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Abstract

The perception of cyclic structures is a crucial step in the analysis of graphs.
To describe the cycle vector space of a graph, a minimum cycle basis can
be computed in polynomial time using an algorithm of [Horton, 1987]. But
the set of cycles corresponding to a minimum basis is not always relevant for
analyzing the cyclic structure of a graph. This restriction is due to the fact that
a minimum cycle basis is generally not unique for a given graph. Therefore, the
smallest canonical set of cycles which describes the cyclic structure of a graph
is the union of all the minimum cycle bases. This set of cycles is called the set
of relevant cycles and denoted by Cr. A relevant cycle can also be defined as
a cycle which is not the sum of shorter cycles.

A polynomial algorithm is presented that computes a compact representa-
tion of the potentially exponential-sized set Cz in O(rm?>) (where v denotes
the cyclomatic number). This compact representation consists of a polyno-
mial number of relevant cycle prototypes from which all the relevant cycles can
be listed in O(n|Cr|). A polynomial method is also given that computes the
number of relevant cycles without listing all of them.

AMS Subject Classification: 05C85 (primary), 05C38 (secondary).
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Introduction

For a graph G = (V, E) with n vertices and m edges the set of elementary' cycles can
be extended to form a vector space on {0,1}™. If G is connected, the dimension of
this vector space is given by the eyclomatic number v = m —n+1, initially introduced
for polyhedrons by [Euler, 1752] and generalized by [Cauchy, 1813].

The simplest way to determine this vector space (denoted by C) consists in finding
a fundamental basis associated with a spanning tree? [Kirchhoff, 1847]. Many papers
deal with fundamental basis search [Welch, 1966; Paton, 1969; Gibbs, 1969]. Most
of them use this notion to list all elementary cycles of a graph. Unfortunately, as
[Mateti and Deo, 1975] have shown, such a method can generate 2” vectors few of
which actually correspond to elementary cycles. [Read and Tarjan, 1975] solve this
problem using a search algorithm which needs O(n + m + nc) operations, where c¢ is
the number of elementary cycles. For planar graphs, [Syslo, 1981] has shown that a
vector space approach can be as efficient as a search algorithm.

Because fundamental cycle bases may be numerous, they are compared according
to their lengths. The length of a cycle basis is the sum of the lengths of all cycles
in the basis. This notion defines minimum fundamental cycle bases. [Deo et al.,
1982] have shown that finding a minimum fundamental cycle basis is an NP-complete
problem. Furthermore, [Horton, 1987] has presented a polynomial time algorithm to
find a minimum cycle basis not necessarily associated with a spanning tree.

Some applications require the perception of the cyclic parts of a graph. An obvious
solution would be to list all elementary cycles. This method has two drawbacks:
it cannot be performed efficiently and only a few of the elementary cycles may be
relevant to the application domain. Another solution would be to find a minimum
cycle basis, but such a set of cycles is generally not unique for a given graph.

Of course, the kind of perception which is to be performed determines the defi-
nition of an optimal set of cycles. In general, one requires a canonical set of cycles
from which the cycle vector space can be generated. The smallest set satisfying this
condition is the union of all the minimum cycle bases.

This paper is organized as follows: Section 2 presents Horton’s algorithm to find a
minimum cycle basis. Section 3 defines the set of relevant cycles (denoted by Cr) as
the union of all the minimum cycle bases. We present a polynomial time algorithm
to compute Cr in terms of a polynomial number of cycle families. These define a
partition of Cz. Each family is represented by a single cycle from which all the other
cycles of the family can be directly generated. In the last section, we propose a
polynomial method to calculate the number of relevant cycles (for the whole graph

or including a given vertex).

LA cycle is called elementary if it contains no vertex more than once.
2Let T = (V, E') be a spanning tree for the graph G = (V, ). Adding any edge from E \ E’ to
T creates a single cycle. The set of cycles generated this way defines a basis for the vector space C.
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1 Preliminary

In this paper, we consider an undirected 2-connected graph G = (V, E') without loops
or multiple edges. Considering 2-connected graphs only does not limit generality
because cycle subspaces associated with 2-connected components are independent
and complementary (their union is equal to the whole vector space). An edge is
denoted by an unordered pair of vertices (x,y). A cycle is a subgraph such that any
vertex degree is even. Therefore, we consider a connected cycle as either a set of edges
{(x1,22), (x2,23),...} or a closed path (x1,xq,23,...,21). An elementary cycle is a
minimal subgraph such that every node has degree 2.

