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Abstract

We study the topology and combinatorics of an arrangement of hyperplanes
in Cn that generalizes the classical braid arrangement. The arrangement plays
in important role in the work of Schechtman & Varchenko [12, Part II] on Lie
algebra homology, where it appears in a generic fiber of a projection of the braid
arrangement. The study of the intersection lattice of the arrangement leads to
the definition of lattices of colored partitions. A detailed combinatorial analysis
then provides algebro-geometric and topological properties of the complement
of the arrangement. Using results on the character of Sn on the cohomology of
these arrangements we are able to deduce the rational cohomology of certain
spaces of polynomials in the complement of the standard discriminant that have
no root in the first s integers.

1 Introduction

In this paper we study the arrangement Acol,s
n of all affine hyperplanes Hij : zi = zj,

1 ≤ i < j ≤ n, and Hr
i : zi = r, 1 ≤ i ≤ n and 1 ≤ r ≤ s. This arrangement appears

in the work of Schechtman & Varchenko [12, Part II] as a generic fiber of projections
of the braid space in the context of Lie-algebra homology. We investigate the combi-
natorics of the intersection lattice LAcol,s

n
of Acol,s

n (i.e., the set of all subspaces that are
intersections of hyperplanes in the arrangement, ordered by reversed inclusion). This
leads to the definition of “colored partitions.” Via the analysis of the homology of the
order complex of the intersection lattice and using a formula by Orlik & Solomon [10]
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we are able to determine the cohomology of the complement Cn \
⋃

H∈Acol,s
n

H. The sym-

metric group Sn acts on Cn by permuting the coordinates and leaving Acol,s
n invariant.

By a calculation of the character of Sn on the homology of the order complex of LAcol,s
n

and using a formula of Orlik & Solomon [10] we are able to describe the character of

Sn on the cohomology of the complement Cn \
⋃

H∈Acol,s
n

H . Passing to rational coho-

mology and computing the space of Sn-invariants on the cohomology allows then a

description of the rational cohomology of the quotient (Cn \
⋃

H∈Acol,s
n

H)/Sn. The latter

can then be identified with the space of polynomials f(X) = Xn+an−1X
n−1 + · · ·+a0

in Cn such that f (X) has no double root and no root of f(X) lies in [s] := {1, . . . , s}.
These spaces can be used to approximate the space of monic polynomials of degree
n that have no double and no integral root.

2 Basic Definitions

An arrangement A of hyperplanes in Cn is a finite set of affine hyperplanes in complex
n-space. To each arrangement A corresponds an n-dimensional complex manifold

MA = Cn \
⋃
H∈A

H. The space MA is called the complement of the arrangement

A. The combinatorial object associated to an arrangement A is the intersection

(semi)lattice LA. It is the set of subspaces V of Cn such that ∅ 6= V =
⋂
H∈B

H for

some subset B ⊆ A ordered by reversed inclusion. Here we allow B = ∅ and identify

the intersection
⋂
H∈∅

H with the space Cn. Note, that in general LA is actually not

a lattice but a meet-semilattice (i.e., infima exist but suprema in general not). The
link between the combinatorics of LA and the topology of MA is provided by the
order complex of lower intervals in LA. In general, for a partially ordered set P
with top element 1̂ and least element 0̂ we denote by ∆(P ) the order complex of
P . This is the simplicial complex whose simplices are the chains x0 < · · · < xl in
P \ {0̂, 1̂}. For x ≤ y, x, y ∈ P , we write [x, y] to denote the interval {z | x ≤ z ≤ y}
in P . If a finite subgroup G ≤ Gln(C) acts on Cn leaving MA invariant then G
also acts on LA as a group of lattice automorphisms. If V ∈ LA then the stabilizer
StabG(V ) = {g ∈ G | V g = V } of V in G acts on the lower interval [C, V ] in LA as
a group of lattice automorphisms. These actions induce a representation of G on the
cohomology of MA and a representation of StabG(V ) on the homology of the order
complex ∆([C, V ]). The following result by Orlik & Solomon [10] links these two
representations.
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Proposition 2.1 [10] Let G ≤ Gln(C) be a finite group and let A be an arrangement
of affine hyperplanes in Cn such that MA is invariant under G. Then,

H̃i(MA) ∼=
⊕

V ∈LA/G\{C}

indGStabG(V )H̃codim(V )−i−2(∆([C, V ])),

where LA/G is a set of representatives of G-orbits on the lattice LA.

