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Abstract
Let n be a positive integer, c a real positive constant, and p(n) = c/n. Let

Un,p be the random unary predicate under the linear order, and Sc the almost
sure theory of Un, c

n
. We show that for every first-order sentence φ:

fφ(c) = lim
n→∞ Pr[Un, c

n
has property φ]

is an infinitely differentiable function. Further, let S =
⋂

c Sc be the set of all
sentences that are true in every almost sure theory. Then, for every c > 0,
Sc = S.
(Mathematical Reviews Subject Classification: 03C13, 60F20, 68Q05)

1 Introduction

Let n be a positive integer, and 0 ≤ p(n) ≤ 1. The random unary predicate Un,p

is a probability space over predicates U on [n] = {1, . . . , n} with the probabilities
determined by Pr[U(x)] = p(n), for 1 ≤ x ≤ n, and the events U(x) are mutually
independent over 1 ≤ x ≤ n. Un,p is also called the random bit string.

Let φ be a first-order sentence in the language with linear order and the unary
predicate. In [7] , Shelah and Spencer showed that for every such sentence φ and for
p(n) � n−1 or n−1/k � p(n) � n−1/(k+1), there exists a constant aφ such that

lim
n→∞ Pr[Un,p |= φ] = aφ (1)

∗Current Address: Department of Mathematics, Santa Clara University, Santa Clara, CA 95053-
0290, kstjohn@scu.edu.
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(Note that “Un,p |= φ” means that Un,p has property φ. See Section 2 for this and
other definitions.)

For each real constant c, let Sc be the almost sure theory of the linear ordering
with p(n) = c

n
. That is,

Sc = {φ | lim
n→∞ Pr[Un, c

n
|= φ] = 1}

Let T0 be the almost sure theory for p(n) � n−1, and T1 be the almost sure theory
for n−1 � p(n) � n−1/2. By the work of Dolan [2] , Un,p satisfies the 0-1 law for
p(n) � n−1 and n−1 � p(n) � n−1/2 (that is, for every φ, aφ = 0 or 1 in Equation 1).
This gives that T0 and T1 are complete theories. Dolan also showed that the 0-1 Law
does not hold for n−1/k � p(n) � n−1/(k+1), k > 1.

In this paper, we will characterize the theories between T0 and T1, namely the
Sc’s. For each first-order formula, φ, define the function:

fφ(c) = lim
n→∞ Pr[Un, c

n
|= φ]

where c ranges over the real, positive numbers. We show that fφ(c) is infinitely
differentiable. Moreover, we show:

Theorem 1 For every first-order sentence φ, fφ(c) is either

i=m∑
i=1

e−c c
ti

ti!
or 1 −

i=m∑
i=1

e−c c
ti

ti!

for some finite (possibly empty) sequence of positive integers t1, . . . , tm.

Let S =
⋂

c Sc be the set of all sentences that are true in every almost sure theory.
We show:

Theorem 2 For every real, positive c, Sc = S.

Other interesting structures that have also been examined in this fashion are
random graphs (without order) with edge probability p(n) = c/n and p(n) = lnn/n+
c/n (see the work of Lynch, Spencer, and Thoma: [5] , [6] , and [9]). We achieve a
simpler characterization of the limit probabilities than those for random graphs due
to our underlying models.

To prove these theorems, we look first at the countable models of the almost sure
theories (for more on this, see [8] ). Let M |= Sc be such a model. Each of these
models satisfy a set of basic axioms ∆ (defined in Section 3). Further, we show,
using Ehrenfeucht-Fraisse games, that ∆ ∪ {σi} is complete, where σi is the first-
order sentence that states “there are exactly i elements for which the unary predicate
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holds.” For every M, there is an i such that M |= ∆ ∪ {σi}. For each first-order
sentence φ, either φ follows from only a finite number of complete extensions, or the
negation of φ, ¬φ, follows from only a finite number of complete extensions. Let
X be the number of elements for which the unary predicate holds in Un, c

n
. The

Pr[X = i] has binomial distribution. These two facts give the desired form for fφ(c)
in Theorem 1 and are used to show Theorem 2.