Define the sum of two cycles C' + C’ to be the symmetric set difference
(C U C)\ (C N C"). Then, the cycle vector space is the additive closure of the
set of elementary cycles. A cycle C' can be represented by an element of the cycle
vector space {0,1}™ (i.e. C[i] =1 & edge i belongs to C').

For any vertex v in V, we denote by deg(v) the degree of v in G and by I'(v) the
set of vertices which are adjacent to v.

FEach edge e is weighted with a real positive number w(e). The weight of any path
(or cycle) pp = (21, 23,... ,2x) is defined by w(pu) = Zien. sy w( (@i, Tig1) ).

The distance d(x,y) between vertices x and y is the weight of any shortest path

from x to y.

2 Horton’s algorithm

The algorithm proposed by [Horton, 1987] is the first polynomial algorithm that finds
a minimum cycle basis. In fact, a quite similar method was presented by [Sorkau,
1985], but Sorkau did not analyze the complexity of his algorithm. Hence, we will

only focus on Horton’s algorithm which is based on the following theorem:

Theorem 1 Let x be any vertex of any cycle C' in a minimum cycle basis. There is
an edge (y, z) in C such that C consists of a shortest path from x to y, a shortest
path from x to z and the edge (y, z).

Note that any cycle satisfying this property does not necessarily belong to a min-
imum basis. Therefore, Horton’s algorithm extracts a cycle basis from an initial set
of cycles (denoted by C7) satisfying Theorem 1:

1y Ya,b € V find a shortest path P(a,b) between a and b.
2 Forall v € V do:
For all (x,y) € E do:
If P(v,z)N Pv,y) ={v}
Then add to Cz the cycle C' = P(v,2) + P(v,y) + (x,y)
2y Order the initial set of cycles Cr by weight

4y Use a greedy algorithm to extract a minimum cycle basis from Cr.
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The first step of the algorithm chooses a unique shortest path for every pair
of vertices. It can be performed in O(n?) using different algorithms [Floyd, 1962;
Dijkstra, 1959).

Horton has proved that any choice can lead to an initial set C7 including a mini-
mum cycle basis. This proof consists in replacing the cycles of any minimum basis by
cycles belonging to Cr. In the second stage, a cycle C' may be created as many times
as 1t contains vertices. To avoid this duplication, Horton uses the method suggested
by [Tierman, 1970]. Considering an order m on vertices, all cycles generated from
vertex v must only contain vertices that precede v in order 7.

Given a vertex v and an edge (z,y), testing “P(v,2)N P(v,y) = {v}” is necessary
to check if the corresponding cycle C' is degenerate (i.e. at least one vertex of the
associated subgraph has a degree equal to 1 or greater than 2). This test needs O(n)

*m) operations.

operations. So, the second step of Horton’s algorithm takes O(n

The last step of the algorithm processes Cr in order of the weight of the cycles.
A new cycle is added to the k£ cycles of the current partial basis when the new
induced set is independent. This test uses a Gaussian elimination on the m x (k+1)
boolean matrix corresponding to the set of cycles (each row is a vector of {0,1}™,
representing a cycle). The elimination can be performed in O(m x (k + 1)). Since
k < v and Cr contains at most vn cycles®, a minimum cycle basis can be found in

O(mv?*n) operations.

3 Union of the all minimum cycle bases

A minimum cycle basis is a compact representation of the cycle vector space of a
graph. However, it does not necessarily include all cycles relevant to a given problem.

In Organic Chemistry, the constitution of a chemical compound can be viewed
as a labeled graph. The perception of cyclic parts is of fundamental importance in
the analysis of molecules. Most of the programs dealing with chemistry require a
fast and accurate method for the identification of the “chemically meaningful” cycles
among the potentially large number of elementary cycles embedded in the molecular
graph. The most commonly used restriction is a minimum cycle basis. Indeed, for a
cycle to be chemically relevant, it must not be the sum of smaller cycles. However,
in general, a given graph has several minimum bases. Therefore the above definition
of chemically relevant cycles is not satisfactory. For example, the graph presented in
Figure 1 has three different minimum bases.

