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ABSTRACT. In this paper we solve the problem of characterizing inversion multi-
graphs (cf. [BB]) associated to affine permutations.

§1 INTRODUCTION AND BASIC DEFINITIONS

Let W be an affine Weyl group of type Ap_1; Wisa group admitting the following

presentation: generators sq,... ,s, and defining relations:
57 =1 r=1,....n
(1) 8i8i418; = Si418:8i41 1 =1,...,n—1

$185n81 = SpnS1Sn.

The elements of W can be regarded as "affine permutations”: in fact, as Lusztig
observed in [L], the map ® : W — S, defined on generators as ®(s;) = m;, 1 =

1,...,n
t t#£4,1+1
(2) m(t) =<2 t—1 t=:1+1
t+1 t=1

(t denotes the residue class of ¢t modulo n) is an isomorphism onto the following
subgroup of permutations of the integers:

n(n+1)

gn::{ﬁ:Z—>Z|7r(t—|—n):7r(t)—|—thEZ, zn:ﬂ(t): 5 }.

t=1
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It follows at once from the previous description that an element 7 € S, is completely
determined by the n-tuple [#(1),...,7(n)].

In [BB] the authors develop a detailed analysis of the combinatorics of affine
permutations; moreover they exhibit various encodings of affine permutations and
minimal coset representatives of gn/Sn In connection with the weak Bruhat order,
they describe affine permutations through certain inversion multigraphs and leave
open the problem of classifying them.

In this paper we solve this last problem using our previous results on compatible
orderings in root systems proceeding as follows. An inversion multigraph encodes
an affine permutation 7 by determining its ”affine inversions”; from the point of
view of root systems this amounts to describing the set of positive roots sent into
negative ones by 7. On the other hand, this kind of sets of positive roots has
been combinatorially classified in [P] (where they are called compatible sets). So we
translate the combinatorics of compatible sets into that of inversion multigraphs,
working out some further simplifications; finally we obtain a characterization of the
inversion multigraphs, involving weight conditions on certain triples of edges.

As a notational convention, we will denote by N (resp. Z.y) the set of positive
(resp. non-negative) integer numbers.

§2 AFFINE ROOTS IN THE GEOMETRIC REALIZATION OF Sn

As any Coxeter group, Sy, can be faithfully represented as a transformation group
(see e.g. [H], §5.3-5.4); for this consider the complex vector space V with basis
II ={a1,...,a,} (the "simple roots”) and let W act on V by linear extension of
the following formula:

si(aj) = aj — aija;

where the a;;’s are entries from the following n X n matrix:

2 -1 0 0 ... 0 0 -1

-1 2 -1 0 ... 0 0 0

0 -1 2 -1 0 0 0
A= (aij) = :

0 0 0 0 -1 2 -1

-1 0 0 0 0 -1 2

Define the root system as the set of W-orbits in V' of the simple roots:
A= WIIL

Denote by AT the set of positive roots, i.e., the elements in A which are linear
combinations with non-negative coefficients of the simple roots.

Note that W acts on V as a reflection group with respect to the bilinear form
associated to the previous matrix (in the basis II); this form is degenerate with
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1-dimensional kernel generated by the so-called fundamental imaginary root*

§ = Y a;. W permutes A and fixes §; moreover this linear action on V is
equivalent to an affine action on the subspace V0 := @?:_11 Ca;; in this equivalence W
maps isomorphically to the semidirect product of S,, with a group of ”translations”
(see [K], Prop. 6.5). Roots can be explicitly described as follows:

Az:l:({ozi—l—...—l—ozj—l—k5|1§i§j§n—1, keZi}u
{—(ai+...+a;))+hé|1<i<j<n-—1, heN}).
For m € gn introduce the set
Ry ={a € AT |x(a)€ AT},
It is well known (see e.g. [H], §1.7) that if s;, ...s;, is a reduced expression of
7w € Sy, then
Ry =A{ai,,si (i, )y sipsio_y (@i y )y sip oosip (0 )}

Theorem 1. ([P])? A finite subset L C At is of the form Ry for some = € S, if
and only if it satisfies the following conditions:

(1) If \,p € L and A+ p € A, then A+ p € L.

(2) If \+pue L, \,ue A", then \€ L or pn € L.
Moreover, Ry = Ry iof and only iof ¢ = 1.