A result by Ziegler & Živaljević [21] is concerned with the union UA =
⋃
H∈A

H of

an arrangement A. The result by Ziegler & Živaljević is actually far more general and
is valid for general arrangements of linear subspaces. Here, we state an equivariant
version of the result by Ziegler & Živaljević that can be found in [19].

Proposition 2.2 [21] Let A be an arrangement of affine hyperplanes in Cn. Assume
G ≤ Gln(C) is a finite subgroup that leaves A invariant. Let 1̂ be an additional
element that is larger than any element of LA. Then, UA is G-homotopy equivalent
to ∆(LA ∪ {1̂}).

Based on these results, we start the investigation of the special class of arrange-
ments we want to consider in this paper. Before we proceed, we recall a general
method to determine the homotopy type of the order complex of a poset P . The
formula is due to Björner & Walker [3] for G = 1 and can be found in [18] in the
general case.

Lemma 2.3 [3] (Homotopy Complementation Formula) Let L be a (finite)
lattice with least element 0̂ and largest element 1̂. Assume G is a finite group of
automorphisms of L. Let a ∈ L\{0̂, 1̂} be a G-invariant element. Denote by Co(a) =
{x ∈ L | inf(x, a) = 0̂, sup(x, a) = 1̂} the set of complements of a. Then ∆(L) is
G-homotopy equivalent to the wedge∨

x∈Co(a)

susp(∆([0̂, x]) ∗∆([x, 1̂])),

where G permutes the spaces in the wedge according to the action of G on L.

In the formulation of the lemma we denote by “inf” the infimum operation in L

and by “sup” the supremum operation in L. We write “
∨

” for the wedge of topological
spaces. Recall, that the wedge X ∨ Y of two topological is the disjoint union of X
and Y modulo the identification of one point x ∈ X with one point y ∈ Y . Note, that
without specifying the points the wedge is (modulo homotopy) well defined whenever
all spaces are path-connected. It turns out, that this is the case in the formula given
by Lemma 2.3, except for some discrete 2-point spaces, where the wedge point has to
be chosen to be one of the points. By “susp” we denote the suspension operation and
by “∗” we denote the join operation. Note, that in contrast to the common usage,
we define the join of a space X with the empty set to be the space X itself and not
the empty set. For more detailed information and the definitions we refer the reader
to Munkres’ book [9].
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3 A Generalization of the Braid Arrangement

The classical braid arrangement An in complex n-space is given by the “thick” diag-
onals Hij : zi = zj for 1 ≤ i < j ≤ n. The braid arrangement, also known as the
complexified Coxeter arrangement of type A, is a well studied object (see for example
Fox & Neuwirth [7], Arnol’d [1], Brieskorn [4] and Lehrer & Solomon [8]). Its name is
derived from the fact that by a result of Fox & Neuwirth [7] the complement MAn is
the classifying space of the pure braid group on n strings. We enlarge the central (i.e.,
all hyperplanes pass through the origin) arrangement An by some affine subspaces.
Let Acol,s

n be the arrangement of complex hyperplanes Hij : zi = zj, 1 ≤ i < j ≤ n
and Hr

i : zi = r for 1 ≤ i ≤ n, 1 ≤ r ≤ s. This arrangement occurs in the work of
Schechtman & Varchenko [12, Part II]. More generally, Schechtman & Varchenko [12]
consider the projection of the complement MAn+s of the braid arrangement An+s of
hyperplanes Hij : zi = zj, 1 ≤ i < j ≤ n + s in complex (n + s)-space on the last
s coordinates. Let prn,s be the projection of (n + s)-space on the last s coordinates.
The image of prn,s is complex s-space. For a point (t1, . . . , ts) in prn,s(MAn+s) (i.e., it
satisfies ti 6= tj for 1 ≤ i < j ≤ s) the fiber pr−1

n,s(t1, . . . , ts) of prn,s when restricted to
MAn+s is homeomorphic to MAcol,s

n
.

