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Abstract

Let X be an n-set and L a set of nonnegative integers. F , a set of subsets of X, is

said to be an L -intersection family if and only if for all E 6= F ∈ F , |E ∩F | ∈ L. A

special case of a conjecture of Frankl and Füredi [4] states that if L = {1, 2, . . . , k}, k

a positive integer, then |F| ≤ ∑k
i=0

(
n−1

i

)
.

Here |F| denotes the number of elements in F .

Recently Ramanan proved this conjecture in [6] We extend his method to polyno-

mial semi-lattices and we also study some special L-intersection families on polyno-

mial semi-lattices.

Finally we prove two modular versions of Ray-Chaudhuri-Wilson inequality for

polynomial semi-lattices.

§1. Introduction

Throughout the paper, we assume k, n ∈ N, In = {1, 2, . . . , n} ⊂ N, where N

denotes the set of positive integers.

In this part, we briefly review the concept of polynomial semi-lattice introduced by

Ray-Chaudhuri and Zhu in [8] The definition of polynomial semi-lattice given here

is equivalent to but simpler than that in [8] . For the convenience of the reader, we

also include various examples of polynomial semi-lattices.

Let (X,≤) be a finite nonempty partially ordered set having the property that

(X,≤) is a semi-lattice, i.e., for every x, y ∈ X there is a unique greatest lower

bound of x and y denoted by x ∧ y. If x ≤ y and x 6= y, we write x < y. We

1e-mail addresses: <qian@math.ohio-state.edu>, <dijen@math.ohio-state.edu>
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also assume that (X,≤) has a height function l(x), where l(x) + 1 is the number of

terms in a maximal chain from the least element 0 to the element x including the

end elements in the count. Let n be the maximum of l(x) for all the x in X. Define

Xi = {x ∈ X| l(x) = i}, 0 ≤ i ≤ n and X0 = {0}. Then X = ∪n
i=0Xi is a partition

and the subsets Xi’s are called fibres. The integer n is said to be the height of

(X,≤).

(X,≤) is called a polynomial semi-lattice, if for each fibre Xi there is a size number

mi ∈ N ∪ {0} and a polynomial fi(w) ∈ Q[w], where Q is the set of rational numbers

such that

a) m0 < m1 < . . . < mn,

b) fi(w) = ai(w −m0)(w −m1) . . . (w −mi−1) for some positive rational number ai

for i > 0, and f0(w) = 1,

c) For any i, j, k, 0 ≤ k ≤ i ≤ j ≤ n, x ∈ Xk, y ∈ Xj and x ≤ y, |{z | z ∈
Xi, x ≤ z ≤ y}| = fi−k(mj−k).

Remarks.

1) Taking k = 0 in c), we have |{z | z ∈ Xi, z ≤ y}| = fi(mj) for every y ∈ Xj.

2) For any x ∈ X we define |x| to be mi if x ∈ Xi. Specializing y = E ∧ F in

remark 1), we have |{I ∈ Xi | I ≤ E ∧ F}| = fi(|E ∧ F |), where E, F ∈ X. This

result is going to be used later.

3) Taking i = j in remark 1), we have fi(mi) = 1 since {z | z ∈ Xi, z ≤ y} = {y}.

From this we can solve for ai:

ai =
1

(mi − m0)(mi − m1) . . . (mi − mi−1)

for i = 1, 2, . . . , n.

4) From remark 3), we get

fi(w) =
(w − m0)(w − m1) . . . (w − mi−1)

(mi − m0)(mi − m1) . . . (mi − mi−1)
.

For j > i, we have mj > mi and therefore fi(mj) > 1.
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In the following examples we let s ∈ N, q be a prime power, and

[w, i]q =
(w − 1)(w − q) · · · (w − qi−1)
(qi − 1)(qi − q) · · · (qi − qi−1)

.

Examples:

1) Johnson Scheme. Let V be an n-element set and Xi be the set of all i-element

subsets of V, 0 ≤ i ≤ n. Then X = ∪n
i=0Xi, with inclusion as the partial order, is a

semi-lattice. Let mi = i, fi(w) =
(

w
i

)
. It is easy to see that (X,≤) is a polynomial

semi-lattice.

2) q-analogue of Johnson Scheme. Let V be an n-dimensional vector space over a

finite field GF (q), Xi be the set of all i-dimensional subspaces of V , 0 ≤ i ≤ n. Let

mi = qi, fi(w) = [w, i]q (defined after remark 4). Then X = ∪n
i=0Xi is a polynomial

semi-lattice with inclusion as the partial order.

