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Abstract

Let Γ be a regular (connected) graph with n vertices and d + 1 distinct
eigenvalues. As a main result, it is shown that Γ is an r-antipodal distance-
regular graph if and only if the distance graph Γd is constituted by disjoint
copies of the complete graph Kr, with r satisfying an expression in terms of n
and the distinct eigenvalues.

AMS subject classifications. 05C50 05E30

1 Introduction

The core of spectral graph theory is to describe the properties of a graph by its
spectrum and find conditions that cospectral graphs may not share. For instance,
consider the following question: Can we see from the spectrum of a graph with
diameter D, say, whether it is distance-regular? Since a long time it was known that
the answer to this question is ‘yes’ when D ≤ 2 and ‘not’ if D ≥ 4. Then, on the basis
of these results, it had been conjectured (cf. Cvetković, Doob, and H. Sachs [5] ) that
the answer is also ‘yes’ for D = 3, but recently Haemers [19] disproved the conjecture
constructing some counterexamples. So, in general the spectrum is not sufficient to
assure distance-regularity and, if we want to go further, we must require the graph
to satisfy some additional conditions. In this direction, Van Dam and Haemers [8]
showed that, in the case D = 3, such a condition could be the number nd of vertices
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at “extremal distance” D = d (where d + 1 is the number of distinct eigenvalues)
from each vertex. Independently, Garriga, Yebra and the author [13] settled the case
nd = 1 (for any value of D), that is the case of 2-antipodal distance-regular graphs.
Finally, Garriga and the author [11]

solved the general case, characterizing distance-regular graphs as those regular
graphs whose number of vertices at distance d from each vertex is what it should be
(a number that depends only on the spectrum of the graph.)

An striking peculiarity of the case nd = 1 (2-antipodal graphs) is that, in fact,
we do not need to look at the whole spectrum, but only at the distinct eigenvalues
(its multiplicities can be deduced from them.) The main contribution of this paper
is to show that this is also true for r-antipodal distance-regular graphs. As a main
result it is shown that an antipodal regular graph is distance-regular if, and only if,
its ‘fibres’ (that is, the sets of antipodal vertices) have all cardinality r, a number
depending on the order and the eigenvalues of the graph. This result is obtained
via an spectral bound for the k-independence number, or (standard) independence
number of the k-th power of the graph, and the study of the limit case in which such
a bound is attained.

Let us now fix the terminology and notation used throughout the paper. Thus,
Γ = (V, E) denotes a connected (simple and finite) graph with order n := |V | and
adjacency matrix A = A(Γ). The distance between two vertices u, v ∈ V is repre-
sented by dist(u, v). The eccentricity of a vertex u is ecc(u) := maxv∈V dist(u, v), and
the diameter of Γ is D := maxu∈V ecc(u). As usual, Γk(u), 0 ≤ k ≤ ecc(u), denotes
the set of vertices at distance k from u, and Γ1(u) is simply written as Γ(u). The
distance-k graph Γk, 0 ≤ k ≤ D, is the (possibly non-connected) graph on V where
two vertices are adjacent whenever they are at distance k in Γ. Thus, in particular, Γ0

is the trivial graph on n vertices, and Γ1 = Γ. The adjacency matrix of Γk, denoted
by Ak, is usually referred as the distance-k matrix of Γ. A graph Γ of diameter D
is called antipodal if, for any given vertex u ∈ V , the set {u} ∪ ΓD(u) consists of
vertices which are mutually at distance D. In other words, there exists a partition of
the vertex set into classes (called the fibres of Γ) with the property that two distinct
vertices are in the same class iff they are at distance D (see, for instance, Godsil [17]
.) If all the fibres have the same cardinality, say r, we say that Γ is an r-antipodal
graph.

