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the electronic journal of combinatorics 4 (1997), #R9 2IntroductionFor a graph G = (V;E) with n vertices and m edges the set of elementary1 cycles canbe extended to form a vector space on f0; 1gm. If G is connected, the dimension ofthis vector space is given by the cyclomatic number � = m�n+1, initially introducedfor polyhedrons by [Euler, 1752] and generalized by [Cauchy, 1813].The simplest way to determine this vector space (denoted by C) consists in �ndinga fundamental basis associated with a spanning tree2 [Kirchho�, 1847]. Many papersdeal with fundamental basis search [Welch, 1966; Paton, 1969; Gibbs, 1969]. Mostof them use this notion to list all elementary cycles of a graph. Unfortunately, as[Mateti and Deo, 1975] have shown, such a method can generate 2� vectors few ofwhich actually correspond to elementary cycles. [Read and Tarjan, 1975] solve thisproblem using a search algorithm which needs O(n +m+ nc) operations, where c isthe number of elementary cycles. For planar graphs, [Syslo, 1981] has shown that avector space approach can be as e�cient as a search algorithm.Because fundamental cycle bases may be numerous, they are compared accordingto their lengths. The length of a cycle basis is the sum of the lengths of all cyclesin the basis. This notion de�nes minimum fundamental cycle bases. [Deo et al.,1982] have shown that �nding a minimum fundamental cycle basis is an NP-completeproblem. Furthermore, [Horton, 1987] has presented a polynomial time algorithm to�nd a minimum cycle basis not necessarily associated with a spanning tree.Some applications require the perception of the cyclic parts of a graph. An obvioussolution would be to list all elementary cycles. This method has two drawbacks:it cannot be performed e�ciently and only a few of the elementary cycles may berelevant to the application domain. Another solution would be to �nd a minimumcycle basis, but such a set of cycles is generally not unique for a given graph.Of course, the kind of perception which is to be performed determines the de�-nition of an optimal set of cycles. In general, one requires a canonical set of cyclesfrom which the cycle vector space can be generated. The smallest set satisfying thiscondition is the union of all the minimum cycle bases.This paper is organized as follows: Section 2 presents Horton's algorithm to �nd aminimum cycle basis. Section 3 de�nes the set of relevant cycles (denoted by CR) asthe union of all the minimum cycle bases. We present a polynomial time algorithmto compute CR in terms of a polynomial number of cycle families. These de�ne apartition of CR. Each family is represented by a single cycle from which all the othercycles of the family can be directly generated. In the last section, we propose apolynomial method to calculate the number of relevant cycles (for the whole graphor including a given vertex).1A cycle is called elementary if it contains no vertex more than once.2Let T = (V;E0) be a spanning tree for the graph G = (V;E). Adding any edge from E nE0 toT creates a single cycle. The set of cycles generated this way de�nes a basis for the vector space C.



