b≤
√
x

( x

2a3b

)β
· (log x)−3/2 +

∑
√
x<2a·3b≤x

xβ/2

¿ xβ · (log x)−3/2 + log2 x · xβ/2

¿ xβ · (logx)−3/2.

Consider S(x/L). This counts primitive sums
∑

2a3b with 2a3b ≤ x/L. Then b ≤ L−1,
and we have at most L terms. Thus, it follows from the definitions that

S
( x
L

)
≤ R∗(x) ≤ S(x).

This will imply (2.1) once we prove:

S(x) ³ (log x)−3/2 · xβ ,

and this would follow from

(2.2) S(x) ³
1

L
·

(
[L/α] + L

L

)
,

since, by Stirling’s formula, the binomial coefficient above equals

exp{([L/α] +L+ 1/2) log([L/α] +L)− (L+ 1/2) logL− ([L/α] + 1/2) log([L/α]) +O(1)}

= exp{[L/α] · log(1 + α) + L · log(1 + 1/α)− 1/2 · logL+O(1)}

³ xβ · (log x)−1/2.



the electronic journal of combinatorics 4 (1997), #R2 5

It is easy to see that

S
(x

3

)
≤ SL(x) < S(x).

The second inequality trivially follows from the definitions. Since x = 3L, no sum counted
by S(x/3) has a term divisible by 3L. Thus, if we take any such sum, multiply through by
2 and add 3L, we obtain a sum counted by SL(x). Hence, the first inequality holds, and
(2.2) would follow from

(2.3) SL(x) ³
1

L
·

(
[L/α] + L

L

)
.

We now establish a recursive formula for the Sj and use it to prove (2.3).

The sums counted by Sj(x) can all be written in the form

3j + 2l · (3i + ...)

where 0 ≤ i ≤ j− 1, and 1 ≤ l ≤ [(L− i)/α]. If 0 ≤ i ≤ j−2, replacing 3j by 3j−1 yields a
1-1 correspondence with precisely those sums counted by Sj−1(x). If i = j−1, the number
of different sums in the parentheses, for a given l, is Sj−1(x/2l). Therefore

(2.4) Sj(x) =

[(L−j+1)/α]∑
l=0

Sj−1

( x
2l

)
.

In particular

SL(x) = SL−1(x) + SL−1

(x
2

)
.

We can generalize this to a relationship of the form

(2.5) SL(x) =

[j/α]∑
l=0

Aj(l) · SL−j
( x

2l

)
via (2.4), where A1(0) = A1(1) = 1 by the above. Note that the sums counted by
SL−j−1(x/2l+λ) have 3L−j−1 ≤ 3L/2l+λ, which implies λ ≤ [(j + 1)/α] − l. Now if
we combine the above with (2.4) we obtain

SL(x) =

[j/α]∑
l=0

Aj(l)

[ j+1
α ]−l∑
λ=0

SL−j−1

( x

2l+λ

)

=

[ j+1
α ]∑

m=0

SL−j−1

( x

2m

)min(m,[ jα ])∑
l=0

Aj(l),
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so we conclude

(2.6) Aj+1(m) =

min(m,[j/α])∑
l=0

Aj(l).

It is trivially true that S0(x) = 1 for x ≥ 1, so with j = L, (2.5) yields

(2.7) SL(x) =

[L/α]∑
l=0

AL(l).

Now let Bj(l) =
(
l+j
l

)
− α ·

(
l+j
l−1

)
(with the conventions that

(
0
0

)
= 1 and

(
n
−1

)
= 0).

Claim: Bj−1(l) ≤ Aj(l) ≤ Bj+1(l).

Once this claim is proved, (2.3) will follow, and the proof will be complete. Specifically,

since
∑m

l=0

(
l+j
l

)
=
(
m+j+1
m

)
,

(2.8)

m∑
l=0

Bj(l) = Bj+1(m).

Therefore, combining this with (2.7) and the claim,

BL([L/α]) ≤ SL(x) ≤ BL+2([L/α]).

This is the same as

(
[L/α] + L

[L/α]

)
·

(
1− α ·

[L/α]

L+ 1

)
≤ SL(x) ≤

(
[L/α] +L+ 2

[L/α]

)
·

(
1− α ·

[L/α]

L+ 3

)
and (2.3) follows at once.

Proof of claim: We use induction on j. For j = 1 the inequalities follow immediately
from the fact that A1(0) = A1(1) = 1.

Now assume the inequalities hold for a given j ≥ 1 and 0 ≤ l ≤ [j/α]. Suppose first
that 0 ≤ m ≤ [j/α]. Summing the inequalities over l ∈ [0,m], applying (2.6) and (2.8)
yields the corresponding inequalities for Aj+1(m).

We are left to handle the [j/α] < m ≤ [(j + 1)/α], so that m = [j/α] + i, where
i = 1 or possibly 2. For these m, (2.6) tells us that Aj+1(m) = Aj+1([j/α]). The already
established inequalities from the preceding paragraph yield

Bj([j/α]) ≤ Aj+1(m) ≤ Bj+2([j/α]).

The proof of the claim will be complete if we show
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(i) Bj+2([j/α]) < Bj+2([j/α] + 1) < Bj+2([j/α] + 2)
and

(ii) Bj([j/α]) > Bj([j/α] + 1) > Bj([j/α] + 2).

Towards this, note that for i = 1 or 2, and j ∈ N,

α ·
1

j + 2
<

1

[j/α] + i
< α ·

1

j
.