We index all the involved matrices and vectors by the vertices of Γ. Moreover,
for any vertex u ∈ V , we denote by eu the u-th unitary vector of the canonical basis
of R

n. Thus, the characteristic vector of a vertex set U ⊂ V is just eU :=
∑

u∈U eu.
As usual, the adjacency matrix A of Γ is seen as an endomorphism of R

n. We let a
polynomial p ∈ Rk[x] operate on R

n by the rule pw := p(A)w, where w ∈ R
n, and
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the matrix is not specified unless some confusion may arise. As usual, J denotes the
n × n matrix with all entries equal to 1, and similarly j ∈ R

n is the all-1 vector. The
spectrum of Γ is the set of eigenvalues of A together with their multiplicities:

sp Γ := {λm0
0 , λm1

1 , . . . , λmd
d }

where the superscripts denote multiplicities. Recall that the largest positive eigen-
value λ0 (with multiplicity one if Γ is connected) has an eigenvector ν = (ν1, ν2, . . . , νn)>,
which can be taken with all its entries positive, and we will consider it normalized in
such a way that its smallest entry is 1. Thus, ν = j when Γ is regular. In some of
our results we do not use the whole spectrum, but only the mesh (set) constituted
by all the distinct eigenvalues, that is

ev Γ := {λ0, λ1, . . . , λd}

in decreasing order: λ0 > λ1 > · · · > λd. (We follow here the notation of Godsil
[17] .) Associated to such a mesh, we make ample use of the moment-like positive
numbers πi, which are defined as

πi =
d∏

j=0,j 6=i

|λi − λj| (0 ≤ i ≤ d). (1)

As it is well-known, if Γ is connected, its diameter is at most d = | ev Γ| − 1 (see,
for instance, Biggs [2] .) Then, we say that Γ is extremal when it has “spectrally
maximum” diameter D = d. We also say that Γ is diametral when all its vertices
have eccentricity equal to the diameter.

In order to obtain bounds on the diameter of a graph in terms of its eigenvalues,
Garriga, Yebra and the author [12] used the so-called alternating polynomial Pk,
0 ≤ k ≤ d − 1, which is the (unique) polynomial satisfying

Pk(λ0) = max
p∈Rk[x]

{p(λ0) : ‖p‖∞ ≤ 1}

where ‖p‖∞ = max1≤i≤d |p(λi)|. When k = d−1, we simply speak about the alternat-
ing polynomial, P := Pd−1. In [12] it was proved that the k-alternating polynomial
is characterized by taking k + 1 alternating values ±1 at ev Γ, with Pk(λ1) = 1
and Pk(λd) = (−1)k. In particular, for k = d − 1, this characterization gives
P (λi) = (−1)i+1, 1 ≤ i ≤ d, which together with Lagrange interpolation yields

P (λ0) =
d∑

i=1

π0

πi

P (λ0) =
d∑

i=1

π0

πi

. (2)
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Some particular cases of these polynomials were also considered by Van Dam and
Haemers in [7] .

We finally recall that the Kronecker product of two matrices A = (aij) and B,
denoted by A ⊗ B, is obtained by replacing each entry aij with the matrix aijB,
for all i and j. Then, if u and v are eigenvectors of A and B, with corresponding
eigenvalues λ and µ, respectively, then u ⊗ v (seeing u and v as matrices) is an
eigenvector of A ⊗ B, with eigenvalue λµ.

2 The k-independence number

Let Γ = (V, E) be a graph with diameter D. A vertex set U ⊂ V is said to be k-
independent, for some integer k ≥ 0, if their vertices are mutually at distance greater
than k. By convention, U = {u} will be supposed to be k-independent for every k.
The k-independence number αk of Γ is then defined as the cardinality of a maximum
k-independent set. Thus, trivially, α0 = n and αk = 1 if k ≥ D. Moreover, α1 ≡ α
is the standard independence or stability number. Notice also that αk is, in fact, the
independence number of the k-th power of Γ. In [10] , Garriga and the author showed
that, when 0 ≤ k ≤ d − 1, the k-independence number of a regular graph satisfies
the following spectral upperbound

αk <
2n

Pk(λ0) + 1
+ 1.

where Pk is the k-alternating polynomial of Γ. This was derived as a consequence of
a result on the (s, t)-diameter, which is the maximum distance between two subsets
of s ant t vertices. Here we begin with a result which slightly improves this bound
and, more important, tell us what happens when the bound is attained. Although
both bounds are very similar, the method used here is quite different from that used
in [10] . Roughly speaking, we must now use a more precise technique, which, rather
than the distance between two subsets, should take into account all the distances
between vertices of a unique subset. As noted by the referee, the improved bound
can also be derived by using ‘eigenvalue interlacing’ (see Haemers’ survey [18] on this
versatile technique.) More details about this approach can be found in [9] .

