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Abstract

Given a vertex u ∈ V of a graph Γ = (V, E), the (local) proper polynomials
constitute a sequence of orthogonal polynomials, constructed from the so-called
u-local spectrum of Γ. These polynomials can be thought of as a generalization,
for all graphs, of the distance polynomials for the distance-regular graphs. The
(local) adjacency polynomials, which are basically sums of proper polynomials,
were recently used to study a new concept of distance-regularity for non-regular
graphs, and also to give bounds on some distance-related parameters such as
the diameter. Here we develop the subject of these polynomials and gave a
survey of some known results involving them. For instance, distance-regular
graphs are characterized from its spectrum and the number of vertices at “ex-
tremal distance” from each of their vertices. Afterwards, some new applications
of both, the proper and adjacency polynomials, are derived, such as bounds
for the radius of Γ and the weight k-excess of a vertex. Given the integers
k, µ ≥ 0, let Γµ

k(u) denote the set of vertices which are at distance at least k
from a vertex u ∈ V , and there exist exactly µ (shortest) k-paths from u to
each of such vertices. As a main result, an upper bound for the cardinality of
Γµ

k(u) is derived, showing that |Γµ
k(u)| decreases at least as O(µ−2), and the

cases in which the bound is attained are characterized. When these results are
particularized to regular graphs with four distinct eigenvalues, we reobtain a
result of Van Dam about 3-class association schemes, and prove some conjec-
tures of Haemers and Van Dam, about the number of vertices at distance three
from every vertex of a regular graph with four distinct eigenvalues —setting
k = 2 and µ = 0— and, more generally, the number of non-adjacent vertices
to every vertex u ∈ V , which have µ common neighbours with it.
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1 Introduction

The interactions between algebra and combinatorics have proved to be a fruitful
subject of study, as shown by the increasing amount of literature on the subject that
has appeared in the last two decades. Some good references are the text of Bannai
and Ito [2] , Godsil’s recent book [24] , and the very recent Handbook of Combinatorics
[26] . In particular, a considerable effort has been devoted to the use of algebraic
techniques in the study of graphs as, for instance, the achievement of bounds for
(some of) their parameters in terms of their (adjacency or Laplacian) spectra. Classic
references dealing with this topic are the books of Biggs [4] , Cvetković, Doob, and
Sachs [9] , and the comprehensive text about distance-regular graphs of Brouwer,
Cohen and Neumaier [5] . (See also the surveys of Cvetković and Doob [8] and
Schwenk and Wilson [38] .) In this context, some of the recent work has been specially
concerned with the study of metric parameters, such as the mean distance, diameter,
radius, isoperimetric number, etc. See, for instance, the papers of Alon and Milman
[1] , Biggs [3] , Chung et.al. [7] ,[6] , Van Dam and Haemers [11] , Delorme and
Solé [13] , Kahale [31] , Mohar [32] , Quenell [36] , Sarnak [39] , and Garriga, Yebra,
and the author [16] ,[19] ,[22] . We must also mention here Haemers’ thesis [27] ,
an account of which can be found in his recent paper [28] . Somewhat surprisingly,
in some of these works the study of the limit cases —in which the derived bounds
are attained— has revealed the presence of high levels of structure in the considered
graphs. See, for instance, the papers of Haemers and Van Dam, [12] , and Garriga,
Yebra, and the author [17] ,[18] ,[20] ,[21] , and also the recent theses of Van Dam [10]
, Garriga [23] and Rodŕıguez [37] . In their study, Garriga and the author introduced
two families of orthogonal polynomials of a discrete variable, constructed from the
so-called local spectrum of the graph. The members of one of these families are called
the “proper polynomials,” and can be seen as a generalization, for all graphs, of the
distance polynomials for the distance-regular graphs. The other family, constituted
by the “adjacency polynomials,” is closely related to the first one, since its members
are basically sums of consecutive proper polynomials. Both families were mainly used
to study a new concept of distance-regularity for non-regular graphs, and also to give
bounds on some distance-related parameters such as the diameter and the radius
[16] . Here, after introducing these polynomials and recalling its main properties,
we survey some of the main known results related to them. For example, a regular
graph with d+1 different eigenvalues is distance-regular if, and only if, the number of
vertices at distance d from any given vertex is the value of a certain expression which
only depends on the spectrum of the graph [17] . Afterwards, we further investigate
some new applications of these polynomials, deriving new bounds for the radius of a
graph and the “weight k-excess” of a vertex. Generalizing these results, and grouping
ideas of Van Dam [10] , and Garriga and the author [17] ,[18] , we also derive bounds
for the cardinalities of some special vertex subsets, and study the limit cases in which
such bounds are attained. The particularization of these results to the case of regular
graphs with four distinct eigenvalues proves some conjectures of Haemers and Van
Dam [29] ,[12] ,[10] .
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In the rest of this introductory section we recall some basic concepts and results,
and fix the terminology used throughout the paper. As usual, Γ = (V, E) denotes a
(simple and finite) connected graph with order n := |V |. For any vertex u ∈ V , Γ(u)
denotes the set of vertices adjacent to u, and δ(u) := |Γ(u)| stands for its degree. The
distance between two vertices is represented by ∂(u, v). The eccentricity of a vertex
u is ε(u) := maxv∈V ∂(u, v), the diameter of Γ is D(Γ) := maxu∈V ε(u), and its radius
is r(Γ) := minu∈V ε(u). As usual, Γk(u), 0 ≤ k ≤ ε(u), denotes the set of vertices
at distance k from u, and Γk, 0 ≤ k ≤ D, is the graph on V where two vertices are
adjacent whenever they are at distance k in Γ. Thus, Γ1(u) = Γ(u) and Γ1 = Γ. The
k-neighbourhood of u is then defined as Nk(u) :=

⋃k
l=0 Γl(u) = {v : ∂(u, v) ≤ k}. A

closely related parameter is the so-called k-excess of u, denoted by ek(u), which is
the number of vertices which are at distance greater than k from u, that is ek(u) :=
|V \ Nk(u)|. Then, trivially, e0(u) = n − 1 and eD(u) = eε(u)(u) = 0. Furthermore,
note that ek(u) = 0 if and only if the eccentricity of u satisfies ε(u) ≤ k. The name
“excess” is borrowed from Biggs [3] , where he gave a lower bound, in terms of the
eigenvalues of Γ, for the excess er(u) of (any) vertex u in a regular graph with girth
g = 2r + 1 (r is sometimes called the injectivity radius of Γ, see [36] .)

All the involved matrices and vectors are indexed by the vertices of Γ. Moreover,
for any vertex u ∈ V , eu will denote the u-th unitary vector of the canonical base of
R

n. Besides, we consider A, the adjacency matrix of Γ, as an endomorphism of R
n. A

polynomial in the vector space of real polynomials with degree at most k, p ∈ Rk[x],
will operate on R

n by the rule pw := p(A)w, where w ∈ R
n, and the matrix is not

specified unless some confusion may arise. The adjacency (or Bose-Mesner) algebra
of A, denoted by A(A), is the algebra of all the matrices which are polynomials in
A. As usual, J denotes the n × n matrix with all entries equal to 1, and similarly
j ∈ R

n is the all-1 vector. The spectrum of Γ is the set of eigenvalues of A together
with their multiplicities

S(Γ) := {λ0, λ
m1
1 , . . . , λmd

d }
where the supraindexes denote multiplicities. Because of its special role, the largest
(positive and with multiplicity one) eigenvalue λ0 will be also denoted by λ. We will
make ample use of the positive eigenvector associated to such an eigenvalue, which is
denoted by ν = (ν1, ν2, . . . , νn)>, and is normalized to have smallest entry 1. Thus,
ν = j when Γ is regular. We will denote by M the mesh constituted by all the
distinct eigenvalues, that is M := {λ > λ1 > · · · > λd}. It is well-known that the
diameter of Γ satisfies D ≤ d = |M| − 1 (see, for instance, Biggs [4] .) We consider
the mapping ρ : P(V ) → R

n defined by ρU :=
∑

u∈U νueu for any vertex subset
U 6= ∅, and ρ∅ := 0. This corresponds to assigning some weights to the vertices of
Γ, in such a way that it becomes “regularized” since the weight degree of each vertex
u turns out to be a constant:

δρ(u) :=
1
νu

∑
v∈Γ(u)

νv = λ.