In an effort to keep the paper self-contained and accessible, we have included many
definitions and concepts that the expert in the field might wish to skip. Section 2 of
this paper includes definitions from logic and finite model theory. To illustrate the
definitions, we have included a section of Examples (Section 3). Section 4 includes
the proofs of the results.

A note on notation: we will use lower case Greek letters for first-order sentences
(φ, ψ, . . .), upper case Greek letters for sets of sentences (Γ,∆, . . .), and lower case
Roman letters to refer to elements in the universe (i, j, . . .).

2 Definitions

This section contains the definitions we need from first-order logic and finite model
theory. A more thorough treatment of first-order logic can be found in Enderton [4]
, of finite model theory in Ebbinhaus and Flum [3] , and of the probabilistic method
in Alon, Spencer, and Erdős [1] .

We concentrate on first-order logic over the basic operations {≤, U,=}. That is,
we are interested in sentences made up of = (equality), ≤ (linear order), U (an unary
predicate), the binary connectives ∨ (disjunction) and ∧ (conjunction), ¬ (nega-
tion), and the first-order quantifiers ∃ (existential quantification) and ∀ (universal
quantification). “First-order” refers to the range of the quantifiers– we only allow
quantification over variables, not sets of variables. For example,

(∃x)(∀y)(x ≤ y)

is a first-order sentence that expresses the property that there is a least element.
The x and y are assumed to range over elements of the universe. A set of consistent
sentences is often called a theory.

Our structures have an underlying set [n] = {1, . . . , n} with the basic operations:
=, ≤ and U . Without loss of generality, we will interpret the ordering ≤ as the natural
ordering on [n]. There are many choices for interpreting the unary predicate U over
[n] (2n to be precise). We can view the structures as ordered sequences of 0’s and 1’s,
where the ith element in the sequence is 1 if and only if U(i). For example, if n = 5
and the unary predicate holds on the least element, then structure can be represented
as [10000]. Let M =< [m],≤, U >, M1 =< [m1],≤, U1 >, and M2 =< [m2],≤, U2 >
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be models where ≤ is a linear order on the universes (the underlying sets) of the
structure, and U, U1, and U2 are unary predicates on the universes of their respective
structure. We will say M models ψ (written: M |= ψ) just in case the property ψ
holds of M. If for every model M we have M |= Γ implies M |= ψ, where Γ is a
(possibly empty) set of sentences, then we write Γ |= ψ (pronounced “Γ models ψ”).
For the particular ψ above, M |= ψ only if there is some element in [m] which is less
than or equal to every other element in [m]. Every [m] has a least element (namely
1), so, M |= ψ, and further, |= ψ.

While many things can be expressed using first-order sentences, many cannot. For
example, there is no first-order sentence that captures the property that a structure
has an universe with an even number of elements (see [3] , p. 21). That is, there is
no first-order sentence φ such that for every model M =< [m],≤, U >,

M |= φ ⇐⇒ m is even

One measure of the complexity of first-order sentences is the nesting of quantifiers.
If a formula φ has no quantifiers, we say it has quantifier rank 0, and write qr(φ) = 0.
For all formulas, we define quantifier rank by induction:

• If φ = φ1 ∨ φ2 or φ = φ1 ∧ φ2, then qr(φ) = max(qr(φ1), qr(φ2)).

• If φ = ¬φ1, then qr(φ) = qr(φ1).

• If φ = ∃xφ1 or φ = ∀xφ1, then qr(φ) = qr(φ1) + 1.

Definition 1 For each t, two models M1 and M2 are equivalent (with respect to t),
M1 ≡t M2 if they have the same truth value on all first-order sentences of quantifier
rank at most t.