The smallest generating set of cycles which is unique for a given graph is the
union of all the minimum bases of the graph.

3In step 2, a cycle is added to €7 when it consists of two distinct shortest paths. Hence, the
number of cycles created from a vertex v is at most equal to the number of cycle closure edges.
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Figure 1: An example of a graph having several minimum bases.

Definition 1 A cycle is said to be relevant if it belongs to at least one minimum
|_ cycle basis.

So, the set of relevant cycles, denoted by Cr, is the union of all the minimum cycle
bases of the graph.

Another characterization of relevant cycles is given by the following lemma:

Lemma 1l ( €C isrelevant < no elementary cycles Cy, ... ,C} exist such that

| C=Ci+.. +Cpand Vie [1.k], w(C;) <w(C),

Proof If C' belongs to a minimum cycle basis then it cannot be the sum of
shorter cycles. Otherwise, C' could be exchanged by one of these cycles in the
minimum basis.

Conversely, let B be a minimum cycle basis and C' a cycle which is not the
sum of shorter cycles. Then C' = By + ...+ By, where Vi, B; € B, and there is
at least one cycle B; such that w(B;) > w(C). Since B is a minimum basis, we
have w(B;) = w(C'). So, the set (B\ {B;}) U {C} is a minimum basis O

This definition of cycle relevance has been suggested by [Plotkin, 1971] in the
domain of computational chemistry. Since no efficient algorithm was proposed to
find these cycles, many works deal with the definition of extended minimum cycle
bases which are generally not canonical (see [Downs et al., 1989]).

The cardinality of the union of the minimum cycle bases is not necessarily poly-
nomial. If G is a complete graph, the cardinality of Cr is equal to the polynomial
number of 3-edge cycles. But some graphs can include an exponential number of
relevant cycles, such as the one given in Figure 2.

The existence of such graphs must not hide the interest of the relevance notion.
Firstly, because in some domains, such as organic chemistry, graphs with an ex-
ponential number of relevant cycles are almost impossible. Secondly, we present a

polynomial time algorithm to compute Cz as a polynomial number of parts. Each
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Figure 2: The union of all the minimum cycle bases of this graph includes 2% cycles

with 2 vertices ( (x,b,u,v,d,w,...,y,), (z,a,u,v,d,w,... y,x), etc.).

part corresponds to a family of cycles which can be directly listed from a particular
relevant cycle. This cycle defines a prototype of its family.

Representing Cr as a polynomial number of cycle prototypes provides a way of
determining the cardinality of Cz in polynomial time. In section 7.2, we present a
method to find the number of cycles which can be generated from a given prototype,
without calculating any of them. This compact representation of Cr gives a more pre-
cise description of the cycle vector space than a simple minimum basis. For instance,
in the graph of Figure 2, apart from the % 4-edge cycles that must be known, the
other relevant cycles can be described by a single family. The prototype of this family
is one of the 2% elementary cycles with %T” vertices. Listing all these relevant cycles
is not very meaningful for such a graph. But it can be very useful for a computer
system to be able to perceive them and designate a single prototype.

Of course, the compact representation can always be replaced by a complete enu-
meration of the relevant cycles. It provides a canonical set of shortest cycles from

which the whole vector space can be generated.

4 Partition of the set of relevant cycles Cy

This section defines a partition of the set of relevant cycles such that the number of

parts is polynomial.

Lemma 2 If y is a subpath of a relevant cycle C' such that w(p) < $w(C) then p
|_ is a shortest path.

Proof Since C' is relevant, it belongs to at least one minimum cycle basis B.
Assume that p is not a shortest path. Then p includes a subpath p = (a...b)
such that w(p) > d(a,b) and there is a shortest path p’ from a to b such that
p and p' are disjoint. Replacing p with p' in C' will create a new cycle C' such
that w(C") < w(C). Define C" to be the cycle that consists of p and p’. Since
w(p) < w(p) < Fw(C), w(C") < w(C). Because C' = C" + C", C' can be
exchanged for either C' or C" in B. So B cannot be a minimum basis O

In the rest of the paper, we assume that the vertices of the graph being considered
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are ordered by a numbering 7. This ordering can be chosen arbitrarily. For any cycle

(' being considered, we denote by r the greatest vertex in C' according to .