This approach has already been used by Garriga, Yebra, and the author to derive
bounds of some parameters of a graph from its spectrum —such as the diameter [19]
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, [22] , the k-excess [17] , and the independence and chromatic numbers [15] — and
also to study a new distance-regularity concept for non-regular graphs [18] . In this
context the author introduced in [15] the notion of “weight parameter” of a graph,
defined as follows. For each parameter of a graph Γ, say ξ, defined as the maximum
[minimum] cardinality of a set U ⊂ V satisfying a given property P, we can define the
corresponding weight parameter, denoted by ξ?, as the maximum [minimum] value
of ‖ρU‖2 of a vertex set U satisfying P. Note that, when the graph is regular, the
parameters ξ? and ξ are the same. Otherwise, when we are dealing with non-regular
graphs, the weight parameters are sometimes more convenient to work with, as it was
shown in the above-mentioned papers. For instance, we will here consider the weight
k-excess of a vertex u:

e?
k(u) := ‖ρ(V \ Nk(u))‖2 = ‖ν‖2 − ‖ρNk(u)‖2,

and we also use the notion of pseudo-distance-regularity, which is defined as follows.
Given a vertex u ∈ V of a graph Γ, with eccentricity ε(u) = ε, consider the

partition V = V0 ∪ V1 ∪ · · · ∪ Vε where Vk := Γk(u), 0 ≤ k ≤ ε. Then, we say that Γ
is pseudo-distance-regular around vertex u whenever the numbers

ck(v) :=
1
νv

∑
w∈Γ(v)∩Vk−1

νw, ak(v) :=
1
νv

∑
w∈Γ(v)∩Vk

νw, bk(v) :=
1
νv

∑
w∈Γ(v)∩Vk+1

νw,

defined for any v ∈ Vk and 0 ≤ k ≤ ε (where, by convention, c0(u) = 0 and bε(v) = 0
for any v ∈ Vε) do not depend on the considered vertex v ∈ Vk, but only on the value
of k. In such a case, we denote them by ck, ak and bk respectively. Then, the matrix

I(u) :=


 0 c1 · · · cε−1 cε

a0 a1 · · · aε−1 aε

b0 b1 · · · bε−1 0




is called the (pseudo-)intersection array around vertex u of Γ. It is shown in [21] that
this is a generalization of the concept of distance-regularity around a vertex (which
in turn is a generalization of distance-regularity) that can be found, for instance, in
[5] . For example, the graph Γ = P3 × P3, where P3 denotes the path graph on
three vertices {u1, u2, u3} and positive eigenvector (νu1 , νu2 , νu2)> = (1,

√
2, 1)>, has

positive eigenvector ν with entries ν(ui,uj) = νui
νuj

, i, j ∈ {1, 2, 3}. Using this, it can
be easily checked that Γ pseudo-distance-regular around the “central” vertex (u2, u2),
and also around every “corner” vertex (ui, uj), i, j ∈ {1, 3}, i 6= j (the intersection
arrays around a central vertex and a corner vertex being different.) For instance, the
intersection array around u = (u2, u2) is:

I(u) :=


 0

√
2 2

√
2

0 0 0
2
√

2
√

2 0


 .

Finally, recall that a (symmetric) association scheme with d classes can be defined
as a set of d graphs Γi = (V, Ei), 1 ≤ i ≤ d, on the same vertex set V , with adjacency
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matrices Ai satisfying
∑d

k=0 Ak = J , with A0 := I; and AiAj =
∑d

k=0 pk
ijAk, for

some integers pk
ij, 0 ≤ i, j, k ≤ d. Then, following Godsil [24] , we say that the graph

Γi is the i-th class of the scheme, and so we indistinctly use the words “graph” or
“class” to mean the same thing.

2 The Proper and Adjacency Polynomials

In this section we introduce two orthogonal systems of polynomials and, after recall-
ing their main properties, we study some of their (old and new) applications. These
polynomials are constructed from a discrete scalar product whose points are eigenval-
ues of the graph and the corresponding weights a sort of (local) multiplicities which
we introduce next.

2.1 The local spectrum

For each eigenvalue λi, 0 ≤ i ≤ d, let U i be the matrix whose columns form an
orthonormal basis for the eigenspace corresponding to λi, Ker(A − λiI). The (prin-
cipal) idempotents of A are the matrices Ei := U iU

>
i representing the orthogonal

projections onto Ker(A − λiI). Thus, in particular, E0 = 1
‖ν‖2 νν>. Therefore, such

matrices satisfy the following properties (see Godsil [24] ):

(a.1) EiEj =
{

Ei if i = j
0 otherwise;

(a.2) AEi = λiEi;

(a.3) p(A) =
∑d

i=0 p(λi)Ei, p ∈ R[x].

Given a vertex u ∈ V and an eigenvalue λi, Garriga, Yebra, and the author [21]
defined the (u-)local multiplicity of λi as

mu(λi) := ‖Eieu‖2 = (Ei)uu (0 ≤ i ≤ d)

so that mu(λi) ≥ 0 and, in particular, mu(λ0) = ν2
u

‖ν‖2 . Moreover, they showed that,
when the graph is seen from a vertex, its local multiplicities play a similar role as the
standard multiplicities. Thus,

(b.1)
d∑

i=0
mu(λi) =

d∑
i=0

‖Eieu‖2 = ‖eu‖2 = 1 (u ∈ V );

(b.2)
∑
u∈V

mu(λi) = tr Ei = mi (0 ≤ i ≤ d);

(b.3) Ck(u) := (Ak)uu =
d∑

i=0
mu(λi)λk

i ,
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where Ck(u) is the number of closed k-walks going through vertex u. If µ0(= λ) >
µ1 > · · · > µdu represent the eigenvalues with non-null local multiplicities, we define
the (u-)local spectrum as

Su(Γ) := {λmu(λ), µ
mu(µ1)
1 , . . . , µ

mu(µdu )
du

}.

Moreover, we introduce the (u-)local mesh as the set Mu := {λ > µ1 > · · · > µdu}.
Then it can be proved that the eccentricity of u satisfies ε(u) ≤ du = |Mu|− 1 (see
[21] .)

From the u-local spectrum we introduce in Rdu [x] the (u-)local scalar product

〈f, g〉u :=
du∑
i=0

mu(µi)f(µi)g(µi) (1)

whose relation with the (standard) Euclidean product 〈· , ·〉 is

〈feu, geu〉 = (f(A)g(A))uu =


 d∑

i=0
f(λi)Ei

d∑
j=0

g(λj)Ej




uu

=
d∑

i=0
f(λi)g(λi)(Ei)uu = 〈f, g〉u

where we have used properties (a.3) and (a.1). In particular, the relation between the
corresponding norms is ‖feu‖ = ‖f‖u. Moreover, note that, according to property
(b.1), the weight function ρi := mu(µi), 0 ≤ i ≤ d, of the scalar product (1) is
normalized in such a way that

∑d
i=0 ρi = 1.

2.2 The proper polynomials

Let us consider an orthonormal system of polynomials {gk : dgr gk = k, 0 ≤ k ≤ du}
with respect to the above scalar product (1). From these polynomials, and taking
into account that gk(λ) 6= 0 since the roots of gk are within the interval (µdu , µ0), we
can define another orthogonal secuence by pu

k = gk(λ)gk, 0 ≤ k ≤ du, which clearly
satisfy the following orthogonal property

〈pu
k , p

u
l 〉u = δklp

u
k(λ) (0 ≤ k, l ≤ du), (2)

so that ‖pu
k‖2

u = pu
k(λ). Such a sequence, which uniqueness can be easily proved

by using induction, will be called the (u-)local proper orthogonal system, and its
members the (u-)local proper polynomials. As elements of an orthogonal system,
such polynomials satisfy a three-term recurrence of the form

xpu
k = bk−1p

u
k−1 +akp

u
k +ck+1pk+1xpu

k = bk−1p
u
k−1 +akp

u
k +ck+1p

u
k+1 (0 ≤ k ≤ d), (3)

where ak, bk and ck are the corresponding Fourier coeficients of xpu
k in terms of pu

k−1,
pu

k , and pu
k+1 respectively (b−1 = cd+1 = 0), initiated with pu

−1 = 0 and pu
0 = 1. (See,
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for instance, [34] .) Notice that the value of pu
0 is a consequence of the fact that the

weight function is normalized, since then ‖pu
0‖2 =

∑d
i=0 ρi = 1 = pu

0(λ).
Using the above property of the weight function, Garriga and the author
[17] ,[18] ,[23] ] proved the following result giving some alternative characteriza-

tions of these polynomials.