We will need in the following the explicit description of the action of = € S,
on A in the permutation realization. Suppose o € A™; then « is of the form
a; + ...+ a; + kb or of the form —(a; + ... + «;) + hé for some integers 1 <
1 < jg < n k>0h>1 Let g;,ri,e = 1,2 be the unique integers such that
(i) =qgn+ry, ©7(j+1)=gn+ry (1,92 € Z,0<r; <n,i=1,2). Recall from
[BB], §3, that n(¢) = 7(j) modn < i = j modn; so we can define

(3) mlai+...+aj+kd)=(a1+...+ap—1)—(a1+...+ar—1)+(k—q +¢2)0
(4) 7(—(ai+...+aj)+hd) =(a1+...4ar—1)—(a1+...+ap—1)+(h+q —q2)0

By a straightforward verification, easily performed on generators using (1), (2), we
get the following result.

Proposition 2. The previous formulas define an action of S, on A; this action
coincides with the reflection representation.

We finally recall the formula for the length function ¢ in S,,, affording the minimal
number of Coxeter generators occurring in an expression of an affine permutation r;
if square brackets denote the integer part of a rational number, we have (cf. [Shi],
Lemma 4.2.2):

m(j) — (1)
g (m=- Y |

— n
1<i<3<n

L This terminology is borrowed from the theory of Kac-Moody algebras [K]; note however that
in our setting 6 is not a root.

2Tn [P] the theorem is stated for subsets of positive roots in a finite crystallographic root system;
however it obviously holds for finite subsets of roots in the affine case.
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§3 AFFINE PERMUTATIONS, INVERSION MULTIGRAPHS AND SHIFTED TABLEAUX

Let G,, denote the set of weighted oriented graphs having {1,...,n} as set of
vertices; let then Ag denote the set of oriented edges of an element G € G,; if an
edge v € Ay starts from the vertex ¢ and ends in the vertex j we will denote it by
i — J; the corresponding weight will be denoted by (7, j) or #(x).

An element G € G, is characterized by Ag and the set of weights Wa = {t(¢,7) |
i # 7} (we enclose 0 among the weights, so W is a set consisting exactly of n(n—1)
non-negative integer numbers).

Recall from [BB] the definition of the wnversion multigraph I, relative to

7 €8,. I, is the element of G,, which has an edge of multiplicity | {M} | be-

tween ¢ and j, directed towards the node with highest w-value, forall 1 < < j < n;
edges of multiplicity zero are deleted. The figure below shows the inversion multi-
graph associated to 7 = [4,5,—1,2] € Sy:

1

Note that , by formula (5), {(7) = EfEAIﬂ. t(x). Moreover, it is shown in [BB]
that I, determines 7; the problem of classifying inversion multigraphs is left open.
In other words the map A, : S, — G, defined by An(7) = I is injective and we
have to find its image. By the very definitions it is clear that Im (A,) C G, where

G ={G€Gn|Vije{l,... ,n}, i #, ti,j) #0=1(j,i) =0}.

From this remark it follows that we may organize the data appearing in an in-
version multigraph in a slightly different way, which is more convenient for our
goals. Let 7, denote the set of shifted tableaux of shape A = (n —1,n —2,... ,1);
we associate to a given element 7w € S, a shifted tableau of shape A, Tp =
(T=(0, 9 )G, yern s In == 1{(4,5) [ 1 <4 < j <n — 1}, in the following way:

7r(j—|—1)—7r(i)]'

n

relind) o= |

0 -2 -1
For instance, if © = [4,5,—1,2] € S,, then T, = -2 —1.
0

It is clear how to recover I, from T, and vice versa; we will prove that

Rr={a1+as,a1 +as + 6,01 + az + a3, a2, a3 + 6, a9 + az }.
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So, roughly speaking, the coefficient 7.(7,j) in Tr gives, according to its sign the
number of roots of the string a; +...4a;+ké (or of the string —(a; +...+ ;) + ko)
belonging to R;. Recall that, using the algorithm described in [P], we may get a
reduced expression of 7 from the knowledge of R; in the example 7 = 53545251 5352.

Set now, for T € T,:

Npo= |J (ait...+a;+k8|7(i,j) <0, 0< k< —7(i,j)}U
(i§) €L
{~(i+ ...t aj)+h8 | 7(i,j) >0, 1< h < (i, j)}).

The following proposition, combined with the last statement of theorem 2, affords
a proof of the injectivity of the map A,,; the proposition could be however deduced
from the results of [BB], §3-4.

Proposition 3. R, = Nr_.
Proof. For (i,j) € I, introduce the sets

J{;::{ai—l—...—l—aj—l—k5|k20}
Ji={—(ai+...4+a;)+hé|h>1}.