Theorem 2.1 Let Γ be a connected regular graph with n vertices, mesh of eigenvalues
ev Γ = {λ0, λ1, . . . , λd}, and k-alternating polynomial Pk. Then, for any 0 ≤ k ≤
d − 1, its k-independence number satisfies

αk ≤ 2n
Pk(λ0) + 1

. (3)
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If equality holds for some (maximum) k-independent set U , then there exists a poly-
nomial p ∈ Rd[x] (independent of U) such that

peu = eU\{u}peu = eU\{u}. (4)

for every vertex u ∈ U .

Proof. Let U = {u0, u1, . . . , ur−1} be a maximum k-independent set, where
r = |U | = αk. From the k-alternating polynomial Pk of Γ, we consider the polynomial
Qk := r

2Pk + r
2 −1. Then, since Pk(λ0) ≥ 1 and −1 ≤ Pk(λi) ≤ 1 for i 6= 0, the matrix

Qk(A) has eigenvalues Qk(λ0) ≥ r − 1 and Qk(λi) satisfying −1 ≤ Qk(λi) ≤ r − 1 for
1 ≤ i ≤ d. Now consider the matrix B := A(Kr) ⊗ Qk(A). For instance, for r = 3
we have

B =




O Qk(A) Qk(A)

Qk(A) O Qk(A)

Qk(A) Qk(A) O




.

The complete graph Kr has eigenvalues r − 1 and −1 (with multiplicity r − 1),
with corresponding orthogonal eigenvectors j ∈ R

r and φi = (1, ωi, ω2i, . . . , ω(r−1)i)>,
1 ≤ i ≤ r − 1, where ω is a primitive r-th root of 1, say ω := ej 2π

r . Consequently,
each eigenvector u of Qk(A) with eigenvalue Qk(λ), λ ∈ ev Γ, gives rise to the
eigenvalues (r − 1)Qk(λ) and −Qk(λ) (with multiplicity r − 1), with corresponding
orthogonal eigenvectors u0 := j ⊗ u and ui := φi ⊗ u, 1 ≤ i ≤ r − 1. Thus, when
λ 6= λ0, we have −1 ≤ Qk(λ) ≤ r − 1 and hence the corresponding eigenvalues of B
are within the interval [−(r − 1), (r − 1)2]. Moreover, B has maximum eigenvalue
(r − 1)Qk(λ0) ≥ (r − 1)2. Now take the vector fU := (e>

u0
|e>

u1
| · · · |e>

ur−1
)> ∈ R

rn, and
consider its spectral decomposition:

fU =
r−1∑
i=0

〈fU , ji〉
‖ji‖2 ji + zU =

1
n

j0 + zU (5)

where zU ∈ 〈j0, j1, . . . , jr−1〉⊥, and we have used that 〈fU , j0〉 = r, ‖ji‖2 = rn, and
〈fU , ji〉 =

∑r−1
j=0 ωij = 0, for any 1 ≤ i ≤ r − 1. From (5), we get

‖zU‖2 = ‖fU‖2 − 1
n2‖j0‖2 = r

(
1 − 1

n

)
.

Since there is no path of length ≤ k between any pair of vertices of U , (Qk(A))uiuj
=

0 for any i 6= j. Thus,

0 = 〈BfU , fU〉 =
〈

(r − 1)Qk(λ0)
n

j0 + BzU ,
1
n

j0 + zU

〉
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=
r(r − 1)Qk(λ0)

n
+ 〈BzU , zU〉

≥ r(r − 1)Qk(λ0)
n

− (r − 1)‖zU‖2 =
r(r − 1)

n
(Qk(λ0) − n + 1).