These two inequalities respectively imply

Bj+1([j/α] + i) > 0

and
Bj−1([j/α] + i) < 0.

Noting that
(
n
k

)
=
(
n+1
k+1

)
−
(
n
k+1

)
, the definition of Bj(l) yields

Bj(l) = Bj(l + 1)−Bj−1(l + 1).

Combined with the above inequalities, this establishes the validity of (i) and (ii), hence
the claim, and hence we have theorem 2.

3. Proof of theorem 3

Since g(2a3bn) = 2a3b · g(n) (from the proof of lemma 1), we may assume (n, 6) = 1.
It is easy to check that the theorem holds for n =1,5,7. We proceed inductively. We may
now assume

(3.1) 3L < n < 3L+1, L ≥ 2

so that

(3.2) n = 3L + 2ak, a ≥ 1, k ≡ 1(2), k < 3L.

Evidently
g(n) ≥ min(3L, 2a · g(k)).

If g(n) ≥ 3L, then g(n) > n/3 and the theorem holds. Otherwise

g(n) ≥ 2a ·
3

5
· kγ

by the inductive hypothesis.

Case I: k ≥ 3L−a

We wish to show that
2a · kγ ≥ nγ
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or

k ≥
n

2a/γ
=

3L + 2a · k

2a/γ

or

k ≥
3L

2a/γ − 2a
.

Thus it is enough to have

3L−a ≥
3L

2a/γ − 2a

or

γ ≤ min
a≥1

a · log 2

log(3a + 2a)
=

log 2

log 5
,

so the theorem holds. Note that if a ≥ L, we certainly have k ≥ 3L−a, so that in particular
the theorem holds in that situation.

Case II: k < 3L−a and 1 ≤ a ≤ L− 1

From (3.2):

n = (3L − 3L · (2/3)a) + (2a · 3L−a + 2a · k)

= (3L−1 + 2 · 3L−2 + 22 · 3L−3 + ...+ 2a−1 · 3L−a) + 2a+1

(
3L−a + k

2

)
.

Now either

g

(
2a+1

(
3L−a + k

2

))
≥ 2a−1 · 3L−a

or

g

(
2a+1

(
3L−a + k

2

))
< 2a−1 · 3L−a.

In the former circumstance
g(n) ≥ 2a−1 · 3L−a

≥
3

4
· 2L

=
3

4
· (3L)log 2/ log 3

>
3

8
· nlog 2/ log 3

≥
3

5
· nlog 2/ log 5

(using (3.1) and n ≥ 11 in the last two lines respectively). In the latter circumstance

g(n) ≥ 2a+1 ·
3

5

(
3L−a + k

2

)γ
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by the inductive hypothesis. To complete the proof, it is enough to show that

2a+1 ≥

(
2 · (3L + 2a · k)

3L−a + k

)γ
(which combined with the above and (3.2) yields the result).

The right side is maximized at k = 1, so it is

≤

(
2(3L + 2a)

3L−a + 1

)γ
< (2 · 3a)γ

< 2a+1.

4. Non-uniqueness of representation with g(n)

Lastly, we show the counter-examples to Selfridge’s question. Let

n = 3b + 11 · 2a

with a ≥ 5, and

(4.1) 11 · 2a−3 < 3b < 99 · 2a−6.

For any given a, there are 0 or 1 values of b satisfying (4.1). However, for an infinite
number of values of a, there exists a value of b satisfying (4.1). This is because it is
equivalent to

log 11

log 3
+ (a− 3) ·

log 2

log 3
< b <

log 99

log 3
+ (a− 6) ·

log 2

log 3
,

or
log(64/33)

log 3
< a ·

log 2

log 3
− (b− 1) <

log(24/11)

log 3
.

Since the number log2/log3 is irrational, the fractional part of a·log2/log3 is thus dense in
[0,1] and so lies between log(64/33)/log3 and log(24/11)/log3 for infinitely many values of
n.

We will show that g(n) = 3b. This will suffice since

n = 3b + 3 · 2a + 2a+3

= 3b + 9 · 2a + 2a+1

and (4.1) implies that 3b is the smallest term in both representations.
We must now demonstrate that there does not exist a representation of n with all its

terms > 3b. Suppose that such a representation exists. Since n is odd, any representation
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must have a term 3j , and since (4.1) implies that n < 3b+2, this representation must have
the term 3b+1. Thus it is in the form

n = 3b+1 + 2 · n1

where
n1 = 11 · 2a−1 − 3b.

Since n1 is odd, its corresponding representation has a term 3j . Since n < 3b+2, we
have n1 < 3b+1, and thus j ≤ b. If j were less than b, the corresponding term 2 · 3j

in the representation of n would contradict our assumption that all the terms in that
representation are greater than 3b. Following this same line of reasoning, the alleged
representation unfolds as follows:

n = 3b+1 + 2 · 3b + 4(11 · 2a−2 − 3b)

= 3b+1 + 2 · 3b + 4 · 3b−1 + 16(11 · 2a−4 − 3b−1)

= 3b+1 + 2 · 3b + 4 · 3b−1 + 16 · 3b−2 + 16(11 · 2a−4 − 4 · 3b−2).

However
m =: 16(11 · 2a−4 − 4 · 3b−2)

= 11 · 2a −
64

9
· 3b

< 8 · 3b −
64

9
· 3b

=
8

9
· 3b,

and clearly m 6= 0. This contradicts the assumption that all terms are > 3b, and completes
the proof.
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