the electronic journal of combinatorics 4 (1997), #R9 31 PreliminaryIn this paper, we consider an undirected 2-connected graph G = (V;E) without loopsor multiple edges. Considering 2-connected graphs only does not limit generalitybecause cycle subspaces associated with 2-connected components are independentand complementary (their union is equal to the whole vector space). An edge isdenoted by an unordered pair of vertices (x; y). A cycle is a subgraph such that anyvertex degree is even. Therefore, we consider a connected cycle as either a set of edgesf(x1; x2); (x2; x3); : : :g or a closed path (x1; x2; x3; : : : ; x1). An elementary cycle is aminimal subgraph such that every node has degree 2.De�ne the sum of two cycles C + C 0 to be the symmetric set di�erence(C [ C 0) n (C \ C 0). Then, the cycle vector space is the additive closure of theset of elementary cycles. A cycle C can be represented by an element of the cyclevector space f0; 1gm (i.e. C[i] = 1 , edge i belongs to C).For any vertex v in V , we denote by deg(v) the degree of v in G and by �(v) theset of vertices which are adjacent to v.Each edge e is weighted with a real positive number w(e). The weight of any path(or cycle) � = (x1; x2; : : : ; xk) is de�ned by w(�) =Pi2[1::k�1]w( (xi; xi+1) ).The distance d(x; y) between vertices x and y is the weight of any shortest pathfrom x to y.2 Horton's algorithmThe algorithm proposed by [Horton, 1987] is the �rst polynomial algorithm that �ndsa minimum cycle basis. In fact, a quite similar method was presented by [Sorkau,1985], but Sorkau did not analyze the complexity of his algorithm. Hence, we willonly focus on Horton's algorithm which is based on the following theorem:Theorem 1 Let x be any vertex of any cycle C in a minimum cycle basis. There isan edge (y; z) in C such that C consists of a shortest path from x to y, a shortestpath from x to z and the edge (y; z).Note that any cycle satisfying this property does not necessarily belong to a min-imum basis. Therefore, Horton's algorithm extracts a cycle basis from an initial setof cycles (denoted by CI) satisfying Theorem 1:1) 8a; b 2 V �nd a shortest path P (a; b) between a and b.2) For all v 2 V do:For all (x; y) 2 E do:If P (v; x) \ P (v; y) = fvgThen add to CI the cycle C = P (v; x) + P (v; y) + (x; y)3) Order the initial set of cycles CI by weight4) Use a greedy algorithm to extract a minimum cycle basis from CI .



the electronic journal of combinatorics 4 (1997), #R9 4The �rst step of the algorithm chooses a unique shortest path for every pairof vertices. It can be performed in O(n3) using di�erent algorithms [Floyd, 1962;Dijkstra, 1959].Horton has proved that any choice can lead to an initial set CI including a mini-mum cycle basis. This proof consists in replacing the cycles of any minimum basis bycycles belonging to CI . In the second stage, a cycle C may be created as many timesas it contains vertices. To avoid this duplication, Horton uses the method suggestedby [Tierman, 1970]. Considering an order � on vertices, all cycles generated fromvertex v must only contain vertices that precede v in order �.Given a vertex v and an edge (x; y), testing \P (v; x)\P (v; y) = fvg" is necessaryto check if the corresponding cycle C is degenerate (i.e. at least one vertex of theassociated subgraph has a degree equal to 1 or greater than 2). This test needs O(n)operations. So, the second step of Horton's algorithm takes O(n2m) operations.The last step of the algorithm processes CI in order of the weight of the cycles.A new cycle is added to the k cycles of the current partial basis when the newinduced set is independent. This test uses a Gaussian elimination on the m� (k+1)boolean matrix corresponding to the set of cycles (each row is a vector of f0; 1gm,representing a cycle). The elimination can be performed in O(m � (k + 1)). Sincek � � and CI contains at most �n cycles3, a minimum cycle basis can be found inO(m�2n) operations.3 Union of the all minimum cycle basesA minimum cycle basis is a compact representation of the cycle vector space of agraph. However, it does not necessarily include all cycles relevant to a given problem.In Organic Chemistry, the constitution of a chemical compound can be viewedas a labeled graph. The perception of cyclic parts is of fundamental importance inthe analysis of molecules. Most of the programs dealing with chemistry require afast and accurate method for the identi�cation of the \chemically meaningful" cyclesamong the potentially large number of elementary cycles embedded in the moleculargraph. The most commonly used restriction is a minimum cycle basis. Indeed, for acycle to be chemically relevant , it must not be the sum of smaller cycles. However,in general, a given graph has several minimum bases. Therefore the above de�nitionof chemically relevant cycles is not satisfactory. For example, the graph presented inFigure 1 has three di�erent minimum bases.The smallest generating set of cycles which is unique for a given graph is theunion of all the minimum bases of the graph.3In step 2, a cycle is added to CI when it consists of two distinct shortest paths. Hence, thenumber of cycles created from a vertex v is at most equal to the number of cycle closure edges.