Therefore, we get
Qk(λ0) =

αk

2
Pk(λ0) +

αk

2
− 1 ≤ n − 1

and (3) follows.
From the above, notice that equality holds iff

BzU = −(r − 1)zU . (6)

By (5), we infer that, if eui
= 1

n
j +zi, zi ∈ j⊥, represents the spectral decomposition

of eui
in R

n ∼= ⊕d
j=0 Ker(A − λjI), 0 ≤ i ≤ r − 1, then zU = (z>

0 |z>
1 | · · · |z>

r−1)
>.

Hence, (6) gives the r vectorial equations:

r−1∑
i=0,i6=j

Qkzi = −(r − 1)zj (0 ≤ j ≤ r − 1)

which are equivalent to

Qkzi = (r − 2)zi −
r−1∑

j=0,j 6=i

Qkzi = (r − 2)zi −
r−1∑

j=0,j 6=i

zj (0 ≤ i ≤ r − 1). (7)

Let H be the Hoffman polynomial defined by its values at ev Γ, namely H(λ0) = n,
H(λi) = 0, 1 ≤ i ≤ d, and satisfying H(A) = J (see Hoffman [20] .) Now we
claim that the searched polynomial is p = H − Qk + (r − 2), whose value at λ0 is
p(λ0) = n − (n − 1) + (r − 2) = r − 1. Indeed, using (7), we get

peui
= p

( 1
n

j + zi

)
=

r − 1
n

j − Qkzi + (r − 2)zi

=
r − 1

n
j +

r−1∑
j=0,j 6=i

zj =
r−1∑

j=0,j 6=i

euj
= eU\{ui} (0 ≤ i ≤ r − 1),

which concludes the proof of the theorem. 2

For general k, the given bound (3) is sharp. For instance, in [14] it was shown
that the alternating polynomial P (k = d−1) of an r-antipodal distance-regular graph
on n vertices satisfies P (λ) = 2

r
n − 1, whence we get αd−1 ≤ r. In the next section

we prove again, for completeness, such a result on P by using Theorem 2.1, but first
we will pay attention to some other straightforward consequences of the theorem.
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Using the language of Coding Theory, notice that (3) yields a bound for the size
of any code C in Γ with minimum distance δ (that is the minimum distance between
two distinct ‘code words’ —vertices of Γ.) Namely,

|C| ≤ 2n
Pδ−1(λ0) + 1

.

In the spirit of [21] , where a spectral upper bound is given on the minimum
distance between t subsets of same size, we can consider the t-diameter Dt defined
by

Dt := max
U⊂V,|U |=t

{ min
u,v∈U

dist(u, v)},

as it was done in [16] ,[4] . The standard diameter is then D = D2. From our theorem
we have the following result.

Corollary 2.2 Let Γ be a regular graph on n vertices, and with t-diameter Dt. Then,

Pk(λ0) >
2n
t

Pk(λ0) >
2n
t

− 1 ⇒ Dt ≤ k. (8)

Proof. From the hypothesis and Theorem 2.1we get αk < t, which implies the
result. 2

By using the positive eigenvector ν of the Introduction, similar results can be
obtained for non-regular graphs. So, from the vector fU =

∑r−1
i=0

1
νui

eui
, instead of

(3) we now get

αk ≤ 2‖ν‖2

Pk(λ0) + 1
(9)

whence

Pk(λ0) >
2‖ν‖2

t
Pk(λ0) >

2‖ν‖2

t
− 1 ⇒ Dt ≤ k. (10)

Spectral bounds on the t-diameter, in terms of the i-th largest eigenvalue (in absolute
value) of the adjacency and Laplacian matrices can be found in Kahale [21] and
Chung, Delorme, and Solé [4] , respectively.

3 Antipodal Distance-Regular Graphs

In this section we study two spectral characterizations of antipodal distance-regular
graphs. The fist one establishes that the distance-regular graphs which are antipodal
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are characterized by their eigenvalue multiplicities. The second characterization was
already commented in the Introduction, and states that we can see from the spectrum
of a regular graph, and the cardinalities of the “extremal fibres” (the sets of antipodal
vertices at extremal distance) whether the graph is an antipodal distance-regular
graph. Let us begin by recalling some definitions and known results which are on the
basis of our work.