Definition 2 any cycle C is “even” if it consists of two disjoint paths p; and pi,
from r to x, such that r is the greatest vertex in C' (i.e. m(r) = maX,ec 7(z))
and w(py) = w(pz) = 2w(C). Otherwise, C is “odd”.

p o P $
7“,< - Lw(C) 7“< > -2 ()
2 2
q T q
Odd cycle Fven cycle

Theorem 2 any relevant cycle C consists of two disjoint shortest paths (r...p) and
L (r...q) linked by the edge (p, q) if C is odd or by the path (p,x,q) if C is even.

Proof IfC is even, C consists of two disjoint paths (r,...,p,z)and (r,...,q,z)
whose weight is tw(C). Hence, w((r,...p)) < sw(C) and w((r,...q)) <
%w(C), because the valuation is positive. If C' is odd, C' = (r,...p,q,...,7)
where w( (r,...p)) < w(C) and w((q,...r)) < Fw(C).

By lemma 2, (r,...p) and (r,...q) are shortest paths in both cases O

The partition of the set of relevant cycles is based on theorem 2. For any relevant
cycle C including the vertices r, p, ¢ and eventually x, as defined in theorem 2, we
define the cycle family associated with C' as follows :

Definition 3
w(C") = w(C') and C' consists of :
o the vertex r and the edge (p, q) (or the path (p,,q)),

F(O)={C"€eCr

o two shortest paths (r,...,p) and (r,...,q) passing
only through vertices smaller than r.

Odd cycle C7 Fven Cycle

Hence, two cycles C' and C’ belonging to F(C') only differ on the shortest paths
from r to p and from r to ¢ that they include.

Theorem 3 The set of all the relevant cycle families defines a partition of C.

Proof By theorem 2 and definition 3, the cycle family associated with a
relevant cycle C' is unique for a given ordering 7. So any relevant cycle belongs
to exactly one family. Then, we define an equivalence relation such that two

relevant cycles are equivalent if one belongs to the cycle family of the other O
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To describe the family F(C'), we need a single cycle C' which is a prototype of
this family. All the other cycles in F(C') can be generated from C' by replacing paths
(ry...p) and (r,...q) with paths of the same weight passing only through vertices
smaller than r.

Hence, a cycle family is properly defined by a triple r, p, ¢ for odd cycles or a
quadruple r, p, ¢, © for even cycles.

The number of relevant cycle families depends on the order 7 used to define the

families. However, we have the following result :

Theorem 4 the number of relevant cycle families is always polynomial.

Proof The number of families whose prototype is an odd cycle is smaller than
nv, since an odd cycle prototype is defined by a vertex r and a cycle closing
edge (p, q).

As for even cycle families, their prototype is defined by 4 vertices r,x,p and ¢
such that p and ¢ are adjacent to x. Hence, the number of even cycle families

is smaller than 3. cv > oev, r(o)<n(r) Tdeg(x)? < In*m.

If the order 7 respects vertex degree (Vx € V, n(x) < m(v) = deg(x) < deg(r))
there are at most ) .y (deg(r) X DV, n(@)<n(r) %deg(ac)) < 2m? even cycle
families O

To compute the union of all the minimum cycle bases, we may find one prototype

for each relevant cycle family.

5 Computation of cycle prototypes

The algorithm we propose to compute cycle prototypes is based on the converse of
theorem 2. This converse is not necessarily true but it gives a strong condition on
cycle relevance.
The outline of the algorithm can be given as follows:
. firstly, we compute the set C% including one cycle for each triple r, p, ¢ (or quadru-
ple r, p, q, x) satisfying the condition of theorem 2,
. secondly, we use a greedy algorithm to extract relevant cycles from C%.

5.1 Computation of the set C}

Before we give a more precise description of the first step of the algorithm, we need

to introduce a new definition :

Definition 4 For any vertex r,
{ Vo= { -~ €V such that there is a shortest path in G from r to z that passes only}

through vertices which precede r in the ordering .

