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§1. Introduction and the main results

Asymptotic calculations are applied to study the degrees of certain sequences

of characters of symmetric groups Sn, n → ∞. We obtain some unexpected

arithmetic properties of the set of the hook numbers for some special families of

(fixed) skew-Young diagrams (Theorem1.2). The problem appeared in the study of

the hook formula for various kinds of Young diagrams. The proof of 1.2 is based on

the properties of shifted Schur functions[Ok.Ol]which appeared in the asymptotic

theory of the representation theory of the symmetric groups in [V er.Ker]. The

authors do not know a “finite” proof of the theorem.

Given a partition µ, we describe in [1.1]a construction of certain skew dia-

grams which are derived from µ: these are SQ(µ), SR(µ), SR(µ′), R and Dµ

below. Next, one fills these skew diagrams with their corresponding hook numbers

[Mac]Theorem[1.2]which is the main result here, gives some divisibility properties

of the products of these hook numbers.

We remark again that even though the statement of theorem[1.2]nothing to do

with asymptotics, its proof does use asymptotic methods. It should be interesting

to find an “asymptotic free” proof of Theorem[1.2]

We start with

1.1: A Construction: Given a partition (= diagram) µ, let D∗
µ denote

the double reflection of µ. For example, if µ = (4, 2, 1) then

Dµ =
x x x x
x x
x

and D∗
µ =

x
x x

x x x x
.

Recall that µ′
1 = `(µ) is the number of nonzero parts of µ. Complete D∗

µ to the

µ1 × µ′
1 rectangle R(µ), then draw D∗

µ on top and on the left of R. Finally, erase

the first D∗
µ. Denote the resulting skew diagram by SQ(µ). For example, with

µ = (4, 2, 1) we get
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A2
↘ x

x x
x x x x

SQ(4, 2, 1) = A1

↘ x x x x

x x x x

↖
x x x x

A

We subdivide SQ(µ) into the three areas A, A1 and A2: A = R − D∗
µ, A1 is

the D∗
µ on the left of R and A2 is the D∗

µ on top of R. Denote SR(µ) = A1 ∪ A,

the “shifted rectangle”.

Clearly, |A ∪ A1| = |A ∪ A2| = |R|, |A1| = |A2| = |µ|, so |SQ(µ)| = |R| + |µ|.
Now, fill SQ(µ), SR(µ), R and µ with their hook numbers. For example, when

µ = (4, 2, 1)

3
4 2

6 5 3 1

SQ(4, 2, 1) :

6 4 3 1

5 4 2 1

4 3 2 1

SR(4, 2, 1) :
6 4 3 1

5 4 2 1
4 3 2 1

R(4, 2, 1) :
6 5 4 3
5 4 3 2
4 3 2 1
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and

(4, 2, 1) :
6 4 2 1
3 1
1

Thus, for example,
∏

x∈(4,2,1) h(x) = 13 · 2 · 3 · 4 · 6 = 144.

Note that the hook numbers in SR(µ) are the same as those in the area A1∪A

of SQ(µ).

As usual, µ′
1 = `(µ) is the number of nonzero parts of µ. Recall that

sµ(x1, x2, · · ·) is the corresponding Schur function, and sµ (1, · · · , 1)︸ ︷︷ ︸
µ′

1

is the number

of (semi-standard, i.e. rows weakly and column strictly increasing) tableaux of

shape µ, filled with elements from {1, 2, · · · , µ′
1}[Mac]Similarly for sµ′ (1, · · · , 1)︸ ︷︷ ︸

µ1

.

1.2 Theorem: Let µ be a partition. With the above construction of

SQ(µ) = A ∪ A1 ∪ A2 and R, we have

(1)

(∏
x∈R

h(x)

)/
 ∏

x∈A1∪A

h(x)


 = sµ(1, · · · , 1︸ ︷︷ ︸

µ′
1

).

In particular,
∏

x∈A1∪A h(x) divides
∏

x∈R h(x). [Note that A∪A1 ⊂ SQ(µ), and

for x ∈ A1 ∪ A, h(x) is the corresponding hook number in x ∈ SQ(µ)].

(1’) Similarly,

(∏
x∈R

h(x)

)/
 ∏

x∈A2∪A

h(x)


 = sµ′(1, · · · , 1︸ ︷︷ ︸

µ1

).

(2)
∏

x∈SQ(µ)

h(x) =

(∏
x∈R

h(x)

)
·

∏

x∈µ

h(x)


 .
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We conjecture that a statement much stronger than[1.2.2]holds, namely: the

two multisets

{h(x) | x ∈ SQ(µ)} and {h(x) | x ∈ R} ∪ {h(x) | x ∈ µ} are equal.

Theorem[1.2.1]is an obvious consequence of the following “asymptotic” theo-

rem.