The equivalence of structures under all first-order sentences of quantifier rank less
than or equal to t is connected to the t-pebble games of Ehrenfeucht and Fraisse,
described in [3] . Given two structures M1 and M2, M1 ≡t M2 if and only if the
second player has a winning strategy for every t-pebble Ehrenfeucht-Fraisse game
played on M1 and M2. We define the game below:

Definition 2 The t-pebble Ehrenfeucht-Fraisse game (EF game) on M1 and
M2 is a two-person game of perfect information. For the game, we have:

• Players: There are two players:

– Player I, often called Spoiler, who tries to ruin any correspondence between
the structures.
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– Player II, often called Duplicator, who tries to duplicate Spoiler’s last
move.

• Equipment: We have t pairs of pebbles and the two structures M1 and M2

as game boards.

• Moves: The players take turns moving. At the ith move, the Spoiler chooses a
structure and places his ith pebble on an element in that structure. Duplicator
then places her ith pebble on an element in the other structure.

• Winning: If after any of Duplicator’s moves, the substructures induced by the
pebbles are not isomorphic, then Spoiler wins. After both players have played t
moves, if Spoiler has not won, then Duplicator wins.

We say a player has a winning strategy for the t-pebble game on M1 and M2,
if no matter how the opponent plays, the player can always win. These games form a
powerful tool for showing theories are complete. A theory T is complete if for every
sentence φ, either T |= φ or T |= ¬φ. Equivalently, a theory T is complete if any two
models of T satisfy the same first order sentences. For each q, we can show this for
sentences of quantifier rank q by proving that Duplicator has a winning strategy for
the q-move EF game on any two models of T . We will use this reduction to games to
show the completeness of our theories Sc (see Lemma 1).

3 Examples

To give some intuition about what these models and theories look like, we begin with
an informal discussion of T0 and T1. When p(n) � n−1, almost surely the unary
predicate never holds (i.e. no 1’s occur). To see this, let Ai be the event that U(i)
holds, Xi be the random indicator variable, and X =

∑
iXi, the total number of 1’s

that occur (i.e. the total number of elements for which the unary predicate holds).
Then, E(Xi) = p(n), and by linearity of expectation,

E(X) =
∑

i

E(Xi) = np(n).

As n gets large, E(X) → 0. Since Pr[X > 0] ≤ E(X), almost surely, no 1’s occur.
This gives

lim
n→∞ Pr[Un,p |= (∃x)U(x)] = 0.

The negation of this statement, (∀x)¬U(x), almost surely is true. So, (∀x)¬U(x) is
in the almost sure theory T0.
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The almost sure theory also contains sentences about the ordering. Since every
Un,p is linearly ordered with a minimal and maximal element, the first-order sentences
that state these properties are in T0, T1, and each Sc. Let Γl be the order axioms for
the linear theory, that is, the sentences:

(∀xyz)[(x ≤ y ∧ y ≤ z) → x ≤ z]
(∀xy)[(x ≤ y ∧ y ≤ x) → x = y]
(∀x)(x ≤ x)
(∀xy)(x ≤ y ∨ y ≤ x)

The following sentences guarantee that there is a minimal element and a maximal
element:

µ1 : (∃x∀y)(x ≤ y)
µ2 : (∃x∀y)(x ≥ y)

Further, every element, except the maximal element, has a unique successor under the
ordering, and every element, except the minimal element, has a unique predecessor.
This can be expressed in the first-order language as:

η1 : (∀x)[(∀y)(x ≥ y) ∨ (∃y∀z)((x ≤ y ∧ x 6= z) → y ≤ z)]
η2 : (∀x)[(∀y)(x ≤ y) ∨ (∃y∀z)((x ≥ y ∧ x 6= z) → y ≥ z)]

As n → ∞, the number of elements also goes to infinity. To capture this, we add,
for each positive r, the axiom:

δr : (∃x1 . . . xr)(x1 < x2 < · · · < xr)