3.1 Distance-regular graphs

A (connected) graph Γ with diameter D is distance-regular if, for any two vertices u
and v ∈ Γk(u), 0 ≤ k ≤ D, the numbers ak(u) = |Γk(u) ∩ Γ(v)|, bk(u) = |Γk+1(u) ∩
Γ(v)|, and ck(u) = |Γk−1(u) ∩ Γ(v)| do not depend on u and v, but only on k.
Some basic references dealing with this topic are Bannai and Ito [1] , Biggs [2] , and
Brouwer, Cohen and Neumaier [3] . A well-known characterization of such graphs
is the following: a graph Γ, with adjacency matrix A and diameter D, is distance-
regular if and only if, for any 0 ≤ k ≤ D, its distance-k matrix Ak is a polynomial
of degree k in A. Recently, Garriga, Yebra, and the author [14] showed that, if Γ
is extremal and diametral, the condition on AD suffices, as stated in the following
theorem.

Theorem 3.1 A graph Γ with adjacency matrix A and diameter D is distance-
regular if and only if Γ is extremal, diametral, and its distance-D matrix AD is a
polynomial of degree D in A. 2

From this result, and generalizing some results of Haemers and Van Dam [19] ,[6]
,[8] ] (the case d = 3) , and Garriga, Yebra and the author [13] (the case |Γd(u)| = 1),
the following spectral characterization was also obtained in [11] :

Theorem 3.2 A regular graph Γ on n vertices, with spectrum sp Γ = {λ0, λ
m1
1 , · · · , λmd

d },
is distance-regular if and only if

|Γd(u)| =
n

π2
0
∑d

i=0
1

miπ2
i

(11)

for every vertex u of Γ. 2

Notice that the cases d = 1, 2 are trivial, in the sense that every (connected)
regular graph Γ with two or three different eigenvalues is distance-regular. More
precisely, Γ = Kn if d + 1 = 2, and Γ is strongly regular when d + 1 = 3. See, for
instance, Godsil [17] .
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3.2 Antipodal graphs

Let us now turn our attention to the antipodal graphs. In this context, another
consequence of Theorem 2.1is the following result, already proved in [15] using a
different approach (see also [16] .)

Proposition 3.3 Let Γ be an extremal r-antipodal regular graph, with n vertices and
diameter D, and let AD be the adjacency matrix of ΓD. If AD belongs to the algebra
generated by A, then AD = J −R(A), where R := r

2P − r
2 +1 and P is the alternating

polynomial of Γ.

Proof. The first part of the proof goes as in [15] : We know that sp ΓD =
{(r−1)σ, −1n−σ}, where σ = n/r stands for the number of fibres. By the hypothesis,
there exists a polynomial p ∈ Rd[x] such that p(A) = AD, so that p(λ0) = r − 1 and
p(λi) ∈ {r − 1, −1} for 1 ≤ i ≤ d. Since Γ is regular, the polynomial R := H − p ∈
Rd[x] satisfies R(A) = J − AD and hence R(λ0) = n − r + 1, R(λi) ∈ {1, 1 − r}
for 1 ≤ i ≤ d. Moreover, since each entry of R(A) corresponding to a diametral
pair of vertices is zero, it must be R ∈ Rd−1[x]. Let P := 2

r
R + 1 − 2

r
. Then,

P (λ0) = 2n
r

− 1, and P (λi) = ±1 for i 6= 0. The second part of the proof consists in
proving that P is indeed the alternating polynomial Pd−1 of Γ. But, from the above,
r = αd−1 = 2n/(P (λ0) + 1), so that, using (3 ) we get P (λ0) ≥ Pd−1(λ0) and hence
P = Pd−1. 2

An interesting example of graphs satisfying the above hypotheses are the r-
antipodal distance-regular graphs. Indeed, they are extremal, D = d, and its ‘distance-
d polynomial’ pd satisfies Ad = pd(A). Thus, from pd = H − r