¥

We want to calculate the roots belonging to (]Z"']' UJ;)N Ry
Suppose 7(1) = gn+r1, ©(j+1)=qn+r2, 1,92 € Z,0<r; <n,i=1,2 and

a € J{;, a € J;;; then formulas (4), (5) imply the following relations:

m(a) e AT Sk <qg —q¢

ry > nry —
o {F(&)EA_@h<Q2—ql

< :>{7T(G)EA_<:>]C<Q1—QQ
r r
e @) e A" S h<qg—q

These relations clearly allow to determine R,. In particular at most one of the two

strings Ji";, I has non-empty intersection with Rr; moreover:

—q1 — 1| ifry >
Card (J; UJ5) N Ry) = { g2 =~ 1] cron
|Q2—Q1| if ry < rs.

Now observe that

ﬁ(j+1)—ﬁ(¢)]

n

[(qz—ql)n—l—rg—rl]_{qz—ql—1 ifry >rg
g2 — q1 ile < To.

et} = |

n

From this and the previous remarks we can easily deduce that R, = Np_.. O
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4 THE MAIN RESULT

We want to characterize the image of the map A,; we have to translate condi-
tions (1) and (2) of the theorem of section 2 into the combinatorics of inversion
multigraphs. For ¢,57 € {1,... ,n}, ¢ # j set:

Ciji={t =k k=) k#1,5}

(i) i<
t(lvj) = .. a .
t(i,j)—1 ife >y
Now we can state our main theorem; we say for shortness that an (oriented) edge
t — j 18 positive if ¢ < j, negative otherwise.

Theorem 4. A multigraph G € G!, belongs to Im (A,,) iof and only if it satisfies the
following conditions:

(I) Vlv] € {17 7n}7 U %]7 V(l’,y) € Cl—>] m(AG X AG)

ti.j) = #x) +i(y).

(A1) Yz € Ag, Y(a,b) €Cp, Y(m,r): m+r =1z)

t(a) > m or t(b) > r.

Here m (resp. r) ranges over N or Zy according to whether a (resp. b) is positive
or negative.

Remark. Condition (II) must be interpreted as follows. For each edge x = ¢ — j
in G, we have to consider all the paths starting from ¢ and ending in j consisting of
two edges, which do not necessarily belong to Ag — in such a case we conventionally
assign to them the weight 0 —; then the stated weight condition should be verified.

Proof. We want first to translate conditions (I), (II) on a multigraph G € G,, into
analogous conditions on the shifted tableaux T = (7(¢,7)) € 7,, which encodes G as
previously explained.

Suppose for instance (¢,7) € I,, i < k < j and consider the relation

(i = k+1,k+1 — j4+1) € (AgxAg) = t(1,54+1) > 1, k+1)+F(k+1,5+1). (*)

Remark that the vertices ¢, k+1 and k41, 7+ 1 are joined by an edge if and only if
t(i,k+1)#0, t(k+ 1,54 1) # 0; considering the orientation of edges, the previous
relations are equivalent to 7(¢,k) > 0, 7(k 4+ 1,5) > 0. Therefore (%) is equivalent
to

(1, k) >0, 7(k+1,7) >0 = 7(i,5)>7(,k)+7(k+1,7).
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It is not hard to check that the following set of conditions is equivalent to (I), (II).
(A)V(i,j)el,,Vhk,p: 1<h<i<k<j<p<n-1

(1, k) >0, 7(k+1,j)>0 = 7(i,5) > 7, k)+7(k+1,7)
(1, k) <0, 7(k+1,j)<0 = 7(4,5) < 7(i,k)+7(k+1,7)+1
7(h,7) >0, 7(h,i —1) < = 7(t,5) > 7(h,j)—7(h,i—1)—1
7(h,7) <0, 7(h,i —1) > = 7(t,5) < 7(h,5)—7(h,i —1)
(i,p) >0, 7(j + 1,p) < = 7(t,5) > 7(i,p)—7(1+1,p) — 1
T(i,p) <0, 7(j + 1,p) > = 7(1,5) < 7(i,p) —7(5 + 1, p).