For n ≥ r, Un,p |= δr. Thus, for every Un,p,

Un,p |= Γl ∧ µ1 ∧ µ2 ∧ η1 ∧ η2 ∧ δ1 ∧ δ2 ∧ . . . ∧ δn

and Σ = {Γl, µ1, µ2, η1, η2,
∧

r δr} ⊂ Tk, for k = 1, 2, and for each c, Σ ⊂ Sc.
For T0, the only additional axiom we need is (∀x)(¬U(x)). The simplest model

of T0 is an infinite decreasing chain of 0’s followed by an infinite increasing chain of
0’s (see Figure 1). More complicated models also satisfy Σ ∪ (∀x)(¬U(x)), namely
those with arbitrarily many copies of of chains of 0’s, ordered like the integers (called
“Z-chains”), with an infinite decreasing chain of 0’s at the beginning and an infinite
increasing chain of 0’s at the end. The ordering of the Z-chains is not determined. It
could be finite, infinite with discrete points, or it could be “dense.” By the latter, we
mean that between any 2 Z-chains, there’s another.

When n−1 � p(n) � n−1/2, almost surely isolated 1’s occur. Using the notation
above, we have E(X) → ∞ as n → ∞. Since all the events are independent, Var[X] ≤
E[X]. By the Second Moment Method (see [1] , chapter 4 for details),

Pr[X = 0] ≤ Var[X]
E[X]2

≤ E[X]
E[X]2

= 1
E[X] → 0
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[000 · · ·) (· · · 000]

Figure 1: A model of T0

[00 · · ·)(· · · 00100 · · ·) (· · · 00100 · · ·)︸ ︷︷ ︸
“a Z-chain”

· · · · · · (· · · 00100 · · ·)(· · · 00100 · · ·)(· · · 00]

Figure 2: A model of T1

Thus, Pr[X > 0] → 1. Let Bi be the event that i and i+1 are 1’s, let Yi be its random
indicator variable, and Y =

∑
i Yi. Then, E(Yi) = Pr[Bi] = p2 and E(Y ) ∼ np2 → 0.

So, almost surely, 1’s occur, but no 1’s occur adjacent in the order. If, for each r > 0,
we let Ci,r be the event that i and i + r are 1’s and Cr =

∑
iCi,r, we can show, by

similar argument, that Cr → 0. This works for any fixed r, so, the 1’s that do occur
are isolated from one another by arbitrarily many 0’s.

For models of T1, we cannot have a single infinite chain, since all the 1’s must
be isolated. So, we must have infinitely many Z-chains that contain a single 1.
Between these can be any number of Z-chains that contain no 1’s. Call any Z-chain
that contains a 1 distinguished. For any distinguished Z-chain, except the maximal
distinguished chain, almost surely, there’s a least distinguished Z-chains above it (this
follows from the discreteness of the finite models). In other words, every distinguished
Z-chain, except the maximal 1, has a distinguished successor Z-chain. This rules out
a “dense” ordering of the distinguished Z-chains and leads to a “discreteness” of 1’s,
similar to the discreteness of elements we encountered above. It says nothing about
Z-chains without 1’s– those could have any countable order type they desire. So, the
simplest model is pictured in Figure 2.

By the earlier discussion, we know that the basic axioms Σ ⊂ T1. The only further
axioms needed are those that guarantee arbitrarily many 1’s occurring far apart and
the “discreteness” of 1’s. These axioms echo the basic axioms listed before, for each
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[00 · · ·)(· · · 00100 · · ·)(· · · 00100 · · ·)(· · · 00]

Figure 3: A model of Sc

r we have:

µ′
1 : (∃x)(∀y)[(U(x) ∧ U(y)) → (x ≤ y)]
µ′

2 : (∃x)(∀y)[(U(x) ∧ U(y)) → (x ≥ y)]
δ′
r : (∃x1 . . . xr)(x1 < x2 < · · · < xr ∧ U(x1) ∧ · · · ∧ U(xr))
εr : (∀x1, x2)[(U(x1) ∧ U(x2) ∧ x1 < x2) →

(∃y1, . . . , yr)(¬U(y1) ∧ . . . ∧ ¬U(yr) ∧ x1 < y1 < · · · < yr < x2)]

These axioms, along with Σ, axiomatize T1, which follows from an EF game argument.
When p = c/n, the expected number of 1’s in Un, c

n
is (using the notation from

above):

E(X) =
n∑

i=1
E(Xi) =

n∑
i=1

p(n) = n · c
n

= c.