3) Hamming Scheme. Let W be an s-element set. We define Xi = {(L, h) | L ⊆
{1, 2, . . . , n}, |L| = i, h : L → W a map }, 1 ≤ i ≤ n, X0 = {0}, where 0 is taken

to be the least element, and X = ∪n
i=0Xi. (L1, h1) ≤ (L2, h2) if and only if L1 ⊆ L2,

and h2|L1 = h1. Then (X,≤) is a polynomial semi-lattice, with mi = i, fi(w) =
(

w
i

)
.

4) q-analogue of Hamming Scheme. Let V be an s-dimensional vector space over a

finite field GF (q) and W be an n-dimensional vector space over a finite field GF (q).

Define Xi = {(U, h) | U ⊆ W, dim(U) = i, h : U → V , a linear transformation},

0 ≤ i ≤ n. Let X = ∪n
i=0Xi. ∀(U1, h1), (U2, h2) ∈ X, define (U1, h1) ≤ (U2, h2) if

and only if U1 ⊆ U2 and h2|U1 = h1. Then (X,≤) is a polynomial semi-lattice, with

mi = qi, fi(w) = [w, i]q.

5) Ordered Design. Let W be an s-element set and V be an n-element set with

n ≤ s. We define Xi = {(L, h) | L ⊆ {1, 2, . . . , n}, |L| = i, h : L → W an injection},

1 ≤ i ≤ n, X0 = {0}, where 0 is taken as the least element, and X = ∪n
i=0Xi.

∀(L1, h1), (L2, h2) ∈ X, define (L1, h1) ≤ (L2, h2) if and only if L1 ⊆ L2 and h2|L1 =

h1. Then (X,≤) is a polynomial semi-lattice, with mi = i, fi(w) =
(

w
i

)
.

6) q-analogue of Ordered Design. Let W be an s-dimensional vector space and

V be an n-dimensional vector space over a finite field GF (q) with n ≤ s. Define
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Xi = {(U, h) | U ⊆ V, dim(U) = i, h : U → W , a nonsingular linear transformation

}, 0 ≤ i ≤ n. Let X = ∪n
i=0Xi. ∀(U1, h1), (U2, h2) ∈ X, define (U1, h1) ≤ (U2, h2) if

and only if U1 ⊆ U2 and h2|U1 = h1. Then (X,≤) is a polynomial semilattice, with

mi = qi, fi(w) = [w, i]q.

§2. Statement of Results

Let (X,≤) be a polynomial semi-lattice of height n, i.e X = ∪n
i=0Xi and L be a k-

subset of In∪{0}, where k ≤ n is a natural number. We call F ⊆ X an L-intersection

family if and only if ∀E 6= F ∈ F , E ∧ F ∈ ∪l∈LXl. If F is empty or contains only

one element, it is vacuously an L-intersection family and all the theorems below are

trivially true. So in the rest of this paper, we assume that F has at least two elements.

Ray-Chaudhuri and Zhu extended the well-known Ray-Chaudhuri-Wilson theorem

to the polynomial semi-lattice and they have [8] :

Theorem 1. Let (X,≤) be a polynomial semi-lattice. If F ⊆ X is an L-

intersection family, then |F| ≤ ∑k
i=0 |Xi|.

For the special case L = {l, l+1, . . . , l+k−1}, we extend the method in Ramanan

[6]to polynomial semi-lattices, and we have:

Theorem 2. Let (X,≤) be a semi-lattice of height n, l, k ∈ N, l + k − 1 ≤ n and

F be an {l, l + 1, . . . , l + k − 1}-intersection family. Then

|F| ≤ |Xk| + |Xk−2| + · · · + |Xk−[k/2]2|.
Here [x] means the greatest integer less than or equal to x.

The above result for the set case was raised by Ramanan [6] as an interesting

problem.

In the case of Johnson scheme where |Xn| =
(

n
i

)
, 0 ≤ i ≤ n, we have the

Corollary. Let X be an n-set. If F is a family of subsets of X such that ∀E 6=
F ∈ F , |E ∩ F | ∈ {1, 2, . . . , k}, then |F| ≤ ∑k

i=0

(
n−1

i

)
.
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This follows by specializing l = 1 in Theorem 2 and the easy observation that

[k/2]∑
i=0

(
n

k − 2i

)
=

k∑
i=0

(
n − 1
k − i

)
.