Let us define some combinatorial objects that turn out to be important in the
investigation of the arrangement Acol,s

n . We describe a partition τ of the set [n] by
B1| · · · |Bf , where Bi ⊆ [n], Bi ∩ Bj = ∅,

⋃f
i=1 Bi = [n]. The sets Bi are called the

blocks of τ . We denote by Πn the lattice of all partition of [n] ordered by refinement
(i.e., we say B1| . . . |Bf ≤ C1| . . . |Ce if f ≤ e and for each 1 ≤ i ≤ f there is a
1 ≤ j ≤ e such that Bi ⊆ Cj). Let Πcol,s

n , s ≥ 1, be the set of all pairs (τ =
B1| · · · |Bt, (l1, . . . , lt)) of partitions τ ∈ Πn and sequences of numbers li ∈ {0, . . . , s} of
length t, where t is the number of blocks of τ and for each j ∈ [s] – note that then j 6= 0
– there is at most one index i for which li = j. We say (τ = B1| · · · |Bt, (l1, . . . , lt)) is
smaller than (τ ′ = B′1| · · · |B

′
t′, (l

′
1, . . . , l

′
t′)) if and only if τ ≤ τ ′ and if Bi ⊆ B′j then

li 6= 0 implies l′j = li. We call an element (τ = B1| · · · |Bt, (l1, . . . , lt)) of Πcol,s
n a colored

partition of [n]. We call the number li the color of the ith block of τ . The number
“0” in this context stands for “no color.” If s = 1 then Πcol,s

n is actually a lattice with
top element (|1 · · ·n|, (1)). In general, let (τ, (l1, . . . , lt)) and (τ ′, (l′1, . . . , l

′
t′)) be two

colored partitions. Assume (γ, (m1, . . . ,mq)) is an upper bound of (τ, (l1, . . . , lt)) and
(τ ′, (l′1, . . . , l

′
t′)). Then if Bi is a block of τ (resp., τ ′) then for the block Cj of γ that

contains Bi we have mj = 0 implies li = 0 (resp., l′i = 0). Hence, we may assume that
if Bi ⊆ Cj then li = mj (resp., l′i = mj). We set τ ′′ = τ∨τ ′ and for a block Dj of τ ′′ we
set nj = li for any block Bi of τ contained in Dj. Then (τ ′′, (n1, . . . , nq′)) is an upper
bound of (τ, (l1, . . . , lt)) and (τ ′, (l′1, . . . , l

′
t′)) that is smaller than (γ, (m1, . . . ,mq)).

Thus (τ ′′, (n1, . . . , nq′)) is the supremum of (τ, (l1, . . . , lt)) and (τ ′, (l′1, . . . , l
′
t′)). In

particular, this implies that all lower intervals in Πcol,s
n are lattices.

Proposition 3.1 Let 1 ≤ s, n. The intersection lattice LAcol,s
n

is isomorphic to the

partially ordered set of colored partitions Πcol,s
n .

Proof. Let (τ = (B1| . . . |Bt), (l1, . . . , lt)) be a colored partition in Πcol,s
n . Then we

map (τ = (B1| . . . |Bt), (l1, . . . , lt)) to the affine subspace V(τ,(l1,...,lt)) that is defined by
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zi = zj if i and j lie in the same block of τ and zi = lj for i ∈ Bj in case lj 6= 0.
Obviously, this is an order preserving map to LAcol,s

n
. Conversely, we map each element

V ∈ LAcol,s
n

to the colored partition (τ = B1| . . . |Bt, (l1, . . . , lt)) that is defined by :
i, j lie in the same block of τ if zi = zj and lj = zi if i ∈ Bj and zi ∈ [s]. Obviously,
the two maps are inverse to each other. One checks, that they induce indeed a poset
isomorphism LAcol,s

n

∼= Πcol,s
n .