In fact, Pr[X = t] has binomial distribution and the limiting probability is Poisson
(see Lemma 3). So, with probability Pr[X = t] → e−c ct

t! , Un, c
n

has exactly t 1’s. In
any countable model of the almost sure theory, Sc, the 1’s occur arbitrarily far apart,
as in models of T1. A simple model of Sc, which occurs with probability e−c c2

2! is in
Figure 3. Let ∆ be the axioms Σ along with the axiom schema εr for every r that
guarantees the 1’s are isolated (that is, ∆ = Σ ∪ ⋃r{εr}). For each Sc, ∆ ⊂ Sc.

4 The Results

For each natural number i, let σi be the first-order sentence that says “there exist
exactly i 1’s.” So,

σ1 := (∃x)[U(x) ∧ (∀y)(U(y) → y = x)]
σi+1 := (∃x1x2 . . . xi+1)[U(x1) ∧ U(x2) ∧ . . . ∧ U(xi+1)

∧ x1 < x2 ∧ x2 < x3 ∧ · · ·xi < xi+1

∧ (∀y)(U(y) → (y = x1 ∨ y = x2 ∨ · · · ∨ y = xi+1))]

Recall that we defined the set of sentences S to be all sentences that hold in every
almost sure theory (that is, S =

⋂
c Sc). Then:

Lemma 1 For each i, S ∪ {σi} is complete.
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Proof: Note that the basic axioms ∆ (defined in Section 3) are contained in S.
So, it suffices to show that ∆ ∪ {σi} is complete (that is for every sentence φ, either
∆ ∪ {σi} |= φ or ∆ ∪ {σi} |= ¬φ). We will show this is a complete theory by giving,
for every t, a winning strategy for Duplicator for the t-move game on two models,
M1 and M2 of ∆ ∪ {σi}. The essence of the proof is that in our theories the 1’s are
spaced arbitrarily far apart. So, what matters in pebble placement is the distance to
the closest 1. Since t pebbles can only tell distances of length ≤ 2t, we define the
t-type of an interval to keep track of small distances from 1’s.

Let the t-type of an interval [a, b] to be (L,R,O, Z), with O the number of 1’s in
the interval; Z the number of 0’s in the interval; L the minimal nonnegative number
with a + L a 1; R the minimal nonnegative number with b − R a 1 – but if any of
these numbers are not in the set {0, 1, . . . , 2t} call them by a special symbol MANYt.
(That is, if the first 2t + 1 symbols of the interval are 0’s then L = MANYt).

The strategy for Duplicator with t moves remaining and x1 < . . . < xs the moves
already made on model M1; x′

1 < . . . < x′
s the moves already made on model M2 is

to ensure that for all i intervals [xi, xi+1], [x′
i, x

′
i+1] have the same t-type. To include

the end intervals, assume Spoiler starts by playing the minimal and maximal elements
of M to which Duplicator of course follows on M ′. Since both M1 and M2 model
σi, each has the same number of 1’s occurring, the t-type of the initial moves are
the same, namely (MANYt,MANYt,MANYt,MANYt) for i sufficiently larger than t
(i > 3t suffices).

We show that if [a, b], [a′, b′] have the same t-type then for all x ∈ [a, b] (Spoiler
move) there exists x′ ∈ [a′, b′] (Duplicator move) with [a, x], [a′, x′] having the same
(t − 1)-type and [x, b], [x′, b′] also having the same (t − 1)-type (similarly for every
x′ ∈ [a′, b′]). We proceed by induction on t, the number of moves remaining. For
t = 1, if U(x), then we must have O > 0. So, there must be a x′ ∈ [a′, b′] such that
U(x′). If ¬U(x), then Z > 0 and there must be a x′ ∈ [a′, b′] such that ¬U(x′). Thus,
Duplicator has a winning strategy for the game on intervals with the same 1-type and
with 1 move remaining.