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Figure 1: An example of a graph having several minimum bases.De�nition 1 A cycle is said to be relevant if it belongs to at least one minimumcycle basis.So, the set of relevant cycles, denoted by CR, is the union of all the minimum cyclebases of the graph.Another characterization of relevant cycles is given by the following lemma:Lemma 1 C 2 C is relevant , no elementary cycles C1; : : : ; Ck exist such thatC = C1 + : : :+ Ck and 8i 2 [1::k]; w(Ci) < w(C).Proof If C belongs to a minimum cycle basis then it cannot be the sum ofshorter cycles. Otherwise, C could be exchanged by one of these cycles in theminimum basis.Conversely, let B be a minimum cycle basis and C a cycle which is not thesum of shorter cycles. Then C = B1 + : : :+Bk , where 8i; Bi 2 B, and there isat least one cycle Bi such that w(Bi) � w(C). Since B is a minimum basis, wehave w(Bi) = w(C). So, the set (B n fBig) [ fCg is a minimum basis 2This de�nition of cycle relevance has been suggested by [Plotkin, 1971] in thedomain of computational chemistry. Since no e�cient algorithm was proposed to�nd these cycles, many works deal with the de�nition of extended minimum cyclebases which are generally not canonical (see [Downs et al., 1989]).The cardinality of the union of the minimum cycle bases is not necessarily poly-nomial. If G is a complete graph, the cardinality of CR is equal to the polynomialnumber of 3-edge cycles. But some graphs can include an exponential number ofrelevant cycles, such as the one given in Figure 2.The existence of such graphs must not hide the interest of the relevance notion.Firstly, because in some domains, such as organic chemistry, graphs with an ex-ponential number of relevant cycles are almost impossible. Secondly, we present apolynomial time algorithm to compute CR as a polynomial number of parts. Each



the electronic journal of combinatorics 4 (1997), #R9 6u v yx b d ca wFigure 2: The union of all the minimum cycle bases of this graph includes 2n4 cycleswith 3n4 vertices ( (x; b; u; v; d; w; : : : ; y; x); (x; a; u; v; d; w; : : : ; y; x); etc.).part corresponds to a family of cycles which can be directly listed from a particularrelevant cycle. This cycle de�nes a prototype of its family.Representing CR as a polynomial number of cycle prototypes provides a way ofdetermining the cardinality of CR in polynomial time. In section 7.2, we present amethod to �nd the number of cycles which can be generated from a given prototype,without calculating any of them. This compact representation of CR gives a more pre-cise description of the cycle vector space than a simple minimum basis. For instance,in the graph of Figure 2, apart from the n4 4-edge cycles that must be known, theother relevant cycles can be described by a single family. The prototype of this familyis one of the 2n4 elementary cycles with 3n4 vertices. Listing all these relevant cyclesis not very meaningful for such a graph. But it can be very useful for a computersystem to be able to perceive them and designate a single prototype.Of course, the compact representation can always be replaced by a complete enu-meration of the relevant cycles. It provides a canonical set of shortest cycles fromwhich the whole vector space can be generated.4 Partition of the set of relevant cycles CRThis section de�nes a partition of the set of relevant cycles such that the number ofparts is polynomial.Lemma 2 