A geometric semilattice is (see for example Wachs & Walker [17]) a meet-semilattice
L that is constructed from a geometric lattice L′ by removing an upper interval [x, 1̂]
for an atom x of L′ (i.e., L = L′ \ [x, 1̂]). If L is a geometric semilattice then for
each x ∈ L the number of elements in a maximal chain from the least element 0̂ to x
is independent of the choice of the maximal chain. We denote by rank(x) the rank
of x in L (i.e., the number of elements in a maximal chain in [0̂, x] minus 1). As an
immediate consequence we obtain :

Corollary 3.2 The partially ordered set Πcol,s
n is a geometric semilattice. In partic-

ular, if 1̂ is an additional element and s > 1 then the order complex ∆(Πcol,s
n ∪ {1̂})

is homotopic to a wedge of spheres of dimension n − 1. For s = 1 the complex
∆(Πcol,s

n ∪ {1̂}) is contractible. More generally, for an element x ∈ Πcol,s
n the order

complex of interval [0̂, x] is homotopic to a wedge of spheres of dimension rank(x)−2.

Proof. It is well known that the intersection lattice of an affine hyperplane arrange-
ment is a geometric semilattice (see for example [11]). The corresponding geometric
lattice can be constructed by enlarging the arrangement by a hyperplane at infinity
and then considering the intersection lattice of the enlarged arrangement. By a result
of Wachs & Walker [17] the order complex ∆(L ∪ {1̂}) of a geometric semilattice L
enhanced by an additional top element is homotopic to a wedge of spheres of dimen-
sions rank(L ∪ {1̂}) − 2. Also, for x ∈ L the order complex of the interval [0̂, x] is
homotopic to a wedge of spheres of dimension rank(x)− 2. Then the result for s > 1
and for intervals follows from Proposition 3.1. It remains to treat the case s = 1.
As mentioned before in this case the (semi)lattice Πcol,s

n has a top element (see also
Remark 3.3 and Proposition 4.2). Thus the order complex of Πcol,s

n ∪ {1̂} is a cone
and hence contractible.

In order to give the reader a feeling for the combinatorial structure of the lattice
of colored partitions, we classify the cover relations in Πcol,s

n . Let

(τ = B1| · · · |Bt, (l1, . . . , lt)) < (τ ′ = B′1| · · · |B
′
t′, (l

′
1, . . . , l

′
t′))

be a cover relation in Πcol,s
n . Then either :

(A) τ = τ ′, there is a unique index i such that lj = l′j for j 6= i and li = 0, l′i 6= 0.

(B) τ < τ ′ in Πn is a cover relation and τ ′ is constructed from τ by merging the
blocks Bi and Bh into the block B′j for which li = lh = l′j = 0.

(C) τ < τ ′ in Πn is a cover relation and τ ′ is constructed from τ by merging the
blocks Bi and Bh into the block B′j for which li = l′j 6= 0 and lh = 0.
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The following Remark 3.3 was first stated implicitly by Edelman & Reiner [5].
They made the observation on the realm of arrangements that are extensions of the
braid arrangement by some set of hyperplanes defined by equations zi = ±zj and
zi = 0. Of course, this includes the arrangement Acol,1

n . The case s > 1 is not
considered by Edelman & Reiner, their motivation for studying the corresponding
arrangements origins in the “freeness” condition (see the book by Orlik & Terao [11])
and therefore there is no further overlap with the work presented here.

Remark 3.3 The lattice Πcol,1
n is Sn-isomorphic to Πn+1.

Proof. We map a colored partition of [n] to the partition of [n+1] that is defined by
adjoining n+1 to the colored block, in case there is one; or adjoining the singleton |n+
1| in case there is no colored block. It is easily seen that this defines an Sn-equivariant
(Sn regarded as the subgroup of Sn+1 stabilizing n + 1) lattice isomorphism.

4 Combinatorics & Homology of Lattices of Col-

ored Partitions

In this section we determine the G-homotopy type of the posets [0̂, (τ, (l1, . . . , lt))]
where G is the stabilizer of (τ, (l1, . . . , lt)) in Sn. First, we consider the structure of
intervals [0̂, (τ = B1| · · · |Bt, (l1, . . . , lt))]. After possibly renumbering the blocks we
may assume that lf = · · · = lt = 0 and l1, . . . , lf−1 6= 0.