For t > 1, assume that [a, b] and [a′, b′] have the same t-type: (L,R,O, Z). Let
(Ll, Rl, Ol, Zl) be the (t− 1)-type of [a, x] and (Lr, Rr, Or, Zr) be the (t− 1)-type of
[x, b]. If Z 6= MANYt, then the lengths of the intervals [a, b] and [a′, b′] are equal and
≤ 2t. In this case, the t-type fully determines the occurrence and placement of any 1
in the interval (if one occurs). Let x′ = a′ + x − a. If O = 0, then L = R = 0, and
both intervals are all 0’s. If O = 1 (the only other possibility since Z 6= MANYt and
the 1’s occur arbitrarily far apart), then the 1 occurs the exact same distance from
x and x′. So, the resulting intervals [a, x] and [a′, x′], and [x, b] and [x′, b′] have the
same t-types, and thus, (t− 1)-types.

So, assume Z = MANYt, that is, the lengths of the intervals [a, b] and [a′, b′] are
at least 2t but may not be equal. If x−a < 2t−1, let x′ = a′ +x−a. By construction,
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[a, x] and [a′, x′] have the same length and the same number of 1’s. If the number of
1’s is zero, then Ll = Rl = Ol = 0 and Zl = x − a for both intervals. If the number
of 1’s is one (the only other possibility), then Ll = L, Rl = MANYt−1, Ol = 1,
Zl = x − a − 1 for both [a, x] and [a′, x′]. Since x − a < 2t−1, we have b − x > 2t−1

and Zr = MANYt−1. If Ol = 0, then the number of 1’s in [x, b] and [x′, b′] is the
same as the number of 1’s in the original intervals (i.e. O). If the number of 1’s is
greater than 2t−1, then Or = MANYt−1. Otherwise, Or = O. If Ol = 1, then the
number of 1’s in [x, b] and [x′, b′] is one less than that in the original intervals. So,
Or = MANYt−1 if O − 1 > 2t−1, otherwise, Or = O − 1. Thus, [a, x] and [a′, x′], and
[x, b] and [x′, b′] have the same t-types, and thus, (t− 1)-types. If b−x < 2t−1 follows
by a similar argument.

So, assume a+2t−1 ≤ x ≤ b+2t−1. This gives that the length of both the leftside
and rightside intervals is at least 2t−1. Let −2t−1 < y < 2t−1 be such that U(x+ y) if
such a y exists. Let x′ be such that U(x′ + y) and if x+ y is the ith 1 counting from
the left for i ≤ 2t−1, then x′ + y is also the ith 1 counting from the left (such exists
since both [a, x] and [a′, x′] have the same value for O). Similarly, if x + y is the ith
1 counting from the right for i ≤ 2t−1, then x′ + y is also the ith 1 counting from the
right. If neither of these hold, choose x′ such that x′ + y is the ith 1 for i > 2t. By
construction, the resulting intervals will have the same values for Ll, Lr, Rl, Rr, Ol, Or.
The values for Zl = Zr = MANYt. So, [a, x] and [a′, x′], and [x, b] and [x′, b′] have
the same t-types, and thus, (t− 1)-types.

Lastly, assume a+ 2t−1 ≤ x ≤ b+ 2t−1 but no y such that U(x+ y) and −2t−1 <
y < 2t−1 exists. Then x is at least 2t−1 from a, b, and every i such that U(i). This
gives Lr = Rl = Zl = Zr = MANYt−1. As before, the values of Ll and Rr depend
on L and R (since they count the distance from endpoints that did not move). So,
we only need for our choice of x′ that it is at least 2t−1 from any occurrence of 1 and
has the same value for Ol and Or that [a, x] and [x, b] does. If Ol < 2t−1, choose x′

so that it occurs at least 2t−1 above the Olth 1. If Or < 2t−1, then [x′, b] also has
the same number of 1’s since O = Ol + Or is the value for both [a, b] and [a′, b′]. If
Or = MANYt−1, then, again [x′, b] also has the value Or = MANYt−1. A similar
argument works for Or < 2t−1. If both Ol = Or = MANYt−1, then choose x′ so that
it occurs at least 2t−1 above the 2t−1th 1 (such an x′ exists, since O = MANYt). So,
[a, x] and [a′, x′], and [x, b] and [x′, b′] have the same t-types, and thus, (t− 1)-types.