This is a special case of a conjecture of Frankl and Füredi which was recently proved

by G. V. Ramanan [6]. Indeed, Frankl and Füredi conjectured a more general result

Conjecture 1. Let k ∈ N, l ∈ N ∪ {0}, k > 2l + 1, n > n0(k), X be an n-set,

L = {0, 1, 2, · · · , k} − {l}. If F is an L-intersection family of subsets of X, then

|F| ≤
∑

i≤l−1

(
n

i

)
+

k+1∑
i=l+1

(
n − l − 1
i − l − 1

)
.

Ramanan proved the special case of Frankl-Füredi conjecture when l = 0. The general

case is still open.

We also studied the special case of Theorem 1 when L = {0, 1, . . . , k − 1} and got

a simpler proof of the inequality as well as a necessary and sufficient condition under

which the equality holds.

Theorem 3. Let (X,≤) be a polynomial semi-lattice. If F is an L-intersection

family for L = {0, 1, . . . , k − 1}, then |F| ≤ ∑k
i=0 |Xi|.

The equality holds if and only if F = ∪k
i=0Xi.

In the direction of Theorem 1, Snevily [9] studied the case L = {0, 1, · · · , k − 1},

and ∀E ∈ F , |E| ≥ k and he obtained a better upper-bound. We show that it can

be generalized to polynomial semi-lattices (Theorem 4 below) and we give a simpler

proof of the inequality as well as a necessary and sufficient condition under which the

equality holds.

Theorem 4. Let (X,≤) be a polynomial semi-lattice of height n, k ∈ N, F an

L-intersection family for L = {0, 1, . . . , k − 1} and F ⊆ ∪n
i=kXi. Then |F| ≤ |Xk|.

The equality holds if and only if F = Xk.
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Next, we show that some modular versions of Ray-Chaudhuri-Wilson Theorem [7]

also extend to polynomial semi-lattices.

First the uniform case (Frankl and Wilson’s modular version [5] ):

Theorem 5. Let (X,≤) be a polynomial semi-lattice of height n, s, k ∈ N with

s ≤ k, L ⊆ In ∪{0} and F ⊆ Xk an L-intersection family. Suppose µ0, µ1, · · · , µs are

distinct residues modulo a prime p such that mk ≡ µ0 (mod p) and ∀l ∈ L, ml ≡ µi

(mod p) for some i, 1 ≤ i ≤ s. Further suppose that for every µi, ∃li ∈ L, such that

mli ≡ µi (mod p), for i = 1, 2, · · · , s. Then |F| ≤ |Xs|.

Then the nonuniform case (Deza, Frankl and Singhi’s modular version [3] ):

Theorem 6. Let (X,≤) be a polynomial semi-lattice of height n and F ⊆ Xk1 ∪
Xk2 ∪ · · · ∪Xkν be an L-intersection family, where L ⊆ In ∪{0} and k1, k2, · · · , kν are

integers in In ∪ {0}. Suppose µ1, µ2, · · · , µs are distinct residues modulo a prime p

such that ∀l ∈ L, ml ≡ µi (mod p) for some i, 1 ≤ i ≤ s and mki
is not congruent to

any one of µ1, µ2, · · · , µs modulo p for i = 1, 2, · · · , ν. Then |F| ≤ ∑s
i=0 |Xi|.

§3. The Proof of Theorem 2

Convention: Empty product is defined to be 1.

First we prove two lemmas.

Lemma 1. Let k,∈ N and l1 < l2 < · · · < lk be k positive integers in In. There

exist k + 1 positive real numbers b0, b1, . . . , bk such that
k∑

i=0

(−1)ibifi(x) = (−1)k(x − ml1)(x − ml2) . . . (x − mlk).

Proof. Recall that fi(x) = ai(x−m0)(x−m1) . . . (x−mi−1) and m0 < m1 < · · · < mn,

where ai’s are positive. So it is enough to prove that there exist positive real numbers

c0, c1, · · · , ck such that∑k
i=0(−1)ici(x−m0)(x−m1) · · · (x−mi−1) = (−1)k(x−ml1)(x−ml2) . . . (x−mlk).

The above result follows from the following more general statement:
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Claim. For any j such that 0 ≤ j < l1, there exist positive real numbers

d0, d1, · · · , dk such that

k∑
i=0

(−1)idi(x−mj)(x−mj+1) · · · (x−mj+i−1) = (−1)k(x−ml1)(x−ml2) · · · (x−mlk).