1.3. Theorem: Let µ = (µ1, · · · , µk), be a partition. Let n = k`,

µ1 ≤ ` → ∞, and denote λ = λ(`) = (`k). Then

(a) lim
`→∞

dλ/µ

dλ
=
(

1
k

)|µ|
· sµ(1, · · · , 1︸ ︷︷ ︸

k

)

and

(b) lim
`→∞

dλ/µ

dλ
=
(

1
k

)|µ|
·

 ∏

x∈R(µ1,µ′
1)

h(x)


/


 ∏

x∈A1∪A

h(x)


 .

Theorem[1.2.1′]follows from[1.2.1]by conjugation.

Theorem[1.2.2]is a consequence of the following “asymptotic” theorem

1.4. Theorem: Let µ be a fixed partition. Let µ1 ≤ ` → ∞,

µ′
1 ≤ m → ∞, n = `m and λ = λ(`, m) = (`m). Then

(a) lim
`,m→∞

dλ/µ

dλ
=

1∏
x∈µ h(x)

.

(b) lim
`,m→∞

dλ/µ

dλ
=

(∏
x∈R

h(x)

)/
 ∏

x∈SQ(µ)

h(x)


 .

In this note we apply the following main tools:

a) The theory of symmetric functions[Mac,]. In particular, we apply the hook

formula

dλ =
|λ|!∏

x∈λ h(x)
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and I.3, Example 4, page 45 in[Mac,].

b) The Okounkov-Olshanski[Ok.Ol]theory of “shifted symmetric functions”. In

particular, we apply formula (0.14) of[Ok.Ol]Let µ ` k, λ ` n, k ≤ n, µ ⊂ λ,

then
dλ/µ

dλ
=

s∗
µ(λ)

n(n − 1) · · · (n − k + 1)
.

Here s∗
µ(x) is the “shifted Schur function” [Ok.Ol]; one of its key properties is

that

s∗
µ(x) = sµ(x)+ lower terms, where sµ(x) is the ordinary Schur function.

We remark that the paper[Ok.Ol]was influenced by the work of Vershik and

Kerov on the asymptotic theory of the representations of the symmetric groups.

See for example[V er.Ker], in which the characters of the infinite symmetric group

are found from limits involving ordinary Schur functions. See also the introduction

of[Ok.Ol]

§2. Here we prove theorem [1.3]which, as noted before, implies [1.2.1](and

1.2.1’).

2.1. The proof of theorem[1.3].

dλ(`)/µ

dλ(`)
=

s∗
µ(λ1(`), · · · , λk(`))

n(n − 1) · · · (n − |µ| + 1)
,

where n = |λ| = k`. Since ` → ∞, n(n − 1) · · · (n − |µ| + 1) ' (k`)|µ|. Also,

s∗
µ(λ) = sµ(λ) + (lower terms in n),

hence

s∗
µ(λ) ' sµ(λ) = sµ (`, · · · , `)︸ ︷︷ ︸

k

.

Recall that for two sequences an, bn of real numbers, an ' bn means that

limn→∞ an
bn

= 1.
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Since sµ(x) is homogeneous of degree |µ|,

sµ(λ) = `|µ| · sµ(1, · · · , 1︸ ︷︷ ︸
k

) .

The proof now follows easily.

2.2. The proof of theorem[1.3.b] Since λ is a rectangle, hence dλ/µ = dη,

where η is the double reflection of λ/µ. Denote by µ̃ = D∗
µ the double reflection

of µ. Thus

1

i

η

D∗
µ

`

To calculate dλ and dη by the hook formula, fill λ = λ(`) and η with their

respective hook numbers. In both, examine the ith row from the bottom - with

their respective hook numbers. Divide η into B1 and B2 as follows:

Notice that B1 = SR(µ) of 1.1. Note also that the hook numbers in B1 are those

in SR(µ), and they are independent of `.

Examine the hook numbers in B2. In the ith row (from bottom), these are

µ1 + i, µ1 + i + 1, · · · , ` + i − 1 − µi, consecutive integers.

We also divide λ(`) into two rectangles:

Again, the hook numbers in R1 are independent of `, and those in the ith row

(from bottom) of R2 are µ1 + i, µ1 + i+1, · · · , `+ i−1, again consecutive integers.
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B1B2
D∗

µ

` ︸ ︷︷ ︸
µ1

︸ ︷︷ ︸
µ1

︸ ︷︷ ︸
µ1

λ(`) R1

`

R2

By the “hook” formula, the left hand side of 1.3.b is

dλ(`)/µ

dλ(`)
=

dη

dλ(`)
=

[
(n − |µ|)!∏

x∈η h(x)

]/[
n!∏

x∈λ(`) h(x)

]

=
(n − |µ|)!

n!
·
[∏

x∈λ(`) h(x)∏
x∈η h(x)

]

where n = k`. Since ` → ∞,

(n − |µ|)!
n!