Thus, [a, x] and [a′, x′] have the same (t − 1)-types, as well as [x, b] and [x′, b′].
By inductive hypothesis, Duplicator can win the (t − 1)-move game played on [a, x]
and [a′, x′], and on [x, b] and [x′, b′]. Duplicator can win the t-move game on [a, b]
and [a′, b′] by placing x′ (x) according to the above strategy, and then following the
strategy given by inductive hypothesis for the remaining t− 1 moves. 2

Definition 3 For each first-order sentence φ, let M(φ) = {i | S ∪ {σi} |= φ}.
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Lemma 2 For each first-order φ, M(φ) is finite or co-finite.

Proof: Let φ be a first-order sentence. Let t = qr(φ), the quantifier rank of φ. We
claim that either max{i ∈ M(φ)} < 3t or max{i ∈ M(¬φ)} < 3t.

Assume not. Then, there exists i, j > 3t such that i ∈ M(φ) and j ∈ M(¬φ).
Let M1 |= ∆ ∪ {σi} and M2 |= ∆ ∪ {σj}. i ∈ M(φ) also implies M1 |= φ, and
j ∈ M(¬φ) implies M2 |= ¬φ. Since i and j are sufficiently larger than t, the
strategy in Lemma 1, gives that M1 and M2 agree on all first-order sentences of
quantifier rank ≤ t. This gives a contradiction since M1 and M2 disagree on φ. 2

Lemma 3 Let c be a real positive constant and i a positive integer. Let X be the
number of 1’s occurring in Un,c/n. Then Pr[X = i] has a binomial distribution and
limn→∞ Pr[X = i] is Poisson.

Moreover,

lim
n→∞ Pr[X = i] = lim

n→∞ Pr[Un, c
n

|= σi] = e−c c
i

i!

Proof: For each i and c, the probability that a set of size i is all 1’s is ( c
n
)i. The

probability that the remaining n− i vertices are all 0’s is (1 − c
n
)n−i. Since there are(

n
i

)
ways to choose such an i element set,

Pr[X = i] =
(
n
i

)
( c

n
)i(1 − c

n
)n−i

As we let n gets large:

limn→∞ Pr[X = i] = limn→∞

(
n
i

)
( ci

ni )(1 − c
n
)n(1 − c

n
)−i

= limn→∞(ni

i! )(
ci

ni )e−c · 1
= e−c ci

i!

2

Proofs of the Theorems

Proof of Theorem 1 : Let φ be a first-order sentence. Then, by Lemma 2, M(φ)
is finite or co-finite. Assume first that M(φ) is finite (the co-finite case follows by
similar argument on M(¬φ)), and there exists positive integers t1 < t2 < . . . < tm
such that M(φ) = {t1, . . . , tm}. By Lemma 3, for each positive integer, i,

qi = lim
n→∞ Pr[Un, c

n
|= σi] = e−c c

i

i!
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Then,

lim
s0→∞

s0∑
s=0

qs =
∞∑

s=0
qs =

∞∑
s=0

e−c c
s

s!
= e−c

∞∑
s=0

cs

s!
= e−cec = 1

So, for any positive ε > 0, there exists s0 > tm such that∣∣∣∣∣1 −
s0∑

s=1
qs

∣∣∣∣∣ < ε

Let βs0 = ¬∨s≤s0 σs. We have

lim
n→∞ Pr[Un,c/n |= βs0 ] = 1 −

s0∑
s=1

qs < ε (2)

Claim 1 φ has limiting probability
∑

s∈M(φ) qs.