Proof of the claim. When k = 1, it is trivially true. Suppose it is true for k.

Now we want to prove that it holds for k + 1.

(−1)k+1(x − ml1)(x − ml2) · · · (x − mlk+1)

=(−1)(x − ml1)[(−1)k(x − ml2) · · · (x − mlk+1)]

=(−1)[(x − mj) − (ml1 − mj)][(−1)k(x − ml2) · · · (x − mlk+1)]

=(−1)(x − mj)[(−1)k(x − ml2) · · · (x − mlk+1)] +

(ml1 − mj)[(−1)k(x − ml2) · · · (x − mlk+1)] (1)

Since j + 1 < l1 + 1, we can apply the induction hypothesis to the first term of (1)

(denoted by I) and we have

I = (−1)(x − mj)
k∑

i=0

(−1)iui(x − mj+1) · · · (x − mj+1+i−1)

=
k∑

i=0

(−1)i+1ui(x − mj)(x − mj+1) · · · (x − mj+1+i−1)

for some positive real numbers uk, uk−1, · · · , u0. Then we use the induction hypoth-

esis on the second term (denoted by II) and we have

II = (ml1 − mj)
k∑

i=0

(−1)ivi(x − mj) · · · (x − mj+i−1)

=
k∑

i=0

(−1)i(ml1 − mj)vi(x − mj) · · · (x − mj+i−1)
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for some positive real numbers vk, vk−1, · · · , v0. Now add up I and II and we have

(−1)(x − mj)[(−1)k(x − ml2) · · · (x − mlk+1)] +

(ml1 − mj)[(−1)k(x − ml2) · · · (x − mlk+1)]

=
k+1∑
i=0

(−1)idi((x − mj) · · · (x − mj+i−1)

where

dk+1 = uk,

dk = uk−1 + (ml1 − mj)vk,

dk−1 = uk−2 + (ml1 − mj)vk−1,

· · ·

d0 = (ml1 − mj)v0.

so dk+1, dk, · · · , d0 are positive, which proves the claim and therefore the lemma.

Remark. In the rest of the paper, we will only use Lemma 1 in its special case where

l1 = l, l2 = l + 1, · · · , lk = l + k − 1. Let’s denote (x − ml)(x − ml+1) . . . (x − ml+k−1)

by g(x). Since F is an {l, l + 1, · · · , l + k − 1}-intersection family, |E| ≥ ml for all

E ∈ F . So it is clear that g(|E|) ≥ 0 for all E ∈ F and g(|E|) > 0 if |E| > ml+k−1.

To each E ∈ F we associate a variable xE. For each I ∈ X , we define a linear

form LI as follows:

LI :=
∑

E∈F ,I≤E

xE.

Lemma 2. With the same notation as in Lemma 1 and further we assume that

l ∈ N, l + k − 1 ≤ n, l1 = l, l2 = l + 1, · · · , lk = l + k − 1. We have
k∑

i=0

(−1)ibi

∑
I∈Xi

L2
I =

∑
E∈F

(−1)kg(|E|)x2
E . (2)

Proof. We regard both sides as quadratic forms on xE’s, where E ∈ F and try to

show that the corresponding coefficients are equal.
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For example, for E 6= F ∈ F , the term L2
I contributes a term 2xExF if and

only if I ≤ E ∧ F . Therefore the coefficient of xExF in the L. H. S of (2) is

2
∑k

i=0(−1)ibifi(|E ∧ F |) (see remark 2 in the introduction) which is equal to

2(−1)k(|E ∧ F | − ml)((|E ∧ F | − ml+1) . . . (|E ∧ F | − ml+k−1)

by Lemma 1. Since F is an L-intersection family with L = {l, l + 1, . . . , l + k − 1},

|E ∧ F | ∈ {ml, ml+1, . . . , ml+k−1} and so the product in the previous sentence is 0.

Obviously the coefficient of xExF in the R.H.S is also 0. So the coefficient of xExF

in the L.H.S is equal to that in the R.H.S.

Similarly the coefficient of x2
E in the L.H.S is

∑k
i=0(−1)ibif(|E|) for the same reason

as above. By Lemma 1 it is equal to (−1)kg(|E|) which is the coefficient of x2
E in the

R.H.S. Here g(x) is as defined in the remark immediately after the proof of Lemma

1.