Lemma 2.1 Given any vertex u of a graph Γ, there exists a unique orthogonal system
pu

0(= 1), pu
1 , . . . , p

u
du

, characterized by any of the following conditions:

(a) ‖pu
k‖2

u = pu
k(λ);

(b) ak + bk + ck = λ (0 ≤ k ≤ du);

(c)
∑du

k=0 pu
k = ‖ν‖2

ν2
uπ0

∏du
k=0(x − µk), where π0 =

∏du
k=0(λ − µk). 2

In the same papers it was shown that the highest degree polynomial pu
du

satisfies
the following properties:

(c.1) The u-local multiplicities of Γ are given by

mu(µi) =
ν2

uφ0p
u
du

(λ)
‖ν‖2φipu

du
(µi)

(0 ≤ i ≤ du) (4)

where φi =
∏du

j=0(j 6=i)(µi − µj);

(c.2) The value at λ of the highest degree polynomial is

pu
du

(λ) =
1

m2
u(λ)π2

0∑du
i=0

1
mu(µi)π2

i

(5)

where πi = (−1)iφi = |φi|.

Example 2.2 Let Γ = P3×P3, the cartesian product of two 3-path graphs with vertex
sets {u1, u2, u3}, considered in the Introduction. Then the spectrum of Γ is S(Γ) =
{2

√
2

1
,
√

2
2
, 03, −√

2
2
, −2

√
2

1}, whereas the local spectrum of the central vertex u =

(u2, u2) is Su(Γ) = {2
√

2
1
4 , 0

1
2 , −2

√
2

1
4 }. From this, one can compute the u-local

proper polynomials and their values at λ = 2
√

2, giving:

• pu
0 = 1, 1;

• pu
1 = 1√

2
x, 2;

• pu
2 = 1

4x
2 − 1, 1;



the electronic journal of combinatorics 4 (1997), #R21 8

Example 2.3 Let Γ = LP , the line graph of the Petersen graph, with spectrum
S(Γ) = {41, 25, −14, −25}. Then every vertex u of Γ has local spectrum Su(Γ) =
{4

1
15 , 2

1
3 , −1

4
15 , −2

1
3 }. Hence, the u-local proper polynomials and their values at λ = 4

turn out to be:

• pu
0 = 1, 1;

• pu
1 = x, 4;

• pu
2 = x2 − x − 4, 8;

• pu
3 = 1

4(x
3 − 3x2 − 4x + 8), 2;

The reader who is familiar with the theory of distance-regular graphs probably has
already realized that the proper polynomials can be thought of as a generalization
of the so-called “distance polynomials.” Thus, in the second example, the derived
polynomials satisfy

pu
k(A) = Ak (0 ≤ k ≤ du)

where Ak stands for the adjacency matrix of Γk, usually called the k-th distance
matrix of Γ. In other words, for each k = 0, 1, . . . , du, the polynomial pu

k is the
k-distance polynomial of Γ and, consequently (see, for instance, [5] ) , Γ is distance-
regular. In fact, generalizing this result, Garriga, Yebra, and the author [21] showed
that a graph Γ is pseudo-distance-regular around a vertex u, with eccentricity ε(u) =
ε, if and only if there exist the (u-)local distance polynomials pu

k , dgr pu
k = k, satisfying

pu
keu =

1
νu

pu
keu =

1
νu

ρVk , pu
k(λ) =

1
ν2

u

‖ρVk‖2 (0 ≤ k ≤ ε) (6)

(the latter equality being a consequence of the former) where Vk = Γk(u); and that,
as suggested by the notation, such polynomials coincide, in fact, with the proper
polynomials.

In addition, using property (c.2) and the adjacency polynomials defined bellow,
Garriga and the author [17] gave the following numeric characterization of pseudo-
distance-regularity. (A similar characterization for “completely regular” codes [33]
can be found in [18] .)

Theorem 2.4 [17]
A graph Γ is pseudo-distance-regular around a vertex u, with local spectrum Su(Γ)

as above, if and only if

1
ν2

u

‖ρVdu‖2 = pu
du

(λ) =
1

m2
u(λ)π2

0∑du
i=0

1
mu(µi)π2

i

(7)

where πi =
∏du

j=0(j 6=i) |µi − µj|, 0 ≤ i ≤ du. 2
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As an example of application of the above result, let us consider again the graph
Γ = P3 × P3 “seen” from the vertex u = (u2, u2) with νu = 2 (Example 2.2.)
Then, Vdu = V2 consists of the four corner vertices (ui, uj), i, j ∈ {1, 3}, i 6= j, with
ν(ui,uj) = 1, giving 1

ν2
u
‖ρV2‖2 = 1 = pu

2(λ). Consequently, Γ is pseudo-distance regular
around u, as claimed in the Introduction.

2.3 The adjacency polynomials

The consideration of the adjacency polynomials can be motivated with the following
result given in the aforementioned paper.

Theorem 2.5 [17]
Let u be a vertex of a graph Γ, with local mesh of eigenvalues Mu = {λ > µ1 >

· · · > µdu}. Let P be a polynomial of degree k, 0 ≤ k ≤ du, such that ‖P‖u ≤ 1.
Then

P (λ) ≤ 1
νu

P (λ) ≤ 1
νu

‖ρNk(u)‖, (8)

and equality is attained if and only if

Peu =
1

‖ρNk(u)‖Peu =
1

‖ρNk(u)‖ρNk(u), (9)

in which case ‖P‖u = 1. Moreover, if this is the case and k = du −1, ε(u) = du, then
Γ is pseudo-distance-regular around vertex u. 2

This result leads, in a natural way, to the study of the polynomials which optimize
the result in (8), so that they are the only possible candidates to satisfy (9). In other
words, we are interested in finding the polynomial(s) P of degree ≤ k such that
‖P‖u ≤ 1 and P (λ) is maximum. The study of these polynomials, called the (u-
)local adjacency polynomials and denoted by Qu

k , 0 ≤ k ≤ du, was done in [17] , and
their basic properties are the following:

(d.1) There exists a unique local adjacency polynomial Qu
k , with dgr Qu

k = k, for any
k = 0, 1, . . . , du, and ‖Qu

k‖u = 1;

(d.2) The local adjacency polynomials of degrees 0, 1, and du, and their values at λ,
are the following:

• Qu
0 = 1; Qu

0(λ) = ‖eu‖ = 1;

• Qu
1 = 1√

λ2
δ(u)+1

(√
λ

δ(u)x + 1
)
; Qu

1(λ) =
√

λ2

δ(u) + 1

• Qu
du

= ‖ν‖
νuπ0

∏du
i=1(x − µi), where π0 =

∏du
i=1(λ − µi); Qu

du
(λ) = 1

νu
‖ν‖;

(d.3) In general, the local adjacency polynomials can be computed from the local
proper orthogonal system {pu

k} in the following way:
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• Qu
k = 1√

qu
k
(λ)

qu
k (0 ≤ k ≤ du), where qu

k :=
∑k

l=0 pu
l ;

(d.4) 1 = Qu
0(λ) < Qu

1(λ) < · · · < Qu
du

(λ) = 1
νu

‖ν‖;

(d.5) The local adjacency polynomials are orthogonal with respect to the scalar prod-
uct

〈f, g〉?
u :=

du∑
i=1

(λ − µi)mu(µi)f(µi)g(µi) = λ〈f, g〉u − 〈xf, g〉u.

(d.6) The polynomial Hu := ‖ν‖
νu

Qu
du

satisfies

(Hu(A))uv = (Hu(A))vu =
νv

νu

(v ∈ V )

and, hence, it locally generalizes to nonregular graphs the Hoffman polynomial
H of a regular graph [30] satisfying H(A) = J .

Then, using the adjacency polynomials, the basic inequality (8) reads νuQ
u
k(λ) ≤

‖ρNk(u)‖ or, in terms of both the weight k-excess e?
k(u) = ‖ν‖2 −‖ρNk(u)‖2 and the

sum polynomials qu
k (note that, by (d.3), Qu

k(λ)2 = qu
k (λ)),

e?
k(u) ≤ Ek := ‖ν‖2 − ν2

uq
u
k (λ) (10)

where the bound Ek(≥ 0) could be called the spectral weight k-excess of vertex u.
In the next subsection we show that a similar bound, computed by using only the
(global) spectrum of the graph, also applies for some vertex. Moreover, since the
k-excess ek(u) is an integer, ek(u) ≤ e?

k(u), the inequality (10 ) gives the following
corollary (see [16]

).

Corollary 2.6 Let u be a vertex of a graph Γ, with eccentricity ε(u) and local adja-
cency polynomials Qu

k, 0 ≤ k ≤ du. Then

Qu
k(λ) >

1
νu

√
‖ν‖2 − 1 ⇒ ε(u) ≤ k.