'
(

1
n

)|µ|
=
(

1
k`

)|µ|
.

Now ∏
x∈λ(`) h(x)∏
x∈η h(x)

=

[∏
x∈R1

h(x)∏
x∈B1

h(x)

]
·
[∏

x∈R2
h(x)∏

x∈B2
h(x)

]
= α · β.
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Note that the right hand side of 1.3.b is ( 1
k )|µ| · α.

We calculate β:

∏
x∈R2

h(x) =
µ′

1∏
i=1

[(µ1 + i)(µ1 + i + 1) · · · (` + i − 1)],

∏
x∈B2

h(x) =
µ′

1∏
i=1

[(µ1 + i)(µ1 + i + 1) · · · (` + i − 1 − µi)],

thus

β =
µ′

1∏
i=1

[(` + i − µi)(` + i − µi + 1) · · · (` + i − 1)] ' `|µ|,

(since ` → ∞).

Hence,

lim
`→∞

dλ(`)/µ

dλ(`)
=
(

1
k

)|µ|
· α

and the proof is complete.

§3. Here we prove theorem 1.4 which, as noted before, implies theorem 1.2.2.

3.1. The proof of 1.4.a: Let λ = λ(`, m) = (`m), `, m → ∞. We show

first that s∗
µ(λ) ' sµ(λ), as follows: By [Ok.Ol.(0.9)],

e∗
r(λ) =

∑
i≤i1<···<ir≤m

(` + r − 1)(` + r − 2) · · · ` =

= (` + r − 1)(` + r − 2) · · · ` ·
(

m

r

)
' `rmr

r!
.

Similarly, er(λ) ' `rmr

r! .

Let ∅ be given as in [Ok.Ol.§13]. By [Ok.Ol.(13.8)] it easily follows that for

any u and r,

∅−ue∗
r(λ) ' e∗

r(λ) ' er(λ).
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Applying the Jacobi Trudi formulas for sµ(λ) —([Mac,]I, (3.5), page 41] and for

s∗
µ(λ)[Ok.Ol(13.10)]that s∗

µ(λ) ' sµ(λ). Now in[2.1,], here

dλ(`,m)/µ

dλ(`,m)
=

s∗
µ(λ1(`, m), · · · , λm+k(`, m))
n(n − 1) · · · (n − |µ| + 1)

where

n = `m.

Here

s∗
µ(λ(`, m)) ' sµ(λ(`, m)) = `|µ|sµ(1, · · · , 1︸ ︷︷ ︸

m

).

Thus

dλ(`,m)/µ

dλ(`,m)
'
(

1
n

)|µ|
· sµ(1, · · · , 1︸ ︷︷ ︸

m

) =
(

1
m

)|µ|
·
∏
x∈µ

m + c(x)
h(x)

,

([[Mac,], pg. 45, Ex 4]) where c(x) is the content of x ∈ µ. Since m → ∞, m +

c(x) ' m for all x ∈ µ, and the proof follows.

3.2. The proof of [1.4b ] Choose `, m large so that µ ⊂ λ(`, m). Let η

be the double reflection of λ(`, m)/µ, so dλ(`,m)/µ = dη, then calculate dη by the

hook formula. To analyze the hook numbers in η, we subdivide η into the areas

A1,η, · · · , A4,η as shown below:

i.e., D∗
µ is drawn at the bottom-right of the ` × m rectangle. We then follow

[1.1]and construct A4,η = SQ(µ). Now A1,η is the (` − µ1) × (m − µ′
1) rectangle,

and this determines A2,η and A3,η.

We also split the ` × m rectangle λ = λ(`, m) accordingly:

Since λ(`, m) ` `m and η ` `m − |µ|,

dη

dλ(`,m)
'
(

1
`m

)|µ|
·
∏

x∈λ(`,m) hλ(`,m)(x)∏
x∈η hη(x)

.
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η : m

`

A1,η A3,η

A2,η

A4,η

D∗
µ

}
µ′

1︸︷︷︸
µ1

A1,λ(`,m)

A2,λ(`,m)

A3,λ(`,m)

A4,λ(`,m)

}
µ′

1︸ ︷︷ ︸
µ1

Now, hλ(`,m)(x) = hη(x) for x ∈ A1,η = A1,λ(`,m). As in 2.3

∏
x∈A2,λ(`,m)

hλ(`,m)(x)∏
x∈A2,η

hη(x)
' `|µ|.

Similarly (or, by conjugation),

∏
x∈A3,λ

hλ(`,m)(x)∏
x∈A3,η

hη(x)
= m|µ| .
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After cancellations we have

dη

dλ
'
∏

x∈A4,λ
hλ(`,m)(x)∏

x∈A4,η
hη(x)

=

∏
x∈R(µ1,µ′

1) h(x)∏
x∈SQ(µ) h(x)

and the proof is complete.
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