We define the real vector space W to be R|F| whose coordinates are indexed by

elements of F , L to be the set of linear forms {LI : |I| ∈ {mk, mk−2, . . . , mk−[k/2]2}}
and W0 ⊆ W to be the space of common solutions of the set of equations LI = 0,

LI ∈ L. Clearly |L| =
∑[k/2]

i=0 |Xk−2i|. An element of W0 will be written as (vE, E ∈
F) = (vE) (for short).

If we can show that W0 consists of the zero vector only, then by linear algebra,

rank(L) = the number of variables = |F| and therefore |F| = rank(L) ≤ |L| =∑[k/2]
i=0 |Xk−2i|, which finishes the proof of Theorem 2.

So it is enough to prove

Lemma 3. W0 = {(0, 0, . . . , 0)}.

Proof. Suppose W0 contains (vE). It suffices to show vE = (0, 0, . . . , 0).

By Lemma 2, we have

k∑
i=0

(−1)ibi

∑
I∈Xi

L2
I = (−1)k

∑
E∈F

g(|E|)x2
E.

Specializing xE = vE, ∀E ∈ F , we have
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k∑
i=0

(−1)ibi

∑
I∈Xi

L2
I((vE)) = (−1)k

∑
E∈F

g(|E|)v2
E.

Since LI((vE)) = 0, for all LI ∈ L, we have LI((vE)) = 0 for k − i even and thus
∑

i∈{0,1,...,k},k−i is odd

(−1)ibi

∑
I∈Xi

L2
I((vE)) = (−1)k

∑
E∈F

g(|E|)v2
E.

We divide both sides by (−1)k and move the L.H.S to the R.H.S. So we have

0 =
∑

i∈{0,1,...,k},k−i is odd

bi

∑
I∈Xi

L2
I((vE)) +

∑
E∈F

g(|E|)v2
E. (3)

Since bi’s are positive by Lemma 1 and g(|E|) ≥ 0 by the remark immediately after

the proof of Lemma 1 in this section, the R.H.S is a sum of nonnegative terms. So

obviously if l(E) > l + k − 1, i.e. |E| > ml+k−1, then g(|E|) > 0, which implies

vE = 0. Here l(.) is the height function of X defined in §1. The equation (3) also

implies that LI((vE)) = 0 for I ∈ Xi, i = k − 1, k − 3, · · · . So LI((vE)) = 0 for all

I ∈ X0 ∪X1 ∪ · · · ∪Xk. In particular, L0((vE)) = 0 where 0 is the least element of X.

To show that vE = 0 for all E ∈ F , we assume the contrary. Define J = {l(E)|E ∈
F , vE 6= 0}. Let j0 be the largest number of J . By the results in the previous

paragraph and the remark after the proof of Lemma 1, we have l ≤ j0 ≤ k + l − 1.

In the following, we distinguish 2 cases:

Case 1. Suppose j0 = l, then there exists an E ∈ F with l(E) = l and vE 6= 0.

Since F is an {l, l + 1, · · · , l + k − 1}-intersection family, l(E ∧ F ) ≥ l = l(E) for

∀F ∈ F , so either F > E or F = E. If F 6= E, then F > E and l(F ) > l(E).

Therefore vF = 0 by the definition of J and j0. Further because 0 = L0((vF )) =∑
F∈F vF = vE, we have vE = 0, a contradiction.

Case 2. Suppose l < j0 ≤ l + k − 1 and there exists an E ∈ F such that l(E) = j0

and vE 6= 0. We fix such an E.

Since f0, f1, · · · , fj0−l form a base of the vector space of polynomials of degree

≤ j0 − l, there exist real numbers c0, c1, · · · , cj0−l such that

j0−l∑
i=0

cifi(x) = (x − ml) · · · (x − mj0−1).
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In the following we let h(x) = (x − ml) · · · (x − mj0−1) and define λI(E) = 1 if I ≤ E

and 0 otherwise.

As in the proof of Lemma 2, we have

j0−l∑
i=0

ci

∑
I∈Xi

λI(E)LI

=
j0−l∑
i=0

ci

∑
F∈F

xF |{I|I ∈ Xi, I ≤ F, I ≤ E}|

=
j0−l∑
i=0

ci

∑
F∈F

xF fi(|F ∧ E|)

=
∑
F∈F

xF

j0−l∑
i=0

cifi(|F ∧ E|)

=
∑
F∈F

xF h(|E ∧ F |).