Then, we can give the outline of the algorithm that computes C7:
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[Algorithm 1]
1. Forall r € V do:

2. Compute V, and Vt € V, find a shortest path P(r,?) from r to ¢;
5. For all y € V. do:

4. S J;

5. For all z € V, such that z is adjacent to y do:

6. If d(r,z) +w((z,y))=d(r,y) Then

2 | S « S U {z}; x z belongs to a shortest path from r toy

d(r,z) # d(r,y) + w((z,y)) and 7(z) < 7(y)
Else If ( and P(r.y) A P(r.2) = {r} ) Then

0. | Add to C the odd cycle C' = P(r,y) + P(r,z) + (z,y);

10. EndIf

11. EndFor

12 For any pair of vertices p, ¢ in S such that P(r,p) N P(r,q) = {r} Do:
2. | Add to Cj the even cycle C = P(r,p) + P(r,q) + (p, vy, q);

14, EndFor

15. EndFor

16.  EndFor

For a given vertex r, the set V, can be computed at line 2 using a shortest path
algorithm. For example, the algorithm presented in [Dijkstra, 1959] can be easily
updated to compute V, by preferably choosing the shortest paths which pass only
through vertices smaller than r. This variant does not change the algorithm com-
plexity. It remains in O(n?) operations when the priority queue is implemented as an
array, O(mlogn) using a binary heap or O(m + nlogn) with a Fibonacci heap.

To generate the prototypes associated with a vertex r, we explore any vertex y in
V.. We are now going to detail the generation of C/ illustrated by Figure 3.

Even cycles generated for y :

(ry...,21,y,22,...,1)
(ry...,21,y,23,...,1)
(ry...,22,y,23,...,1) r

Odd cycle generated for y :

(ry.o.,21,Y,24,...,1)

where (r,... ,z1) = P(r,y)

Figure 3: Generation of C7.

First, we compute theset S ={z € I'(y) NV, | d(r,z) + w((z,y)) = d(r,y) }. So,
at the end of line 11, § includes all the vertices in V. adjacent to y such that there is
a shortest path from r to y passing through the edge (z,y). For any pair of vertices
p,q in S, we create the even cycle C' = P(r,p)+ P(r,q) + (p,y,q) when paths P(r,p)
and P(r,q) are disjoint (see line 13).
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As for odd cycles, they are created at line 9 for any vertex z in I'(y) N V, such
that d(r,y) —w((z,y)) < d(r,z) < d(r,y) + w((z,y)). To avoid cycle duplication,
we only consider any vertex z such that 7(z) < 7(y).

A quick analysis of algorithm 1 gives for each vertex r in V:

o line 2 takes O(m + nlogn) operations,

« for lines 5 to 11, the critical step is line 8 which takes
>yev, Oldeg(y)) x O(n) = O(nm) operations, where O(n) is necessary to
check if the paths are disjoint,

o line 12-14 takes Y, oy, O(deg(y))? x O(n) < O(mn deg(r)) if we suppose
that the order m respects the vertex degree (i.e. Yy € V., deg(y) < deg(r)).

So, algorithm 1 takes O(n m?) operations.

Lemma 3 [f order m satisfies Vx,y € V, w(x) < 7w(y) = deg(x) < deg(y)
L then the cardinality of set C/I is lower than (2m?* 4 vn).

Proof The number of odd cycles in CII is less than vn. As for the even cycles,
they are at most Y_,cy Y ey, sdeg(y)?. For any y in V,, deg(y) < deg(r). So,
there are at most ).y (deg(r) X Y yev, %deg(y)) < 2m? even cycles in C; O

Theorem 5 C; includes one and only one prototype of each relevant cycle family.

Proof Let C'=(r,...,p,z,q,...,r) be a relevant even cycle (if C' is odd, the
proof is quite similar). Assume that r is the greatest vertex in C' according to
m and x is the unique vertex in C' such that d(r,z) = Jw(C).

Now consider the exploration of vertex y = x in algorithm 1. By theorem 2,
(ry...,p) and (r,...,q) are shortest paths. So p and ¢ belong to §. Define
C" to be the cycle added to C; at line 13 for the pair of vertices p,q. By
construction of C;, C" is unique.