2P + r
2 − 1, we infer

that their alternating polynomial satisfies P (λ0) = 2n
r

− 1 and hence

r =
2n

P (λ0) + 1
= 2n

(
d∑

i=0

π0

πi

)−1

, (12)

where we have used (2). As mentioned above, this property of antipodal distance-
regular graphs was already proved in [15] . At the end of the section, we will see
that this condition is also sufficient to assure that an r-antipodal (regular) graph
is distance-regular. Next, we use the above results to give a characterization of
those distance-regular graphs which are antipodal, in terms of their eigenvalue mul-
tiplicities. With this aim, note first that, from the above expression of pd, we have
pd(λi) = r

2((−1)i + 1) − 1 for 1 ≤ i ≤ d.
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Theorem 3.4 A distance-regular graph Γ on n vertices, with spectrum sp Γ =
{λ0, λ

m1
1 , . . . , λmd

d }, is r-antipodal if and only if

mi =
π0

πi

(i even); mi = (r − 1)
π0

πi

(i odd). (13)

Proof. It is well-known that the multiplicities of a distance-regular graph can
be obtained from the distance-d polynomial pd and the eigenvalues using the following
formula:

mi =
φ0pd(λ0)
φipd(λi)

(0 ≤ i ≤ d) (14)

where φi :=
∏d

j=0,j 6=i(λi − λj) = (−1)iπi (see, for instance, Bannai and Ito [1] .) But,
if Γ is r-antipodal we have already seen that pd(λi) = r − 1 when i is even, and
pd(λi) = −1 when i is odd, giving (13 ). Conversely, from (13 ) and ( 13 ) we get

pd(λi) = pd(λ0) (i even); pd(λi) =
−pd(λ0)
r − 1

(i odd). (15)

To compute the value of pd(λ0), we first notice that

0 = tr Ad = tr(pd(A)) =
d∑

i=0
mipd(λi) = pd(λ0)

d∑
i=0

φ0

φi

where we have used the value of mipd(λi), 0 ≤ i ≤ d, given by (14). Hence,

σ :=
∑

i even

π0

πi

=
∑

i odd

π0

πi

and, as the multiplicities add up to n,

d∑
i=0

mi = σ + (r − 1)σ = n

whence σ = n/r. Consequently, by substituting the multiplicities given by (13) into
(11), we get

pd(λ0) = |Γd(u)| = n

( ∑
i even

π0

πi

+
1

r − 1
∑

i odd

π0

πi

)−1

=
n

σ

(
1 +

1
r − 1

)−1

= r − 1.

Thus, by (??), the (0, 1)-matrix pd(A) has eigenvalues r−1 (with multiplicity σ) and
−1 (with multiplicity (r − 1)σ). Consequently, it must be the adjacency matrix of
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the graph constituted by several (σ) copies of Kr. In other words, Γ is r-antipodal,
as claimed. 2

The case r = 2, which results in

mj =
π0

πj

mj =
π0

πj

(0 ≤ j ≤ d), (16)

was studied in [13] .

Theorem 3.5 Let Γ = (V, E) be a connected regular graph on n vertices, with mesh
of eigenvalues ev Γ = {λ0, λ1, . . . , λd}. Then Γ is an r-antipodal distance-regular
graph if and only if the distance-d graph Γd is constituted by disjoint copies of the
complete graph Kr with

r = 2n
(

d∑
i=0

π0

πi

)−1

.

Proof. We have already proved necessity as a consequence of Proposition 3.3,
from which we derived (12). To prove sufficiency note that, by hypothesis, any
vertex u of Γ belongs to an (d − 1)-independent set with αd−1 = r vertices. Thus,
from Theorem 2.1, there exists a polynomial p of degree d such that peu = eΓd(u) for
every u ∈ V . That is,

p(A) = Ad.

Consequently, since Γ is clearly both extremal and diametral, Theorem 3.1applies,
and Γ is an (r-antipodal) distance-regular graph. 2

Acknowledgment. Work supported in part by the Spanish Research Council (Comi-
sión Interministerial de Ciencia y Tecnoloǵıa, CICYT) under projects TIC 92-1228-E
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submitted.
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