(B) If 7(s,5) < 0, set s := —7(¢,7) — 1; then the following relations hold:

Vi:i<k<j V(imr)eEZyxZy:m+r=s 71(,k)<—-mort(k+1,j)<
Vh:1<h<i, V(mr)eZyxNim+r=s (h,j) < —morT(h,i—1)>r
Vp:j<p<n—-1¥(mr)e€ZixNim+r=s 7(i,p)<—m or7(j+1,p) >

(B’) If 7(¢,7) > 0, set s := 7(¢,7); then the following relations hold:

Vi i<k<yj,Vimr)e NxN:m+r=s r(i,k)>m orT(k+1,5)>r
Vh:1<h<i V(m,r)eNXZy:m+r=s (h,j) >mort(h,i—1)< —r
Vp:j<p<n—-1,¥V(m,r)eNXZy:m+r=s 7(i,p) >m or7(j +1,p) < —n

On the other hand conditions (A) and (B), (B’) correspond to relations (1) and (2)
of the theorem of section 2 respectively. Let us explain how to recover the former
set of relations from the latter.

Remark that, given an affine root (a; +... 4+ a;) + s6 € At s € Zy, its decom-
positions into the sum of two positive roots are only the following ones:

(a; + ... +ap+md) + (arg1 + ...+ a; +1d), (m,r) €EZy X Zy:m+r=s
(ap+...+aj+mé)+(—(ap+...Faj—1)+71d), (mr) EZy xN: m+r=s
(i +...+ap+méd)+ (—(ajp1+...+ap)+rd), (mr)EZy xN: m+r=s

where : < k < 3,1 < h <1 5 <p<n-—1. The analogous relations for a root of
the form —(a; + ...+ «a;) + 36 € AT, s € N are the following:

(—(a;+ ...+ ap)+mé)+ (—(ags1+ ...+ aj)+716), (m,r) ENXN: m+r=s
(—(ap 4+ ...+ aj)+mé)+ (ap + ...+ aj—1 +10), (m,r) ENXZy:m+r=s
(—(a;+ ...+ ap)+mbd)+ (ajp1 + ...+ ap +1d), (m,r) ENXZy:m+r=s

(1<k<yj,1<h<i,j<p<n-—1).
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Note further that the sum of two positive roots is again a root if and only if we
are in one of the previous cases (for some (¢,7) € I,,).

Now assume T = T for 7 € S,. If, for instance, 7(i,k) >0, 7(k4+1,5) > 0 then,
by proposition 3, the roots —(a; +...+ar)+7(2, k)0, —(ap41+...+a;)+7(k+1,7)6
belong to Rr. So (1) forces also (—(a;+...4+a;)+(7(¢, k)+7(k+1,7))d) to belong
to Rr. Therefore, again by proposition 3, the relation 7(z,5) > 7(i, k) + 7(k+1,7)
must hold. Small variations of this argument imply the other relations in (A).

Condition (2) means that, if a root ¢+ = —(a; + ... + ;) + k6 (resp. y =
a; + ...+ a; + ko) belongs to R, then for each decomposition of & (resp. y) into
the sum of two positive roots at least one component belongs to R; it is easy to
prove that it suffices to check this property when k is the greatest integer such that
a root of the form —(a; + ...+ a;) +rd or a; + ...+ a; + rd belongs to Rx: so if
7(1,7) < 0 (resp. 7(¢,5) > 0) then conditions (B) (resp. (B’)) must hold. We have
finally proved that inversion multigraphs satisfy the conditions in the statement of
the theorem; on the other hand we claim that, if a multigraph G verifies (I) and (II)
and T is the associated shifted tableau, then N7 is a compatible set. Let us verify
condition (1) of theorem 2; suppose that a; +... + ag + 16, a1 + ... + aj + 86
1< <k<j3j<n—1, r,s € Z4 belong to Np: we have to prove that a; + ... +
aj+ (r+s)6 € Np. We know that r < —7(¢,k), s < —7(k+ 1,7): then condition
(A) (which is equivalent to (I)) implies

(0, §) <TG k) + (k4 1,5)+1< —r—s

and in turn we get a; + ... + a; + (r + s)6 € Np. The other cases relative to
condition (1) and condition (2) can be verified in a similar way.

Since Np is compatible, there exists an (unique) element 7 € S, such that
N7 = Ry. Therefore A,,(7) = G and the proof is completed. O

Ezamples. Consider the following multigraphs:
2 1 3

1 1 1 2 1 1
- - -~
The first satisfies the conditions of theorem 4: in fact it encodes the affine permu-
tation m = [4,2,0]. The other two graphs are not associated to affine permutations
since they satisfy exactly one of the conditions in the previous theorem (the second
does not satisfy (I) whereas the third does not satisfy (II) ).
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