Cycles C'" and C' only differ by the shortest paths (r,...,p) and (r,...,q) that
they include. The sum C + C’ defines a set of cycles which are smaller than
C. Hence, cycle C' must be relevant since C' is relevant. So, C' is the unique

prototype of F(C') which belongs to C; O

5.2 Computation of a set of prototypes

By theorem 5, Cr N Cy is a set of prototypes. So, we have to extract all the relevant
cycles in C;.

As in Horton’s algorithm, a minimum cycle basis B is calculated by processing the
cycles of Cy in order of their weight. During the processing of a cycle C', we denote
by B. and B_ the subsets of cycles in the current sub-basis whose weights are less

than w(C') and equal to w(C'), respectively. By Lemma 1, C' is relevant when the set
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B. U {C} is independent. When this check succeeds, cycle C is added to B if the
set B U {C} U B_ is also independent. The processing stops when B is complete
and all the cycles having the same weight as the greatest one in B have been tested.

The current minimal sub-basis of B is represented by a (|B<|+ |B=|) X m boolean
matrix. To test if set B. U {C'} is independent, we perform a Gaussian elimination on
the first rows of the matrix which are associated with B.. When this check succeeds,
the Gaussian elimination follows on the other rows to test if set B U B= U {C} is
also independent.

Since B contains at most v cycles, each check of a cycle is performed in O(vm).
By lemma 3, the cardinality of C; is in O(m?). So, the set of prototypes C; N Cx can

be generated in O(v m®) operations.

6 Enumeration of Cp

Cr is completely described by a set of prototypes of the families defined in section 4.
From this set of prototypes, the union of all the minimum cycle bases can easily be
listed.

Consider a cycle prototype C' € Cr N Cr. To generate the cycle family F(C'), we
define a directed graph D, = (V,, U, ) associated with the vertex r such that:

(z,y) belongs to a shortest path in G from r to y
U, = < directed edge (y, z) such that | that passes only through vertices which precede

r in the ordering 7.

The computation of the digraph D, can be performed directly in algorithm 1. For
each directed edge (y,z) in U,, z belongs to the set S which is computed at line 7 of
the algorithm.

The digraph D, has two major properties:

o It has no directed cycle,
« Va € V., any directed path (x,...,r)in D, corresponds to a shortest path in G.

To list all the paths from x to r in D,, we use a backtracking function which is based

on a deep first search from x. This recursive function can be resumed as follows:
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Function List_Paths( x; current_path )
add z at the head-end of current_path;
If « = Then Return({current_path})
Else:
Result + ;
For any z such that (z,z) € U, Do
| Result < Result U List_Paths(z, current_path);
Return( Result)

To compute F(C'), we first replace the path (p,...,r) in C by each one of the
paths returned by the call List_Paths(p, @). Then, in any cycle generated this way, we
replace the path (g,...,r) by each one of the paths resulting from List_Paths(q, @).

FEach cycle in F(C') corresponds to a pair of paths (p,...,r), (¢,...,r). Since
the computation of each path takes a number of operations in order of the path
cardinality, the family F(C') can be listed in O(n |F(C)]).

So, the generation of Cr from subset Cr N C; is performed in O(n |Cr|) operations
(including cycle enumeration).

Note that the use of prototypes substantially optimizes the generation of Cr: if
a cycle prototype is relevant, this implies that all cycles of the corresponding family

are relevant. Therefore, the number of cycle relevance checks is polynomial since it

is in O(|Cz|) instead of O(|Cr|).

7 Computation of the number of relevant cycles

7.1 Size of Cp

Using cycle families to describe Cr provides a polynomial time algorithm to compute
the size of this set without generating all cycles. This is particularly interesting for
real-world problems to determine whether the number of relevant cycles is polynomial
or not.

To perform this computation we may evaluate the number of shortest paths from
r to any vertex x, which passe only throught vertices in V,.. This number is denoted
by ¢, (x). Of course, ¢,.(r) = 1.

In algorithm 1, we compute, for each vertex y in V., the set S of all the vertices
z in V. such that there is a shortest path from r to y which ends in the edge (z,y).