Proof of Claim: If suffices to show that φ ↔ ¬∨t∈M(φ) σt has limiting probability
0. This breaks into the cases of φ ∧ ¬∨t∈M(φ) σt and ¬φ ∧ ∨

t∈M(φ) σt. For the first,
fix ε > 0 and choose s0 such that Equation 2 holds. Then (φ ∧ ¬∨t∈M(φ) σt) ↔
βs0 ∨ ∨s≤s0,s 6∈M(φ)(φ ∧ σs) is in the almost sure theory.

∨
s≤s0,s 6∈M(φ)(φ ∧ σs) is a finite

disjunction of sentences with limiting probability 0. So,

limn→∞ Pr[Un,c/n |= (φ ∧ ¬∨t∈M(φ) σt)]
= limn→∞ Pr[(Un,c/n |= βs0 ∨ ∨s≤s0,s 6∈M(φ)(φ ∧ σs))]
≤ max{limn→∞ Pr[Un,c/n |= βs0 ],

limn→∞ Pr[Un,c/n |= ∨
s≤s0,s 6∈M(φ)(φ ∧ σs)]}

≤ max{ε, 0}
= ε

Since ε is arbitrary, limn→∞ Pr[Un,c/n |= (φ ∧ ¬∨t∈M(φ) σt)] = 0.
For the second case of ¬φ∧∨t∈M(φ) σt, we have the finite disjunction of (¬φ∧σt),

for t ∈ M(φ), each of which has limit probability 0. So,

lim
n→∞ Pr[Un,c/n |= ¬φ ∧ ∨

t∈M(φ)

σt] = 0.

2

Using the claim,

fφ(c) = limn→∞ Pr[Un,c/n |= φ]
= limn→∞ Pr[Un,c/n |= (σt1 ∨ . . . ∨ σtm)]
=

∑
t∈M(φ) limn→∞ Pr[Un,c/n |= σt]

=
∑

t∈M(φ) e
−c ct

t!
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2

Proof of Theorem 2: By definition, S is contained in Sc (since S is defined to be
the intersection of the almost sure theories,

⋂
c Sc). So, we need to show, that for

every c, Sc ⊆ S. Fix a real positive constant d, and let φ be a first order sentence
contained in Sd. Then, by definition, fφ(d) = 1. So, M(φ) 6= ∅. Assume M(φ) is
finite and M(φ) = {t1, . . . , tm}. By Theorem 1, for every positive c,

fφ(c) = e−c∑i=m
i=1

cti

ti!
< e−c∑i=∞

i=1
ci

i!
< e−c · ec = 1

which gives the contradiction: fφ(d) < 1. So, M(φ) must not be finite.
By Lemma 2, M(φ) is either finite or co-finite. From above, M(φ) is not a non-

empty finite set. If t 6∈ M(φ), then t ∈ M(¬φ). So, we must have M(¬φ) is finite.
Assume M(¬φ) is non-empty, and for some t1, . . . , tm, M(¬φ) = {t1, . . . , tm}. Then,

fφ(c) = 1 − e−c∑i=m
i=1

cti

ti!
< 1 for c > 0

which contradicts fφ(d) = 1. So, we must have that M(¬φ) = ∅. This gives that fφ

is constantly one. So, φ ∈ Sc for every c, and thus, φ ∈ S.
Therefore, S =

⋂
c Sc. 2

5 Future Work

The work of [7] and [8] characterize the almost sure theories and their countable
models for p(n) � n−1 and n−1/k � p(n) � n−1/(k+1) for k ≥ 1. In this paper,
we fill the “gap” between p(n) � n−1 and n−1 � p(n) � n−1/2 by characterizing
the almost sure theories of Un, c

n
and giving the form of the function fφ(c) for each

first-order sentence φ. What happens for the gaps at p(n) = cn−1/k for larger k?
That is, what does

gk,φ = lim
n→∞ Pr[Un,cn−1/k |= φ]

look like for each integer k > 1 and first-order sentence φ? How does this answer
change if φ is allowed to be from the extended language of monadic second order
logic?
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