The following simple example is also drawn from [16] :

Example 2.7 Let Γ be the graph obtained from K4 by deleting an edge. Then Γ has
spectrum and positive eigenvector

S(Γ) = {1
2(1 +

√
17), 0, −1, 1

2(1 − √
17)}, ν = (1, 1

2(1 +
√

17), 1, 1
2(1 +

√
17))>,

respectively (the 1 entries of ν correspond to the vertices of degree 2). Then, ‖ν‖2 =
17+

√
17

4 and, if u is a vertex of degree 3 we get, from (b.2),

Qu
1 =

(
√

17 + 1)x + 12√
198 + 6

√
17

giving Qu
1(λ) = 1.6833 . . . Therefore, since 1

νu

√
‖ν‖2 − 1 = 1.6154 . . ., Corollary

2.6gives e(u) = 1.
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2.4 The regular case

Let Γ = (V, E) be a graph with n vertices and m edges. Then we say that Γ is
(u-)locally regular if vertex u has degree δ(u) = 2m

n
. Thus, Γ is regular iff it is u-

locally regular for every u ∈ V . Similarly, we say that a graph Γ with spectrum S(Γ) =
{λ0, λ

m1
1 , . . . , λmd

d } is (u-)locally spectrum-regular when the u-local multiplicities of
each eigenvalue satisfy

mu(λi) =
mi

n
mu(λi) =

mi

n
(0 ≤ i ≤ d). (11)

(Thus, du = d.) Note that, from property (b.3) with k = 2, if Γ is u-locally spectrum-
regular then Γ is also u-locally regular. Associated to the values in (11) we can now
consider what we call the average scalar product:

〈f, g〉Γ :=
d∑

i=0

mi

n
f(λi)g(λi), (12)

since it is the average over V of the local scalar products 〈f, g〉u:

1
n

∑
u∈V

〈f, g〉u =
1
n

∑
u∈V

d∑
i=0

mu(λi)f(µi)g(µi)

=
d∑

i=0
f(µi)g(µi)

1
n

∑
u∈V

mu(λi) = 〈f, g〉Γ (13)

where we have used property (b.2). Therefore, since 〈f, g〉u = (f(A)g(A))uu, an
alternative definition of this scalar product would be 〈f, g〉Γ = 1

n
tr(f(A)g(A)).

Since the weight function of such a scalar product is also normalized,
∑d

i=0
mi

n
= 1,

we can also consider its corresponding proper and adjacency polynomials, denoted
by pk and Qk, 0 ≤ k ≤ d, respectively, which will be called the average (proper and
adjacency) polynomials. Using them we can now give the following new result.

Theorem 2.8 Let Γ = (V, E) be a graph on n vertices, with spectrum S(Γ) =
{λ, λm1

1 , . . . , λmd
d }. Then, for each given k, 0 ≤ k ≤ d, there exists a vertex u ∈ V

such that the average adjacency polynomial of Γ satisfies ‖Qk‖u ≤ 1 and

‖ρNk(u)‖ ≥ νuQk(λ). (14)

If equality is attained, then Qk = Qu
k and

ρNk(u) = ‖ρNk(u)‖Qkeu. (15)

Moreover, if k = d−1 and ε(u) = d, then Γ is u-locally spectrum-regular and pseudo-
distance-regular around u.

Proof. We know that the average adjacency polynomial satisfies ‖Qk‖Γ = 1.
Then, from (13) with f = g = Qk,∑

u∈V

‖Qk‖2
u = n‖Qk‖2

Γ = n.
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Hence, there must be some vertex, say u, for which ‖Qk‖u ≤ 1, and Theorem 2.5
gives the lower bound 14 for ‖ρNk(u)‖. If such a bound is attained, then, by the
same theorem and property (d.1), the polynomial Qk must coincide with the u-
local adjacency polynomial Qk = Qu

k , ‖Qk‖u = 1, and (15) holds. Furthermore, if
k = d − 1 = ε(u) − 1, we must have du = d, since d = ε(u) ≤ du ≤ d, and hence
property (d.3) gives Qu

d = ‖ν‖
νuπ0

∏d
i=1(x − λi) = Qd. Thus, applying property (d.2) we

have, for k = d − 1, d,

qu
k =

√
Qu

k(λ)Qu
k =

√
Qk(λ)Qk = qk,

and hence pu
d = qu

d − qu
d−1 = qd − qd−1 = pd. Consequently, we infer from (4) that

the “weight functions” of both the local and average scalar products must coincide,
mu(λi) = mi

n
, 0 ≤ i ≤ d, and Γ is u-locally spectrum-regular. Finally, Theorem 2.5

assures that Γ is also pseudo-distance-regular around vertex u. 2

Note that, in general, the vertex u depends on the value of k. Two straightforward
consequences of the above theorem are the following.

Corollary 2.9 Let Γ be a graph as above. Then, for each given 0 ≤ k ≤ d, there
exists a vertex u ∈ V with weight k-excess

e?
k(u) ≤ ‖ν‖2 − ν2

uQ
2
k(λ)

where Qk is the average adjacency polynomial.

Proof. Use the definition of e?
k(u) and (14). 2

Corollary 2.10 Let Γ be a graph as above, with radius r(Γ) and average adjacency
polynomial Qk. Then,

Q2
k(λ) > ‖ν‖2 − 1 ⇒ r(Γ) ≤ k.

Proof. Using the hypothesis and Corollary 2.9, we infer that there exist a vertex
u such that such that e?

k(u) ≤ ‖ν‖2 − ν2
uQ

2
k(λ) ≤ ‖ν‖2 − Q2

k(λ) < 1. Therefore, since
ek(u) ≤ e?

k(u), we must have ek(u) = 0 and hence r(Γ) ≤ ε(u) ≤ k. 2

Note the similarity between the above result and Corollary 2.6.

3 Partially walk-regular graphs

Given an integer τ > 0, a graph Γ is said to be τ -partially walk-regular if the number
Ck(u) = (Ak)uu of closed walks of length k, 0 ≤ k ≤ τ , through a vertex u ∈ V
does not depend on u. For instance, every δ-regular graph with girth g is (g − 1)-
partially walk-regular, since in this case, for any u ∈ V and 0 ≤ k ≤ g − 1, we have
Ck(u) = Ψ(k), where Ψ(k) denote the number of closed walks of legth k which go
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through the root of a (internally) δ-regular tree of depth ≥ k/2 (hence, Ψ(k) = 0 if k
is odd.) Notice that, since I, A, . . . ,Ad is a basis for A(A), if Γ is τ -partially walk-
regular with τ ≥ d, then all the matrices in such a basis have constant diagonal, and
hence Γ is τ -partially walk-regular for any integer τ . In this case Γ is simply called
walk-regular, a concept introduced by Godsil and McKay [25] . These authors proved
that walk-regular graphs are also characterized by the fact that all the subgraphs
obtained by removing a vertex from Γ are cospectral, see also Godsil [24] . As it
is easy to show, examples of walk-regular graphs are the vertex-transitive and/or
distance-regular graphs.

Let Γ be a τ -partially walk-regular graph with τ < d, and adjacency matrix A.
Consider two polynomials f, g such that dgr f +dgr g ≤ τ . Then, as (Al)uu = 〈xl, 1〉u,
0 ≤ l ≤ τ , does not depend on u, neither does 〈f, g〉u = (f(A)g(A))uu and then

〈f, g〉u =
1
n

tr(f(A)g(A)) = 〈f, g〉Γ.

As a consequence, when k ≤ b τ
2c, the local proper and adjacency polynomials, pu

k

and Qu
k , are independent of the chosen vertex u and coincide with the corresponding

average polynomials pk and Qk, respectively (in this case we simply speak about
the “proper and adjacency polynomials.”) On the other hand, if τ ≥ d, then Γ is
walk-regular, and the above conclusion applies for any 0 ≤ k ≤ d.

3.1 Spectrum-regular graphs

Walk-regular graphs have also shown to be equivalent to spectrum-regular graphs.
See, for instance, Delorme and Tillich [14] or Garriga and the author [16] . A graph
Γ = (V, E), with spectrum S(Γ) = {λ, λm1

1 , . . . , λmd
d }, is called spectrum-regular when

it is u-locally spectrum-regular for every u ∈ V . Then all its vertices have the same
local spectrum and, in particular, du = d, for any u ∈ V . Also, ν = j and the graph
must be regular.