If � is a subpath of a relevant cycle C such that w(�) � 12w(C) then �is a shortest path.Proof Since C is relevant, it belongs to at least one minimum cycle basis B.Assume that � is not a shortest path. Then � includes a subpath � = (a : : :b)such that w(�) > d(a; b) and there is a shortest path �0 from a to b such that� and �0 are disjoint. Replacing � with �0 in C will create a new cycle C 0 suchthat w(C0) < w(C). De�ne C 00 to be the cycle that consists of � and �0. Sincew(�0) < w(�) � 12w(C), w(C 00) < w(C). Because C = C 0 + C 00, C can beexchanged for either C0 or C 00 in B. So B cannot be a minimum basis 2In the rest of the paper, we assume that the vertices of the graph being considered



the electronic journal of combinatorics 4 (1997), #R9 7are ordered by a numbering �. This ordering can be chosen arbitrarily. For any cycleC being considered, we denote by r the greatest vertex in C according to �.De�nition 2 any cycle C is \even" if it consists of two disjoint paths �1 and �2from r to x, such that r is the greatest vertex in C (i.e. �(r) = maxz2C �(z))and w(�1) = w(�2) = 12w(C). Otherwise, C is \odd".12 12w( C )r w( C )xrq pqpOdd cycle Even cycleTheorem 2 any relevant cycle C consists of two disjoint shortest paths (r : : : p) and(r : : : q) linked by the edge (p; q) if C is odd or by the path (p; x; q) if C is even.Proof If C is even, C consists of two disjoint paths (r; : : : ; p; x) and (r; : : : ; q; x)whose weight is 12w(C). Hence, w( (r; : : :p) ) � 12w(C) and w( (r; : : :q) ) �12w(C), because the valuation is positive. If C is odd, C = (r; : : :p; q; : : : ; r)where w( (r; : : :p) ) < 12w(C) and w( (q; : : :r) ) < 12w(C).By lemma 2, (r; : : :p) and (r; : : :q) are shortest paths in both cases 2The partition of the set of relevant cycles is based on theorem 2. For any relevantcycle C including the vertices r, p, q and eventually x, as de�ned in theorem 2, wede�ne the cycle family associated with C as follows :De�nition 3F(C) = 8>>><>>>:C 0 2 CR ��������� w(C 0) = w(C) and C 0 consists of :� the vertex r and the edge (p; q) (or the path (p; x; q)),� two shortest paths (r; : : : ; p) and (r; : : : ; q) passingonly through vertices smaller than r. 9>>>=>>>;12 21pqr qpr xEven CycleC' w( C )C w( C )Odd cycleHence, two cycles C and C 0 belonging to F(C) only di�er on the shortest pathsfrom r to p and from r to q that they include.Theorem 3 The set of all the relevant cycle families de�nes a partition of CR.Proof By theorem 2 and de�nition 3, the cycle family associated with arelevant cycle C is unique for a given ordering �. So any relevant cycle belongsto exactly one family. Then, we de�ne an equivalence relation such that tworelevant cycles are equivalent if one belongs to the cycle family of the other 2



the electronic journal of combinatorics 4 (1997), #R9 8To describe the family F(C), we need a single cycle C which is a prototype ofthis family. All the other cycles in F(C) can be generated from C by replacing paths(r; : : : p) and (r; : : : q) with paths of the same weight passing only through verticessmaller than r.Hence, a cycle family is properly de�ned by a triple r; p; q for odd cycles or aquadruple r; p; q; x for even cycles.The number of relevant cycle families depends on the order � used to de�ne thefamilies. However, we have the following result :Theorem 4 the number of relevant cycle families is always polynomial.Proof The number of families whose prototype is an