Lemma 4.1 Let G be the stabilizer of the colored partition (τ = B1| · · · |Bt, (l1, . . . , lt))
in Sn. Assume that lf = · · · = lt = 0 and l1, . . . , lf−1 6= 0. The interval [0̂, (τ =
B1| · · · |Bt, (l1, . . . , lt))] is G-isomorphic to

×f−1
i=1 Πcol,1

|Bi|
××ti=fΠ|Bi|

∼= ×f−1
i=1 Π|Bi|+1 ××

t
i=fΠ|Bi|.

Proof. The isomorphism to the poset on the left hand side is obvious, since all
blocks can be split independently. The second isomorphism then follows from Remark
3.3.

By the previous lemma it suffices to consider the Sn-lattices Πcol,1
n in order to

understand the G-homotopy type of lower intervals in Πcol,s
n .

Proposition 4.2 The Sn-homotopy type of Πcol,1
n is given by a wedge of n! spheres

of dimension (n − 2). The n! spheres are permuted by Sn according to its regular

representation. In particular, H̃n−2(Πcol,1
n ) is the regular Sn-module.

Proof. Let (|1 · · ·n|, (0)) be the maximal element in Πcol,1
n with no colored block

If a colored partition (τ, (l1, . . . , lt)) is a complement of (|1 · · ·n|, (0)) then at least
one (and therefore exactly one) index i must satisfy li = 1. Moreover, if there
is a non-trivial block in τ then (τ, (0, . . . , 0)) is a lower bound for (|1 · · ·n|, (0))
and (τ, (l1, . . . , lt)). Thus any complement of (|1 · · ·n|, (0)) must be of the form



the electronic journal of combinatorics 4 (1997), #R4 7

(|1| · · · |n|, (0, . . . , 1︸︷︷︸
i

, . . . 0)) where the 1 is at the ith position. Hence there are n

complements of (|1 · · ·n|, (0)) and they are permuted by Sn according to the nat-
ural Sn-action and each complement is stabilized by one of the one-point stabi-
lizers Sn−1 in Sn. Each complement is an atom in Πcol,1

n and the upper intervals
[(|1| · · · |n|, (0, . . . , 1︸︷︷︸

i

, . . . 0)), 1̂] (1̂ being the largest element (|1 · · ·n|, (1)) of Πcol,1
n )

are Sn−1-isomorphic to Πn
∼= Πcol,1

n−1 . By the G-equivariant Homotopy Complementa-
tion Formula 2.3 the result follows.

Let us denote by rn the character of the regular Sn-representation, by sgnn the
character of the sign-representation of Sn and by 1n the character of the trivial Sn-
representation. By πn we denote the character of Sn on the homology of the order
complex of Πn in dimension n− 3. It is a well studied character of dimension (n−1)!
(see Stanley [13] for a detailed description).

Corollary 4.3 Let G be the stabilizer of (τ = B1| · · · |Bt, (l1, . . . , lt)) in Sn. Assume
that lf = · · · = lt = 0 and l1, . . . , lf−1 6= 0. Let Bf | · · · |Bt be a partition of type
(1e1, . . . , nen). Then

G ∼= S|B1| × · · · × S|Bf−1| × Se1[S1]× · · · × Sen[Sn].

The Sn-character on
indSnG H̃n−t+f−2([0̂, (τ, (l1, . . . , lt))])

is given by
indSnG r|B1| · · · r|Bf−1| · sgne1 [π1] · 1e2 [π2] · · ·

Proof. The assertion follows immediately from Proposition 4.2 and the [16, Theorem
1.1].

We are grateful to Richard Stanley for pointing out that the characteristic poly-
nomial (see [14]) of Πcol,s

n can be easily computed using a result about characteristic
polynomials of hyperplane arrangements (see Orlik & Terao [11, Theorem 2.69]) or
more generally subspace arrangements (Athanasiadis [2, Theorem 2.2]). The charac-
teristic polynomial χ(P, t) of a poset P with rank function rank and minimal element
0̂ is defined by

χ(P, t) =
∑
x∈P

µ(0̂, x)trank(P )−rank(x).