From the above comments, notice that a graph with girth g and d ≤ g−1 is walk-
regular and hence spectrum-regular. In fact, if the graph is regular we can slightly
relax the condition, as the following result shows.

Lemma 3.1 A δ-regular graph Γ with d distinct eigenvalues and girth g ≥ d is
spectrum-regular.

Proof. From the above, Γ is τ -partially walk-regular with τ = g − 1 ≥ d − 1.
Moreover, as J = H(A), where H = n

π0

∏d
i=1(x−λi) = qd is the Hoffman polynomial

[30] , we have that I, A, . . . ,Ad−1, J is also a basis for A(A) and therefore Γ is
walk-regular. Consequently, Γ is spectrum-regular and the proof is complete.

Alternatively, we can consider the linear system

d∑
i=0

mu(λi)λk
i = Ψ(k) (0 ≤ k ≤ d − 1)
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with mu(λ0) = 1
n

and unknowns mu(λi), 1 ≤ i ≤ d, which has a unique solution
(independent of u ∈ V .) 2

In particular, since g ≥ 3 always holds, we have that any regular graph with four
distinct eigenvalues is spectrum-regular, a result already used by Van Dam in [10] .

Generalizing some results of Haemers and Van Dam [12] (for d = 3), and Garriga,
Yebra, and the author [20] (for |Γd(u)| = 1), Garriga and the author [17] showed
that the following numeric condition is sufficient to assure spectrum-regularity and,
in fact, constitutes a characterization of distance-regularity (to be compared with the
result of Theorem 2.4.)

Theorem 3.2 [17]
Let Γ = (V, E) be a regular graph on n vertices, with spectrum S(Γ) =

{λ, λm1
1 , . . . , λmd

d } and average proper polynomials p0, p1, . . . , pd. Then Γ is distance-
regular if and only if the number of vertices at distance d from every vertex u ∈ V
is

|Γd|Γd(u)| = pd(λ) =
n

π2
0
∑d

i=0
1

miπ2
i

(16)

where πi =
∏d

j=0(j 6=i) |λi − λj|. 2

3.2 Bounds

The particularization of Theorem 2.8and its corollaries to partially walk-regular (or,
in particular, spectrum-regular) graphs gives the following result.

Theorem 3.3 Let Γ = (V, E) be a τ -partially walk-regular graph on n vertices, with
spectrum S(Γ) = {λ, λm1

1 , . . . , λmd
d }. Let Qk be the adjacency polynomial of Γ (with

k ≤ b τ
2c if τ < d.) Then,

(a) |Nk(u)| ≥ Q2
k(λ); ek(u) ≤ n − Q2

k(λ), for every u ∈ V ;

(b) |Γd(u)| = ed−1(u) ≤ n − Q2
d−1(λ) =

n

π2
0
∑d

i=0
1

miπ2
i

, for every u ∈ V (τ ≥ d);

(c) Q2
k(λ) > n − 1 ⇒ D(Γ) ≤ k. 2

When Γ is spectrum-regular, the above statements were already given in [16] ,
[17] . Moreover, when d = 3 Theorem 3.3(b) proves a conjecture of Haemers [29]
(see also [12] ) about the number of vertices at distance two from every vertex of a
regular graph with four distinct eigenvalues.

Corollary 3.4 Let Γ = (V, E) be a δ-regular graph with four distinct eigenvalues,
S(Γ) =
{λ, λm1

1 , λm2
2 , λm3

3 }. Then, the number of vertices at distance two from every vertex
u ∈ V is lower-bounded by

|Γ2(u)| ≥ n − 1 − δ − n

π2
0
∑3

i=0
1

miπ2
i
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where πi =
∏3

j=0(j 6=i) |λi − λj|.

Proof. For every vertex u ∈ V we have |Γ2(u)| = n − 1 − δ − |Γ3(u)|. Hence,
since Γ is spectrum-regular by Lemma 3.1, the result follows from Theorem 3.3(b).

3.3 Partially distance-regular graphs

An example of partially walk-regular graphs are those graphs bearing a ‘partial
distance-regularity’ around every one of their vertices, studied in [35] . More pre-
cisely, a graph Γ, with adjacency matrix A and d + 1 distinct eigenvalues, is said to
be (d′-)partially distance-regular if, for any 0 ≤ k ≤ d′, there exist a polynomial pk

of degree k such that pk(A) = Ak, the k-th distance matrix of Γ. In fact, any d′-
partially distance-regular graph is also (2d′)-partially walk-regular and, as expected,
the above polynomials pk are again the proper polynomials, see [16] .

By way of example, note that a graph is 1-partially distance-regular iff it is regular.
At the other extreme, a (d − 1)-partially distance-regular graph is also d-partially
distance-regular (since Ad = J −∑d−1

k=0 Ak = (H − qd−1)(A),) which is the same as
distance-regular. When Γ is a regular graph with girth g, simple reasoning shows
that it is d′-partially distance-regular graph with d′ ≥ bg−1

2 c, see Biggs [4] ,[3] . In
the case of odd g, say g = 2r + 1, Biggs [3] proved that the r-excess of any vertex u
satisfies

er(u) ≥ ‖qr‖∞ (17)

where qr =
∑r

k=0 pk and ‖qr‖∞ := max1≤i≤d{|qr(λi)|}. In fact, the same reasoning
used in that paper proves that (17) also applies for an r-partially distance-regular
graph. As a conclusion note that, from Theorem 3.3(a) and the above comments,
the k-excess of any vertex of a k-partially distance-regular graph satisfies

‖qk‖∞ ≤ ek(u) ≤ n − qk(λ).

As another consequence of Theorem 2.5, we can give the following characterization
of d′-partially distance-regular graphs.

Theorem 3.5 Let Γ be a regular graph, with spectrum S(Γ) = {λ, λm1
1 , . . . , λmd

d },
and average proper polynomials pk, 0 ≤ k ≤ d, with leading coefficients ak. Then Γ is
d′-partially distance-regular if and only if, for any 2 ≤ k ≤ d′, the number of vertices
at distance k from every vertex is nk = pk(λ).

Proof. We only prove sufficiency. From the hypothesis, the average adjacency
polynomials Qk = 1√

qk(λ)
qk (see property (d.2)) satisfy

Qk(λ) =
√

qk(λ) =
√

|Nk(u)| = ‖ρNk(u)‖

for every u ∈ V and 0 ≤ k ≤ d′ (the cases k = 0, 1 are trivial.) Then, by the converse
of Theorem 2.5 , it must be ‖Qk‖u ≥ 1. On the other hand, in the proof of Theorem
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2.8 we have seen that
∑

u∈V ‖Qk‖2
u = n. Consequently, we must have ‖Qk‖u = 1 and,

using again Theorem 2.5 , we infer that

Qkeu =
1

‖ρNk(u)‖ρNk(u) =
1√

|Nk(u)|
ρNk(u),

or pkeu = ρΓk(u) for every u ∈ V and 0 ≤ k ≤ d′. But this is equivalent to
pk(A) = Ak, for any 0 ≤ k ≤ d′, and Γ is d′-partially distance-regular. 2

4 Bounding Special Vertex Sets

Let Γ = (V, E) be a regular graph with four distinct eigenvalues, so that Γ is spectrum-
regular and D(Γ) ≤ 3. Generalizing the work of Haemers and Van Dam [12] about
distance-regular graphs with diameter three to 3-class association schemes, the latter
author [10] studied some bounds for the number of non-adjacent vertices to a (generic)
vertex u ∈ V , that have a fixed number µ of common neighbours with u. The best
bound he gave generalized that conjectured by Haemers in [29] —since for µ = 0
such a number clearly is |Γ3(u)|. Van Dam showed that such a bound applied when
Γ satisfied some additional conditions, and conjectured that this was always the case.
Moreover he showed that the bound was attained for every vertex if and only if Γ
is the (connected) graph of a 3-class association scheme. Following these work, and
using again the proper and adjacency polynomials, in this section we study bounds
for the more general vertex subsets Γµ

k(u), defined below. Also, the “extremal cases”
are characterized. When the results are particularized to spectrum-regular graphs, a
proof of Van Dam’s conjecture is obtained.

Let u ∈ V be a vertex with eccentricity ε(u) = ε. Given the integers k, µ such
that 0 ≤ k ≤ ε and µ ≥ 0, let Γµ

k(u) denote the set of vertices which are at distance
at least k from u ∈ V and there exist exactly µ (shortest) k-paths from u to each of
such vertices. Note that Γ0

k(u) = V \ Nk(u), and if µ 6= 0, then Γµ
k(u) contains only

vertices at distance k from u, so that we get the partition Γk(u) = ∪µ≥1Γ
µ
k(u). The

next theorem gives an upper bound for ‖ρΓµ
k(u)‖2, and hence also for the cardinality

of Γµ
k(u).