odd cycle is smaller thann �, since an odd cycle prototype is de�ned by a vertex r and a cycle closingedge (p; q).As for even cycle families, their prototype is de�ned by 4 vertices r; x; p and qsuch that p and q are adjacent to x. Hence, the number of even cycle familiesis smaller than Pr2V Px2V;�(x)��(r) 12deg(x)2 � 12n2m.If the order � respects vertex degree (8x 2 V; �(x) � �(v)) deg(x) � deg(r))there are at most Pr2V �deg(r)�Px2V;�(x)��(r) 12deg(x)� � 2m2 even cyclefamilies 2To compute the union of all the minimum cycle bases, we may �nd one prototypefor each relevant cycle family.5 Computation of cycle prototypesThe algorithm we propose to compute cycle prototypes is based on the converse oftheorem 2. This converse is not necessarily true but it gives a strong condition oncycle relevance.The outline of the algorithm can be given as follows:� �rstly, we compute the set C0I including one cycle for each triple r; p; q (or quadru-ple r; p; q; x) satisfying the condition of theorem 2,� secondly, we use a greedy algorithm to extract relevant cycles from C0I .5.1 Computation of the set C0IBefore we give a more precise description of the �rst step of the algorithm, we needto introduce a new de�nition :De�nition 4 For any vertex r,Vr = � z 2 V such that ���� there is a shortest path in G from r to z that passes onlythrough vertices which precede r in the ordering �. �Then, we can give the outline of the algorithm that computes C0I :



the electronic journal of combinatorics 4 (1997), #R9 9[Algorithm 1]1. For all r 2 V do:2. Compute Vr and 8t 2 Vr �nd a shortest path P (r; t) from r to t;3. For all y 2 Vr do:4. S  ?;5. For all z 2 Vr such that z is adjacent to y do:6. If d(r; z) + w( (z; y) ) = d(r; y) Then7. S  S [ fzg; ? z belongs to a shortest path from r to y ?8. Else If  d(r; z) 6= d(r; y) + w( (z; y) ) and �(z) < �(y)and P (r; y) \ P (r; z) = frg ! Then9. Add to C0I the odd cycle C = P (r; y) + P (r; z) + (z; y);10. EndIf11. EndFor12. For any pair of vertices p; q in S such that P (r; p) \ P (r; q) = frg Do:13. Add to C 0I the even cycle C = P (r; p) + P (r; q) + (p; y; q);14. EndFor15. EndFor16. EndForFor a given vertex r, the set Vr can be computed at line 2 using a shortest pathalgorithm. For example, the algorithm presented in [Dijkstra, 1959] can be easilyupdated to compute Vr by preferably choosing the shortest paths which pass onlythrough vertices smaller than r. This variant does not change the algorithm com-plexity. It remains in O(n2) operations when the priority queue is implemented as anarray, O(m log n) using a binary heap or O(m+ n log n) with a Fibonacci heap.To generate the prototypes associated with a vertex r, we explore any vertex y inVr. We are now going to detail the generation of C 0I illustrated by Figure 3.Even cycles generated for y :(r; : : : ; z2; y; z3; : : : ; r)(r; : : : ; z1; y; z3; : : : ; r)(r; : : : ; z1; y; z4; : : : ; r)(r; : : : ; z1; y; z2; : : : ; r)Odd cycle generated for y :where (r; : : : ; z1) = P (r; y) Sr z3z2 z4 z5z1 y5 6 4 8 9 2331 2Figure 3: Generation of C 0I .First, we compute the set S = f z 2 �(y) \ Vr j d(r; z)+w((z; y)) = d(r; y) g. So,at the end of line 11, S includes all the vertices in Vr adjacent to y such that there isa shortest path from r to y passing through the edge (z; y). For any pair of verticesp; q in S, we create the even cycle C = P (r; p) +P (r; q)+ (p; y; q) when paths P (r; p)and P (r; q) are disjoint (see line 13).