Specializing xF = vF , ∀F ∈ F , we have

j0−l∑
i=0

ci

∑
I∈Xi

λI(E)LI((vF )) =
∑
F∈F

vF h(|E ∧ F |) (∗)

Since LI((vF )) = 0, ∀I ∈ X0 ∪ X1 ∪ · · · ∪ Xk, the left hand side is equal to 0. We

know if F 6≥ E, then l(E ∧ F ) < l(E) = j0 and so |E ∧ F | ∈ {ml, ml+1, · · · , mj0−1}
which implies h(|E ∧ F |) = 0; if F ≥ E and F 6= E, then l(F ) > l(E) = j0 and

by the definition of J and j0, vF = 0. So the right hand side of (∗) is equal to

h(|E ∧ E|)vE = h(|E|)vE. Since h(|E|) 6= 0, we get vE = 0, a contradiction. This

proves Lemma 3 and therefore completes the proof of Theorem 2.

§4. The Proof of Theorem 3

Let l = | ∪k
i=0 Xi| =

∑k
i=0 |Xi|. We consider the |F| by l 0-1 matrix M whose

rows are indexed by elements of F and whose columns are indexed by elements of Yk,

where Yk := ∪k
i=0Xi for k = 0, 1, . . . , n. For F ∈ F , S ∈ Yk, the (F, S)-entry of M is

defined to be 1 if either F ∈ Yk and S = F or F ∈ X − Yk, S ∈ Xk and S ≤ F . It

is defined to be 0 otherwise.
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Observations. It is clear from the above definition of M that

(1) if the (F, S)-entry of M is 1 then S ≤ F ,

(2) each row has at least one nonzero entry, and

(3) if F ∈ F and F ∈ Xu, u > k, then the row corresponding to F has fk(mu) > 1

nonzero entries (see remark 4 in the introduction).

Claim. For F 6= E ∈ F , the (F, E)-entry in MMT is 0.

Proof of the claim. Suppose the (F, E)-entry of MMT is ≥ 1. Then there exists

an S ∈ Yk such that both the (F, S)-entry and the (E, S)-entry of M are 1. By

observation (1), S ≤ F ∧ E, so S ∈ ∪k−1
i=0 Xi = Yk−1 since F is a {0, 1, . . . , k − 1}-

intersection family. But from the definition of M , for such an S, the (F, S)-entry of

M is 1 if and only if F = S. The same is true for the (E, S)-entry. So F = S = E,

which is a contradiction. This proves the claim.

From the above claim, it is clear that MMT is a diagonal matrix, and it is also

clear that the diagonal entries are nonzero by observation (2) above. So MMT is a

nonsingular |F| by |F| matrix.

Therefore Rank(M) = Rank(MMT ) = |F|. Since M is an |F| by l matrix, we

must have l ≥ |F|.

Now suppose |F| =
∑k

i=0 |Xi|, so M is a square matrix. It is clear that each column

can contain at most one nonzero entry, otherwise MMT would not be a diagonal

matrix. So the total number of 1’s in M is ≤ |F|. Therefore by observation (2)

the total number of 1’s in M is |F|. So each row of M should contain exactly one

nonzero entry by the above observations. This means that F ∈ Yk for any F ∈ F .

So F ⊆ Yk = ∪k
i=0Xi. But |F| =

∑k
i=0 |Xi|, so F = ∪k

i=0Xi.

Remark . For the proof of Theorem 4, we consider the 0-1 incidence matrix Mk

whose rows and columns are indexed by the elements of F and Xk respectively. The

rest of the proof is similar to but simpler than that of Theorem 3 above and hence

omitted.

§5. The Proof of Theorem 5
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Define gi(x) = (x − m0)(x − m1) · · · (x − mi−1) for i = 1, 2, · · · , s and g0(x) =

f0(x) = 1. Since gi(x)’s are monic, there exist s + 1 integers b0, b1, · · · , bs such that

(x − ml1)(x − ml2) · · · (x − mls) =
∑s

i=0 bigi(x). So

(x − ml1)(x − ml2) · · · (x − mls) =
s∑

i=0

cifi(x) (4)

where ci = bi(mi − m0)(mi − m2) · · · (mi − mi−1) are integers for i = 1, 2, · · · , s

and c0 = b0, since by remark 4 in the introduction fi(x) = gi(x)/(mi − m0)(mi −
m2) · · · (mi − mi−1) for i = 1, 2, · · · , s.