Theorem 4.1 Let u be a vertex of a graph Γ, with eccentricity ε(u) = ε, and local
mesh of eigenvalues Mu = {λ > µ1 > · · · > µdu}. Let P be a polynomial of degree
k < du with leading coefficient ck such that νuP (λ) = 1 + ‖ν‖2ckµ. Then, for any
given integer µ > 0,

‖ρΓµ
k(u)‖2 ≤ ‖ν‖2 (‖ν‖2‖P‖2

u − ν2
uP

2(λ))
1 + ‖ν‖2‖P‖2

u − ν2
uP

2(λ)
, (18)

where the equality is attained if and only if nµ
k := |Γµ

k(u)| = ‖ρΓµ
k(u)‖2 and either

(a) when k = ε:

Peu =
νuP (λ)(‖ν‖2 − nµ

ε ) + nµ
ε

‖ν‖2(‖ν‖2 − nµ
ε )

ν − 1
‖ν‖2 − nµ

ε
ρΓµ

ε (u) ; (19)
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(b) when k < ε:

Peu = − 1
‖ν‖2 − nk

Peu = − 1
‖ν‖2 − nk

ρVk , (20)

where Vk = Γk(u) = Γµ
k(u) and

nk := |Vk| =
‖ν‖2νuP (λ)
νuP (λ) − 1

, (21)

in which case
‖P‖2

u

P (λ)
= νuckµ. (22)

Proof. First, let P be any polynomial with degree k < du and assume µ ≥ 0
(µ > 0 if k = ε.) Let U := Γµ

k(u). From the following spectral decompositions of
ρu = νueu and ρU =

∑
v∈U νvev:

ρu =
ν2

u

‖ν‖2ν + z, ρU =
‖ρU‖2

‖ν‖2 ν + z′

where z, z′ ∈ ν⊥, we obtain Pρu = ν2
uP (λ)
‖ν‖2 ν + Pz and so

‖Pz‖2 = ‖Pρu‖2 − ν4
uP

2(λ)
‖ν‖2 = ν2

u

(
‖P‖2

u − ν2
uP

2(λ)
‖ν‖2

)
; (23)

‖z′‖2 = ‖ρU‖2

(
1 − ‖ρU‖2

‖ν‖2

)
. (24)

Hence,

ckµνu‖ρU‖2 ≥ ckµνu

∑
v∈U

νv = 〈Pρu, ρU〉 =
〈

ν2
uP (λ)
‖ν‖2 ν + Pz,

‖ρU‖2

‖ν‖2 ν + z′
〉

=
ν2

u‖ρU‖2

‖ν‖2 P (λ) + 〈Pz, z′〉 ≥ ν2
u‖ρU‖2

‖ν‖2 P (λ) − ‖Pz‖‖z′‖

=
ν2

u‖ρU‖2

‖ν‖2 P (λ) − νu‖ρU‖2

√√√√(‖P‖2
u − ν2

uP
2(λ)

‖ν‖2

)(
1

‖ρU‖2 − 1
‖ν‖2

)

Simplifying and rearranging the terms, we get

‖ν‖2

‖ρU‖2 ≥ (νuP (λ) − ‖ν‖2ckµ)2

‖ν‖2‖P‖2
u − ν2

uP
2(λ)

+ 1, (25)

where

Φ := ‖ν‖2‖P‖2
u − ν2

uP
2(λ) =

du∑
i=1

mu(µi)P 2(µi) > 0
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since mu(λ) = ν2
u

‖ν‖2 and dgr P < du. (Notice that
√

Φ can be seen as the norm of P ,
associated to an scalar product defined on the reduced local mesh M?

u := {µ1 > · · · >
µdu}.) Then, solving for ‖ρU‖2 in (25), we obtain the inequality

‖ρΓµ
k(u)‖2 ≤ ‖ν‖2‖P‖2

u − ν2
uP

2(λ)
‖ν‖2c2

kµ
2 − 2νuP (λ)ckµ + ‖P‖2

u

. (26)

which, in the case µ = 0 (k < ε), particularizes to

‖ρΓ0
k(u)‖2 = ‖ν‖2 − ‖ρNk(u)‖2 ≤ ‖ν‖2 − ν2

u

P 2(λ)
‖P‖2

u

,

so that
P (λ)
‖P‖u

≤ 1
νu

‖ρNk(u)‖

and, when ‖P‖u ≤ 1, we get the bound (8) of Theorem 2.5. Consequently, as stated
in the hypotheses of the theorem, it suffices to study the case µ > 0. Furthermore,
notice that the upper bound in (26) is invariant under multiplication of P by a
constant, and when νuP (λ) = ‖ν‖2ckµ such a bound takes the trivial value ‖ν‖2.
Thus, assuming νuP (λ) − ‖ν‖2ckµ 6= 0, we can choose, without loss of generality,
the polynomial P in such a way that P (λ) = (1 + ‖ν‖2ckµ)/νu. In this case, (25)
becomes

‖ν‖2

‖ρU‖2 ≥ 1
‖ν‖2‖P‖2

u − ν2
uP

2(λ)
+ 1, (27)

whence (18) follows.
Moreover, if such a bound is attained, then all the inequalities in the above proof

must be equalities, whence we get two main consequences. First, (recall that now
µ 6= 0) we have ‖ρU‖2 =

∑
v∈U ν2

v =
∑

v∈U νv, so that νv = 1 for all v ∈ U , whence
‖ρU‖2 = |ρU |. Second, we must have cos{Pz, z′} = −1, and therefore, using (23),
(24), and the spectral decomposition of ρU , we can compute Pz in the following
manner:

Pz = −‖Pz‖
‖z′‖ z′ = −

νu

√
‖P‖2

u − ν2
uP 2(λ)
‖ν‖2√

|U |
(
1 − |U |

‖ν‖2

)
(
ρU − |U |

‖ν‖2ν

)

=
−νu

‖ν‖2 − |U |
(
ρU − |U |

‖ν‖2ν

)

Using the above expression in the spectral decomposition of Pρu, we get

Pρu =
ν2

uP (λ)
‖ν‖2 ν + Pz =

ν2
uP (λ)
‖ν‖2 ν − νu

‖ν‖2 − |U |
(
ρU − |U |

‖ν‖2ν

)

so that, denoting the multiplicative constants of ν and ρU by βk and γk, respectively,

Peu = βkν + γkρU =
νuP (λ)(‖ν‖2 − |U |) + |U |

‖ν‖2(‖ν‖2 − |U |) ν − 1
‖ν‖2 − |U |ρU. (28)
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This gives (19) when k = ε (with nµ
ε = |U |) which, using the value of νuP (λ), can

also be written as

Peu = βεPeu = βεν + γερΓµ
ε (u) =

1 + ckµ(‖ν‖2 − nµ
ε )

‖ν‖2 − nµ
ε

ν − 1
‖ν‖2 − nµ

ε
ρΓµ

ε (u). (29)

From this last expression, we get that if v ∈ Γµ
ε (u), then νv = (ρΓµ

ε (u))v = 1
and (Peu)v = βε − γε = ckµ (as it should be.) Otherwise, if v /∈ Γµ

ε (u), we have
(ρΓµ

ε (u))v = 0 and hence (Peu)v = βενv. In particular, if v ∈ Γε(u) \ Γµ
ε (u), it must

be (Peu)v = ckµv, where µv ≥ 0 is the number of ε-paths from u to v. Thus,

µv =
βε

ck

νv (30)

and such a number shows to be proportional to νv.
Let us now turn our attention to the case k < ε. Then, we clearly have (P (A))uv =

(Peu)v = 0 for any vertex v such that ∂(u, v) ≥ k. Hence, we must have βk = 0 in
(28) and, therefore, Peu = γkρU . Furthermore, (P (A))uv 6= 0 for all v ∈ Γk(u) = Vk,
and therefore U must be the whole set Vk, giving (20). The value of nµ

k = nk, given
in (21), is obtained from the equation βk = 0. Finally, condition (22) comes from
equating such a value of nk to the upper bound in (18). 2

From the above proof, note that (18) also applies when dgr P = du, provided that
P (µi) 6= 0 for some 1 ≤ i ≤ du (so that Φ > 0.)