Here, rank(P ) is the maximal rank of one of the elements of P and “µ” denotes the
Möbius function of P (see [14]).

Proposition 4.4 Let A be an affine hyperplane arrangement in Cn such that the
subspaces in A can be defined by equations using only integer coefficients. Let Fq

denote the field with q elements, q a prime. By our assumption we then can regard
A as an arrangement in Fn

q . Then for large enough q we have

χ(LA, q) =
∥∥∥Fn

q \ (
⋃
H∈A

H)
∥∥∥.
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Corollary 4.5 The characteristic polynomial χ(Πcol,s
n , q) is given by

(q − s) · · · (q − s− n + 1).

Proof. If (x1, . . . , xn) is a point in the complement Fn
q \ (

⋃
H∈A

H) then if q is large

enough there are (q − s − (i − 1)) choices for the ith coordinate xi. From this
observation, the result follows from the preceding Proposition 4.4 and Proposition
3.1.

So far we have treated lower intervals in Πcol,s
n . Now we turn our interest to

Πcol,s
n itself. Let us denote by 1̂ an additional element that is larger than all ele-

ments of Πcol,s
n . Then by standard facts about the characteristic polynomial (see [14])

the preceding proposition immediately implies that µ(Πcol,s
n ∪ {1̂}) = χ(Πcol,s

n , 1) =
(−1)n(s− 1) · · · ((s− 1) + (n− 1)).

Proposition 4.6 The poset Πcol,s
n ∪ {1̂} is homotopy equivalent to a wedge of

(s− 1) · · · ((s− 1) + (n − 1))

spheres of dimension n − 1. The Sn-homotopy type of Πcol,s
n ∪ {1̂} is a wedge of n!

copies of a wedge of (n+s−2)!
(s−2)!n!

spheres of dimension n− 1, that are permuted according

to the regular Sn-representation. In particular, if s = 1 then Πcol,s
n ∪ {1̂} is con-

tractible. The representation of Sn on H̃n(Πcol,s
n ) is given by (n+s−2)!

(s−2)!n!
copies of the

regular representation of Sn.

Proof. We give the non-equivariant part of the assertion. The equivariant part of
the assertion follows using Proposition 2.2 from Theorem 5.1 (ii). Note, that in the
proof of Theorem 5.1 (ii) we use the non-equivariant part of this Proposition 4.6.

By results of Wachs & Walker [17] the order complex of a geometric semilattice
L enlarged by an additional top element 1̂ is homotopic to a wedge of spheres of
dimension rank(L ∪ {1̂}) − 2. In particular, the homology of the order complex is
free of rank equal to the number of spheres and concentrated in one dimension. Since
the Möbius number of a poset equals by a result of P. Hall (see for example [14]) the
alternating sum of ranks of homology groups of the order complex of P , the result
follows from the previous observations about the Möbius number.

5 Geometry and Topology of the Arrangement

Using results on the combinatorics of Acol,s
n presented in the preceding section, we

obtain:
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Theorem 5.1 Let 1 ≤ s, n.

(i) There is an isomorphism of Sn-modules

H̃i(Cn \ UAcol,s
n

) ∼=
⊕

p∈Πcol,s
n /Sn\{0̂}

indSn
StabSn(p)H̃codim(Vp)−i−2(∆(0̂, p)),

where Vp is the subspace in LAcol,s
n

corresponding to p ∈ Πcol,s
n . In particular,

H̃∗(Cn \ UAcol,s
n

) is free.

(ii) If s > 1 then UAcol,s
n

is Sn-homotopic to a wedge of n! copies of a wedge of (n+s−2)!
(s−2)!n!

spheres of dimension n − 1, where the n! spaces are permuted according to the
regular representation of Sn. In particular, the space UAcol,s

n
/Sn is homotopic to a

wedge of (n+s−2)!
(s−2)!n!

spheres of dimension n. If s = 1 then UAcol,s
n

is Sn-contractible.