For 0 ≤ l ≤ k we define Mk,l to be an incidence matrix whose rows and columns are

indexed by elements of Xk and Xl respectively. For A ∈ Xk, S ∈ Xl, the (A, S)-entry

is 1 if S ≤ A and 0 otherwise.

The (A, B)-entry of Mk,sMs,i is easily seen to be the number of elements S such

that A ≥ S ≥ B where A ∈ Xk, S ∈ Xs, B ∈ Xi. Therefore from the definition of

polynomial semi-lattice it follows that this number is fs−i(mk−i) and hence

Mk,sMs,i = fs−i(mk−i)Mk,i for i ≤ s ≤ k.

From this we see that the column space of Mk,i is contained in that of Mk,s for

i = 0, 1, . . . , s.

Then the column space of the integer matrix M :=
∑s

i=0 ciMk,iM
T
k,i is contained in

that of Mk,s. So rank(M) ≤ rank(Mk,s) ≤ |Xs|.
Define MF to be the submatrix of M , whose rows and columns are indexed by

elements of F . Similarly as in the proof of Lemma 2 of §3, we easily check that the

(A, B)-entry of MF is
∑s

i=0 cifi(|A ∧ B|) which by (4) above is equal to

(|A ∧ B| − ml1)(|A ∧ B| − ml2) · · · (|A ∧ B| − mls).

So the (A, B)-entry of MF is ≡ (|A∧B|−µ1)(|A∧B|−µ2) · · · (|A∧B|−µs) (mod p).

Now if A 6= B, then |A ∧ B| ∈ L and therefore |A ∧ B| is congruent to one

of µ1, µ2, · · · , µs by the condition of Theorem 5, so the (A, B)-entry of MF is ≡ 0

(mod p); if A = B, then |A ∧ B| = |A| = mk which is not congruent to any one of

µ1, µ2, · · · , µs, so the (A, A)-entry of MF is 6≡ 0 (mod p).
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In summation we have: (A, B)-entry of MF is ≡ 0 (mod p) if A 6= B but 6≡ 0

(mod p) if A = B.

So MF , considered as a matrix over Fp, the finite field of order p, is a square

matrtix whose diagonal entries are nonzero and whose nondiagonal entries are 0. So

det(MF) 6≡ 0 (mod p). This implies that det(MF) is a nonzero rational integer and

therefore MF is nonsingular.

Therefore |F| = rank(MF) and hence |F| = rank(MF) ≤ rank(M) ≤ |Xs|.

§6. The Proof of Theorem 6

We keep the notations as in the proof of Theorem 5 in §5. In particular, by the

argument in §5, we have the following fact:

there exist s + 1 integers c0, c1, · · · , cs such that (x − µ1)(x − µ2) · · · (x − µs) ≡∑s
i=0 cifi(x) (mod p).

Define Mi to be the 0-1 incidence matrix of F and Xi whose rows and columns are

indexed by the elements of F and Xi respectively. The (F, S)-entry of Mi is 1 if and

only if F ≥ S, 0 otherwise. It is not hard to see that the (F, E)-entry of MiM
T
i is

fi(|F ∧ E|).
Define MF to be an integer matrix whose rows and columns are indexed by the

elements of F . The (F, E)-entry of MF is
∑s

i=0 cifi(|F ∧ E|). It is clear that each

row of MF is a linear combination of rows of M0M
T
0 , M1M

T
1 , · · · , MsM

T
s and so

rank(MF) ≤ ∑s
i=0 rank(MiM

T
i ) ≤ ∑s

i=0 |Xi|.
By a similar argument as in the proof of Theorem 5, we can show that MF , consid-

ered as a matrix over Fp, is such that all the nondiagonal entries are 0 and all the di-

agonal entries are nonzero. So det(MF) 6≡ 0 (mod p), which implies that det(M) 6= 0

in Z. So M is nonsingular and therefore |F| = rank(M) ≤ ∑s
i=0 |Xi|.
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4. P. Frankl and Z. Füredi, “Families of Finite sets with missing intersections,”

Colloquia Mathematica Societatis Janos Bolyai 37:305-320, 1981.

5. P. Frankl and R. M. Wilson, “Intersection Theorem with Geometric Consequences,”

Combinatorica 1(4) (1981) 357-368.

6. G. V. Ramanan, “Proof of a conjecture of Frankl and Füredi,” To appear.
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