As in the case of Theorem 2.5, the above theorem suggests studying the polyno-
mials which achieve the best bound in (18). Here, too, it turns out that the proper
polynomials are of valuable help, as the next result shows.

Theorem 4.2 Let u be a vertex of a graph Γ, with local spectrum Su(Γ) =
{λmu(λ), µ

mu(µ1)
1 , . . . , µ

mu(µdu )
du

}, and positive eigenvector ν, and let pu
k, 0 ≤ k ≤ du, be

the local proper polynomials. Let ak denote the leading coefficient of pu
k, and consider

the sum polynomials qu
k =

∑k
l=0 pu

l . For any given integers µ > 0 and 0 ≤ k < du, con-
sider the spectral weight k-excess Ek = ‖ν‖2 −ν2

uq
u
k (λ), and define σk(µ) := νuakµ−1.

Then,

‖ρΓµ
k(u)‖2 ≤ pu

k(λ)Ek

pu
k(λ)σk(µ)2 + a2

kµ
2Ek

, (31)

and equality is attained if and only if ‖ρΓµ
k(u)‖2 = nµ

k , and either

(a) when k = ε:
P ∗eu = β∗

εν + γ∗
ερΓµ

ε (u), (32)

with the polynomial

P ∗ := aεµEεp
u
ε + pu

ε (λ)σε(µ)νuq
u
ε (33)

and constants

β∗
ε := pu

ε (λ)σε(µ), γ∗
ε := pu

ε (λ)σε(µ)2 + a2
εµ

2Eε; (34)
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(b) when k < ε:

pu
keu =

1
νu

pu
keu =

1
νu

ρVk , (35)

in which case
nµ

k = nk = ν2
up

u
k(λ). (36)

Proof. Let us consider a generic polynomial P =
∑k

l=0 αlp
u
l , αl ∈ R. Since

P must have leading coefficient ck = αkak, we impose the condition P (λ) = (1 +
αkaknµ)/νu, and hence

P =
k∑

l=1

αlp
u
l +

1 + αkaknµ

νu

−
k∑

l=1

αlp
u
l (λ); (37)

‖P‖2
u =

k∑
l=1

α2
l p

u
l (λ) +

(
1 + αkaknµ

νu

−
k∑

l=1

αlp
u
l (λ)

)2

. (38)

Therefore, looking at (27), our aim is to minimize the function

Φ = Φ(α1, . . . αk) = ‖ν‖2‖P‖2
u − ν2

uP
2(λ) = ‖ν‖2‖P‖2

u − (1 + ‖ν‖2αkakµ)2

with ‖P‖2
u given by (38) (remember that Φ is the square of a norm on the mesh M?

u.)
Then, the minimum is attained when

α1 = α2 = · · · = αk−1 =
νup

u
k(λ)(1 − νuakµ)

∆
,

αk =
νup

u
k(λ) − akµ(‖ν‖2 − ν2

uq
u
k−1(λ))

∆
,

where
∆ = ν2

uq
u
k−1(λ)(pu

k(λ) − a2
kµ

2‖ν‖2) + (νup
u
k(λ) − akµ‖ν‖2)2

or, using qu
k−1(λ) = qu

k (λ) − pu
k(λ) and the definitions of Ek and σk(µ),

α1 = α2 = · · · = αk−1 = −νup
u
k(λ)σk(µ)

∆
,

αk =
νup

u
k(λ) − akµEk

∆
,

with
∆ = (‖ν‖2a2

kµ
2 − pu

k(λ))Ek + ‖ν‖2pu
k(λ)σk(µ)2.

Then, such a minimum turns out to be

Φmin =
pu

k(λ)Ek

∆

and, according to (18), the upper bound in (31) comes from ‖ν‖2 Φmin
1+Φmin

. This bound
corresponds to using in (26) the polynomial (37) with the above values of the coef-
ficients αl, 1 ≤ l ≤ k. Namely,

P = − 1
∆

(akµEkp
u
k + νup

u
k(λ)σk(µ)qu

k ) . (39)
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When the equality is attained, we can use the values of P (λ) and nµ
k = |Γµ

k(u)| to
compute the multiplicative constants of ν and ρΓε

k(u) in (28), which turn out to be

βk = − 1
∆

pu
k(λ)σk(µ) and γk = − 1

∆

(
pu

k(λ)σk(µ)2 + a2
kµ

2Ek

)

respectively, thus giving
P ∗eu = β∗

kν + γ∗
kρΓµ

k(u) (40)

with P ∗ = −∆P , β∗
k = −∆βk and γ∗

k = −∆γk. Now, from these facts we can reason
as in Theorem 4.1to obtain the claimed results for the cases k = ε and k < ε. Thus,
in the former case, (40 )becomes (32) and, if v ∈ Γε(u) \ Γµ

ε (u), the number µv of
ε-paths from u to v is obtained from

νvβ
∗
ε = νvp

u
ε (λ)σε(µ) = c∗

εµv, (41)

where c∗
ε stands here for the leading coefficient of P ∗, that is

c∗
ε = aε (aεµEε + νup

u
ε (λ)σε(µ)) .

Finally, in the case k < ε, the only real solution obtained when we solve Eq. (22) for
µ turns out to be µ = 1

akν
, and hence σk(µ) = 0. (More simply, the same conclusions

are reached from the equation β∗
k = 0.) Substituting these values into (40) and the

bound in (31) we get ( 35 ) and ( 36 ) , respectively, in concordance with (6). 2

Notice that, as in the case of Theorem 4.1, the bound (31) also applies when
µ = 0, giving ‖ρΓ0

k(u)‖2 = e?
k(u) ≤ Ek, in concordance with (10).

If Γ is regular, the above results take a more simple form since, from ν = j, we
have ‖ν‖2 = n and ‖ρΓµ

k(u)‖2 = nµ
k . Moreover, when the corresponding bound (31)

is attained for k = ε, the value of µv in (41) becomes a constant, say µ′, for every
vertex v ∈ Γε(u) \ Γµ

ε (u). Namely,

µ′ =
β∗

ε

c∗
ε

=
pu

ε (λ)σε(µ)
aεpu

ε (λ)σε(µ) + a2
εµEε

. (42)

Consequently, we get the partition Γε(u) = Γµ
ε (u) ∪ Γµ′

ε (u). In this case, a more
compact way of giving the above relation between µ and µ′ is

pu
ε (λ)σε(µ)σε(µ′) = Eεa

2
εµµ′ ,

showing the symmetry between both parameters. Notice that, in particular, it might
be µ′ = 0, in which case β∗

ε = pu
ε (λ)σε(µ) = 0, and we would get the same conse-

quences as in the case k < ε.
The two following corollaries are straightforward consequences of Theorem 4.2.

Corollary 4.3 Let u be a vertex of a graph Γ, with eccentricity ε(u) and local proper
polynomials pu

k. Then, for k < du,
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(a) ‖ρΓk(u)‖2 ≤ pu
k(λ)Ek

∑
µ≥1

1
pu

k(λ)σk(µ)2 + a2
kµ

2Ek

;

(b) min
µ≥1

{pu
k(λ)σk(µ)2 + a2

kµ
2Ek} > pu

k(λ)Ek ⇒ ε(u) < k.

Proof. (a) is a direct consequence of the theorem and ‖ρΓk(u)‖2 =
∑

µ≥1 ‖ρΓµ
k(u)‖2.

To prove (b) notice that, from nµ
k ≤ ‖Γµ

k(u)‖2 and the given condition, we get

nµ
k ≤

⌊
pu

k(λ)Ek

pu
k(λ)σk(µ)2 + a2

kµ
2Ek

⌋
< 1

for any µ ≥ 1. Thus, nk = 0 and the result follows. 2

Corollary 4.4 Let u be a vertex of a graph Γ, with eccentricity ε(u) = ε, and local
proper polynomial pu

k with degree k < ε and leading coefficient ak. Then, (35) holds,
that is pu

keu = 1
νu

ρVk, with ‖ρVk‖2 = |Vk|, if and only if the quotient 1/νuak is an
integer, say µ, and the number nk = |Vk| of vertices at distance k from u is given by
(36): nk = nµ

k = ν2
up

u
k(λ).

Proof. Assuming that (35) holds and ‖ρVk‖2 = |Vk|, we have

νup
u
k(λ) = 〈eu, p

u
k(λ)ν〉 = 〈pu

keu, ν〉 =
1
νu

〈ρVk, ν〉 =
1
νu

‖ρVk‖2 =
nk

νu

and, for any vertex v ∈ Vk,

(Ak)uv = 〈Akeu, ev〉 =
1
ak

〈pu
keu, ev〉 =

1
akνu

〈ρVk, ev〉 =
1

akνu

.