Proof. Part (i) follows immediately from Proposition 3.1, Proposition 2.1.
The proof of part (ii) is more subtle. If s = 1 then the arrangement Acol,s

n is
equivalent to a central arrangement (consider the point (1, . . . , 1) as the origin). The
map sending all points in UAcol,s

n
to the origin defines an Sn-deformation retraction. In

particular, UAcol,s
n

is Sn-contractible (it is a general well known fact that the union of a
central arrangement is contractible). Now consider the case s > 1. By Proposition 2.2
we have UAcol,s

n
'Sn ∆(Πcol,s

n ∪{1̂}). Thus it suffices to consider the Sn-homotopy type
of UAcol,s

n
. Let us regard Rn as the subspace of Cn defined by the equations Im(zi) = 0,

1 ≤ i ≤ n. Then UR

Acol,s
n

:= UAcol,s
n
∩ Rn is an Sn-deformation retract of UAcol,s

n
. The

homotopy is given byK : UAcol,s
n
×[0, 1]→ UAcol,s

n
that sends ((x1+iy1, . . . , xn+iyn), t) to

(x1+ity1, . . . , xn+ityn). Actually this is a well known general fact about arrangements
and their complexifications (see [21]). Let UR

An be the “real part” UAn ∩Rn of union
of the braid arrangement An = {Hij : zi = zj | 1 ≤ i < j ≤ n}. Then UR

An is a Sn-
invariant subspace of UR

Acol,s
n

. Moreover, UR
An is Sn-contractible. The map L : UR

An ×

[0, 1]→ UR
An defined by L((z1, . . . , zn), t) = t · (z1, . . . , zn) defines a Sn-homotopy from

idUR
An

to the constant map from UR
An to the origin 0. Thus the inclusion {0} ↪→ UR

An

induces an Sn-deformation retract to a one point space. Therefore, by standard
arguments the map UR

Acol,s
n
→ UR

Acol,s
n
/UR
An defines a Sn-homotopy equivalence. Let Xn

be the closed simplicial cone R × Rn−1
+
∼= {(x1, . . . , xn) ∈ Rn | x1 ≤ · · · ≤ xn}.

Then the space UR

Acol,s
n
/UR
An is a wedge of n! copies of Yn = (Xn ∩ UR

Acol,s
n

)/(Xn ∩ UR
An).

The n! spaces are permuted freely according to the regular representation, the image
of UR

An serves as the wedge point. We already know by the non-equivariant part of
Proposition 4.6 that UR

Acol,s
n

is homotopic to a wedge of (s − 1) · · · ((s − 1) + (n − 1))

spheres of dimension n and no point in Yn is fixed by an element of Sn. From this it
follows that Yn is homotopic to 1

n!
· (s− 1) · · · ((s− 1) + (n− 1)) spheres of dimension

n.

Note, that in part (i) the conclusion that the cohomology is free and in part (ii)
the conclusion that the union is homotopic to a wedge of spheres is known to be true
in general for hyperplane arrangements (see [11] and [21]).
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As another immediate consequence we obtain a result on the cohomology of the
complement ofAcol,s

n in a rank one local system. We emphasize this otherwise standard
application of the combinatorial methods here, since it fits in the framework of the
considerations by Schechtman & Varchenko [12]. Let A be some arrangement of affine
complex hyperplanes in Cn. Let ξ = (ξH)H∈A be some vector of complex numbers.

Then we denote by ωξ the differential form
∑
H∈A

ξH ·
dH

H
, where H is identified with a

linear form defining H.

Proposition 5.2 Let 1 ≤ s, n. Let ξ = (ξH)
H∈Acol,s

n
be some vector of complex num-

bers, such that for all V ∈ LAcol,s
n
\ {0̂} the sum

∑
H≤V

ξH over all hyperplanes H con-

taining V does not vanish. Then the rank of the cohomology Hi(Cn \ UAcol,s
n
,Lωξ) of

Cn \UAcol,s
n

with coefficients in the rank one local system Lωξ defined by ωξ is given by
(s− 1) · · · (s+ n− 2) for i = n and 0 in all other dimensions.