Then, one can easily prove that: Yy € V., ¢,.(y) = > .(2)

z€S
This result gives an efficient method to compute the function ¢, if the vertices in

V, are processed according to a topological sort* of the graph D,.

*In a graph without directed cycles, a topological sort is an ordering on the vertices such that :
if there 1s a directed edge from « to y then z is greater than y.
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Figure 4: Since 1,(p) = 4 and ¥,.(q) = 6, cycle family F(C ) (corresponding to cycle

C} , in solid lines), contains 24 relevant cycles.

Denote by C]  a cycle created from vertices r, p and ¢ (and eventually x) according
to the previous notations.

If ¢}, belongs to Cx N Cz, then the number of relevant cycles in family F(Cr )
is equal to ¥, (p) x ¥,(q) (see Figure 4). Consequently,

Crl=" 22 ¥(p) x¢lq)

'
Cpq€CrNCY

7.2 Number of relevant cycles including a given vertex

Determination of the union of all the minimum cycle bases as a polynomial number of
cycle prototypes has still another interest. It provides a way of calculating, in polyno-
mial time, the number of relevant cycles of a given weight which include each vertex.
For example, in Figure 4, vertex a belongs to two 4-edge relevant cycles, one 6-edge
cycle and twelve 13-edge ones. This knowledge can be useful to distinguish vertices
according to their membership to more or less complex cyclic structures. For exam-
ple, in organic chemistry this can help for taxonomy purposes in the determination
of nomenclature names.

Let us consider a cycle family F(C} ). Denote by #in(y, F(C} ) the number
of cycles in F(C7 ) which include vertex y. Assume that vertex y belongs to path
(ry..,q). Define ¢.(y,q) to be the number of shortest paths from y to ¢ which are
included in D,. For example, in Figure 4, ¢.(y,q) = 3.

We can determine ¢,(y,¢) using a topological sort, in the same way as for the
determination of t,. This search needs O(m) operations. Since there are at most
O(m?) families, the global complexity is O(m?).

Then, one can easily prove the following result:

#in(y, F(C7 ) = ¥e(y) X &0(y,q) X r(p)

In Figure 4, for vertex y, #in(y, F(C],)) =2 x 3 x 4 = 24.



THE ELECTRONIC JOURNAL OF COMBINATORICS 4 (1997), #R9 14

Conclusion

This paper deals with the computation of the union of all the minimum cycle bases
of a graph. We present the first efficient algorithm to find this set of cycles. We
call the union of all the minimum cycle bases the set of relevant cycles and denote
it by Cr. It is the smallest generating set of the cycle space which is unique for a
given graph. We propose a polynomial time algorithm to compute Cr as a set of
cycle families. Each family is represented by a cycle prototype and all the families
constitute a partition of Cx. From the set of prototypes, all the relevant cycles can
be listed in O(n|Cx|) time (including output). We also propose a polynomial method
to determine the number of relevant cycles which include a given vertex.

The use of prototypes provides an efficient compact representation of the union
of all the minimum cycle bases. For real-world applications, the enumeration of Cr
is generally unnecessary.

One can envisage two major improvements for the problem of the union of all
the minimum cycle bases. Firstly, it would be interesting to find an ordering on the
vertices such that the number of relevant cycle families is minimum. Secondly, the
algorithm we propose is polynomial but it can probably be improved. The critical
step is the extraction of relevant cycles from the initial set C7. If a strong condition
were found for characterizing relevant cycles without a check for independence, the
improvement could be very significant. This is also true in the case of Horton’s
algorithm to compute a minimum cycle basis. It seems to be that an improvement
to Horton’s algorithm would entail an improvement to the one proposed here.

An other open problem is the enumeration of all the minimum cycle bases of a
graph. It would be interesting to find a polynomial way to represent all these bases.
But this problem has probably no real application.

Conversely, the notion of relevant cycles can be applied to real-world problems.
The union of all the minimum cycle bases has been successfully used in the system
RESYN [Vismara et al., 1992; Vismara, 1995, a program for the planning of complex

organic syntheses, to evaluate the set of chemically relevant cycles in a molecule.
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