Hence, nk is given by (36), and 1/akνu is an integer. Conversely, if such is the case,
then the upper bound in (31) for µ = 1/νvak becomes ν2

up
u
k(λ), and Theorem 4.2

(k < ε) applies. 2

When the considered graph is partially walk-regular, and the equality is attained
for all vertices, the results of Theorem 4.2look much better, as it is shown next.

Theorem 4.5 Let Γ = (V, E) be a τ -partially walk-regular graph on n vertices, with
adjacency matrix A and spectrum S(Γ) = {λ, λm1

1 , . . . , λmd
d }. Let pk be the proper

polynomial with degree k ≤ b τ
2c if τ < d, or k ≤ d−1 otherwise, and leading coefficient

ak. Let qk =
∑k

l=0 pl, Ek = n − qk(λ) and, for a given integer µ, let σk(µ) = akµ − 1,
and denote by Aµ

k the adjacency matrix of Γµ
k . Then, for any u ∈ V ,

nµ
k ≤ pk(λ)Ek

pk(λ)σk(µ)2 + a2
kµ

2Ek

, (43)

and equality is attained for every vertex if and only if either
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(a) when k = ε:
P ∗(A) = β∗

εJ + γ∗
εA

µ
ε , (44)

with P ∗ = aεµEεpε + pε(λ)σε(µ)qε, β∗
ε = pε(λ)σε(µ), and γ∗

ε = pε(λ)σε(µ)2 +
a2

εµ
2Eε; in which case Aε = Aµ

ε + Aµ′
ε with

µ′ =
pε(λ)σε(µ)

aεpε(λ)σε(µ) + a2
εµEε

; (45)

(b) when k < ε:
pk(A) = Ak , nk = pk(λ). 2 (46)

Corollary 4.6 Let Γ = (V, E) be a τ -partially walk-regular graph as above, with
diameter D(Γ). Then, for k ≤ b τ

2c if τ < d, or k ≤ d − 1 otherwise,

(a) |Γk(u)| ≤ pk(λ)Ek

∑
µ≥1

1
pk(λ)σk(µ)2 + a2

kµ
2Ek

, for every u ∈ V ;

(b) min
µ≥1

{pk(λ)σk(µ)2 + a2
kµ

2Ek} > pk(λ)Ek ⇒ D(Γ) < k. 2

Corollary 4.7 Let Γ be a τ -partially walk-regular graph as above. Let k ≤ b τ
2c if

τ < d, or k ≤ d − 1 otherwise. Then, pk(A) = Ak if and only if 1/ak is an integer
and nk = pk(λ). 2

Let us now consider the case k = d − 1. Then we have

Ed−1 = n − qd−1(λ) = qd(λ) − qd−1(λ) = pd(λ)

and (43) becomes

nµ
d−1 ≤ pd−1(λ)pd(λ)

pd−1(λ)σd−1(µ)2 + a2
d−1µ

2pd(λ)
. (47)

When d = 3 the above result proves a conjecture of Van Dam [10] about the number
of non-adjacent vertices to any given vertex u ∈ V , which have µ common neighbours
with it. (Notice that, with our notation, such a number is just nµ

2 .)

Corollary 4.8 Let Γ be a regular graph with four distinct eigenvalues, and proper
polynomials pk with leading coefficients ak. Then, for any vertex u ∈ V , the number of
vertices non-adjacent to u, which have µ common neighbours with u, is upper-bounded
by

n2n
µ
2 ≤ p2(λ)p3(λ)

p2(λ)(a2µ − 1)2 + a2
2µ

2p3(λ)
. 2 (48)

Van Dam derived his bound without using the proper polynomials, thus obtaining
two involved (equivalent) expressions in terms of the eigenvalues and multiplicities,
which he denoted by h(Σ, µ) and g(Σ, µ) —with Σ denoting the spectrum. (He
proved that the bound applies when g(Σ, µ) is a non-negative integer, and conjectured
that this condition could be dropped.) The proof of the equivalence between such
expressions and our bound is a cumbersome, but straightforward, computation (just
use Gram-Schmidt method from 1, x, x2, x3 to obtain the proper polynomials.)
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Example 4.9 Let us consider a regular graph Γ with spectrum S(Γ) = {41, 23, 03, −25}.
Then n = 12, and its proper polynomials and their values at λ = 4 are:

• p0 = 1, 1;

• p1 = x, 4;

• p2 = 2
3(x

2 − x − 4), 16
3 ;

• p3 = 1
12(3x

3 − 8x2 − 16x + 20), 5
3 ;

Then, Corollary 4.8gives

nµ
2 ≤

⌊
20

7µ2 − 16µ + 12

⌋

and hence, for µ = 0, 1, 2, 3, 4, . . . we get the bounds 1, 6, 2, 0, 0, . . ., respectively. An
example of a graph with such a spectrum is the one given by Godsil in [24, Chap. 5]
(as an example of walk-regular graph which is neither vertex-transitive nor distance-
regular.) This graph can be constructed as follows: take two copies of the 8-cycle
with vertex set Z8 and chords {1, 5}, {3, 7}; joint them by identifying vertices with
the same even number and, finally, add edges between vertices labelled with equal odd
number. The automorphism group of this graph has two orbits, formed by even and
odd vertices respectively. Then, for an even vertex the values of nµ

2 are 1, 4, 2, 0, 0, . . .;
whereas for an odd vertex they turn out to be 0, 6, 1, 0, 0, . . .

In his thesis, Van Dam also proved and characterized the case when equality in
(48) is attained for every vertex, as stated in the next theorem.

Theorem 4.10 [10] Let Γ be a (connected) regular graph with four distinct eigenval-
ues, S(Γ) = {λ, λm1

1 , λm2
2 , λm3

3 }. Then, Γ is one of the classes of a 3-class association
scheme if and only if there exists an integer µ ≥ 0 such that the number nµ

2 attain
the bound in (48) for every vertex u.

In our context, a short proof of this theorem can be done by using Theorem 4.5.
The most difficult part in Van Dam’s proof is to show sufficiency, where interlacing
techniques are used. Within our approach we have that, if equality is attained for
every vertex, then either: Aµ

2 , A
µ′
2 ∈ A(A) by (44) when D = 2 (since J = H(A) and

Aµ′
2 = J−Aµ

2−A−I;) or A2, A3 ∈ A(A) by (46) when D = 3 (A3 = J−A2−A−I,)
in which case Γ is distance-regular. Then, the theory of association schemes assures
that, in both cases, Γ is indeed one of the classes of a 3-class association scheme.
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[24] C.D. Godsil, Algebraic Combinatorics. Chapman and Hall, 1993.

[25] C.D. Godsil and B.D. McKay, Feasibility conditions for the existence of walk-
regular graphs, Linear Algebra Appl. 30 (1980), 51–61.

[26] R.L. Graham, M. Grötschel, and L. Lovász, eds., Handbook of Combinatorics.
Elsevier Science, Amsterdam, 1995.

[27] W.H. Haemers, Eigenvalue Techniques in Design and Graph Theory, Math. Cen-
tre Tract 121, Mathematical Centre, Amsterdam, 1980.

[28] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226–
228 (1995) 593–616.

[29] W.H. Haemers, Distance-regularity and the spectrum of graphs, Linear Algebra
Appl. 236 (1996) 265–278.

[30] A.J. Hoffman, On the polynomial of a graph, Amer. Math. Monthly 70 (1963)
30–36.

[31] N. Kahale, Isoperimetric inequalities and eigenvalues, SIAM J. Discrete Math.
10, No. 1 (1997) 30–40.



the electronic journal of combinatorics 4 (1997), #R21 27

[32] B. Mohar, Eigenvalues, diameter and mean distance in graphs, Graphs Combin.
7 (1991) 53–64.

[33] A Neumaier, Completely regular codes, Discrete Math. 106/107 (1992) 353–360.

[34] A.F. Nikiforov, S.K. Suslov and V.B. Uvarov, Classical Orthogonal Polynomials
of a Discrete Variable. Springer-Verlag, Berlin, 1991.

[35] D.L. Powers, Partially distance-regular graphs, in Graph Theory, Combina-
torics, and Applications (ed. Y. Alavi, G. Chartrand, O.R. Oellermann, and
A.J. Schwenk) John Wiley & Sons, New York (1991) 991–1000.

[36] G. Quenell, Spectral diameter estimates for k-regular graphs, Adv. Math. 106
(1994) 122–148.
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