Proof. By the work of Esnault, Viehweg & Schechtman [6] it follows that under
the given assumptions the cohomology with coefficients in the rank one local system
vanishes except in dimension n. By general facts or by the work of Yuzvinsky [20] we
have

∑
i≥0(−1)irankH i(Cn \ UAcol,s

n
,Lωξ) = χ(LAcol,s

n
, 1). Hence, the assertion follows

from Corollary 4.5.

Finally, we turn our interest to the quotient spaces (Cn \ UAcol,s
n

)/Sn. We recall a
basic fact about symmetric products of complex lines.

Proposition 5.3 Let the symmetric group Sn act on complex n-space Cn by permut-
ing the coordinates. Then the map that sends an n-tuple (z1, . . . , zn) to the polynomial
f(X) = (X − z1) · · · (X − zn) induces an homeomorphism from Cn/Sn to Cn.

For Proposition 5.3 we immediately infer the following interpretation.

Lemma 5.4 The space (Cn \UAcol,s
n

)/Sn is homeomorphic to the space of monic com-
plex polynomials of degree n with no double root and no root in the set [s].

Using our description of the Sn-action on cohomology we obtain:

Theorem 5.5 Let 1 ≤ s, n.

(i) H̃1((Cn \ UAcol,s
n

)/Sn,Q) ∼= Qs+1.

(ii) H̃i((Cn \ UAcol,s
n

)/Sn,Q) 6= 0 for i = 2, . . . , n − 1. The rank is given by the

number of Sn-orbits of elements (τ = B1| . . . |Bt, (l1, . . . , lt)) in Πcol,s
n such that

li = 0 implies |Bi| = 1, 2 and there is at most one index i such that li = 0
implies |Bi| = 2.
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Proof. In order to determine the rational cohomology of the quotient it suffices to
determine the multiplicity of the trivial representation of Sn in the cohomology of
Cn \ UAcol,s

n
. Note, that in general for a G-space X, which is CW-complex and G a

finite group, the rational cohomology of X/G is given by the space of G-invariants
on the rational cohomology of X. We know by Proposition 3.1 and Corollary 3.2
that intervals [0̂, p], p ∈ Πcol,s

n , are homotopic to a wedge of spheres of dimension
rank(p) − 2. Let Vp be the subspace in LAcol,s

n
corresponding to p ∈ Πcol,s

n . Then

codim(Vp) = 2 rank(p) – note that we consider real codimension. Therefore, [0̂, p]
contributes to the cohomology of Cn \ UAcol,s

n
in dimension rank(p).

(i) There are exactly s+ 1 orbits of Sn on elements of rank 1 in Πcol,s
n satisfying the

conditions of assertion (ii) – one orbit of partitions with one block of size two
and no blocks colored, s orbits of the partition 1| · · · |n with exactly one block
colored.

(ii) Let p = (τ = B1| · · · |Bt, (l1, . . . , lt)) be some element of Πcol,s
n . Let G ∼= S|B1| ×

· · ·×S|Bf−1|×Se1[S1]×· · ·×Sen [Sn] be the stabilizer of p = (τ, (l1, . . . , lt)) in Sn.

By Corollary 4.3 the Sn-character on indSnG H̃n−t+f−2([0̂, (τ, (l1, . . . , lt))]) is given
by r|B1| · · · r|Bf−1| · sgne1

[π1] · 1e2[π2] · · · for suitable parameters. Now, by the
work of Sundaram [15, Corollary 2.3] the trivial Sn-representation appears in
r|B1| · · · r|Bf−1| · sgne1 [π1] · 1e2 [π2] · · · if and only if e2 ≤ 1, e3 = · · · = en = 0 and
in this case it appears exactly once. But this condition translates immediately
to the condition stated in assertion (ii). It is clear that such partitions exist for
all ranks.

Now, for s → ∞ the space MAcol,s
n

can be used to “approximate” the space of

complex polynomials with no integral root. Note, that the combinatorics of Acol,s
n

does not depend on the actual values of the excluded coordinates. Thus by choosing
the sequence 0,−1,+1,−2, 2, . . . we exhaust the integers when s→∞.
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