the electronic journal of combinatorics 4 (1997), #R9 10As for odd cycles, they are created at line 9 for any vertex z in �(y) \ Vr suchthat d(r; y) � w( (z; y) ) < d(r; z) < d(r; y) + w( (z; y) ). To avoid cycle duplication,we only consider any vertex z such that �(z) < �(y).A quick analysis of algorithm 1 gives for each vertex r in V :� line 2 takes O(m+ n log n) operations,� for lines 5 to 11, the critical step is line 8 which takesPy2Vr O(deg(y))�O(n) = O(nm) operations, where O(n) is necessary tocheck if the paths are disjoint,� line 12-14 takes Py2Vr O(deg(y))2 � O(n) � O(mndeg(r)) if we supposethat the order � respects the vertex degree (i.e. 8y 2 Vr; deg(y) � deg(r)).So, algorithm 1 takes O(nm2) operations.Lemma 3 If order � satis�es 8x; y 2 V; �(x) � �(y)) deg(x) � deg(y)then the cardinality of set C 0I is lower than (2m2 + �n).Proof The number of odd cycles in C 0I is less than �n. As for the even cycles,they are at most Pr2V Py2Vr 12deg(y)2. For any y in Vr; deg(y) � deg(r). So,there are at most Pr2V �deg(r)�Py2Vr 12deg(y)� � 2m2 even cycles in C 0I 2Theorem 5 C 0I includes one and only one prototype of each relevant cycle family.Proof Let C = (r; : : : ; p; x; q; : : : ; r) be a relevant even cycle (if C is odd, theproof is quite similar). Assume that r is the greatest vertex in C according to� and x is the unique vertex in C such that d(r; x) = 12w(C).Now consider the exploration of vertex y = x in algorithm 1. By theorem 2,(r; : : : ; p) and (r; : : : ; q) are shortest paths. So p and q belong to S. De�neC0 to be the cycle added to C0I at line 13 for the pair of vertices p; q. Byconstruction of C0I , C0 is unique.Cycles C and C0 only di�er by the shortest paths (r; : : : ; p) and (r; : : : ; q) thatthey include. The sum C + C0 de�nes a set of cycles which are smaller thanC. Hence, cycle C0 must be relevant since C is relevant. So, C0 is the uniqueprototype of F(C) which belongs to C 0I 25.2 Computation of a set of prototypesBy theorem 5, CR \ C 0I is a set of prototypes. So, we have to extract all the relevantcycles in C 0I .As in Horton's algorithm, a minimum cycle basis B is calculated by processing thecycles of C 0I in order of their weight. During the processing of a cycle C, we denoteby B< and B= the subsets of cycles in the current sub-basis whose weights are lessthan w(C) and equal to w(C), respectively. By Lemma 1, C is relevant when the set



the electronic journal of combinatorics 4 (1997), #R9 11B< [ fCg is independent. When this check succeeds, cycle C is added to B= if theset B< [ fCg [ B= is also independent. The processing stops when B is completeand all the cycles having the same weight as the greatest one in B have been tested.The current minimal sub-basis of B is represented by a (jB<j+ jB=j)�m booleanmatrix. To test if set B< [ fCg is independent, we perform a Gaussian elimination onthe �rst rows of the matrix which are associated with B<. When this check succeeds,the Gaussian elimination follows on the other rows to test if set B< [ B= [ fCg isalso independent.Since B contains at most � cycles, each check of a cycle is performed in O(�m).By lemma 3, the cardinality of C 0I is in O(m2). So, the set of prototypes C0I \ CR canbe generated in O(�m3) operations.6 Enumeration of CRCR is completely described by a set of prototypes of the families de�ned in section 4.From this set of prototypes, the union of all the minimum cycle bases can easily belisted.Consider a cycle prototype C 2 CR \ C 0I . To generate the cycle family F(C), wede�ne a directed graph Dr = (Vr; Ur) associated with the vertex r such that:Ur = 8><>:directed edge (y; z) such that ������� (z; y) belongs to a shortest path in G from r to ythat passes only through vertices which preceder in the ordering �. 9>=>;r yzz'The computation of the digraph Dr can be performed directly in algorithm 1. Foreach directed edge (y; z) in Ur, z belongs to the set S which is computed at line 7 ofthe algorithm.The digraph Dr has two major properties:� It has no directed cycle,� 8x 2 Vr, any directed path (x; : : : ; r) in Dr corresponds to a shortest path in G.To list all the paths from x to r in Dr, we use a backtracking function which is basedon a deep �rst search from x. This recursive function can be resumed as follows:



the electronic journal of combinatorics 4 (1997), #R9 12Function List Paths( x; current path )add x at the head-end of current path;If x = r Then Return(fcurrent pathg)Else:Result ?;For any z such that (x; z) 2 Ur DoResult Result [ List Paths(z, current path);Return(Result)To compute F(C), we �rst replace the path (p; : : : ; r) in C by each one of thepaths returned by the call List Paths(p, ?). Then, in any cycle generated this way, wereplace the path (q; : : : ; r) by each one of the paths resulting from List Paths(q, ?).Each cycle in F(C) corresponds to a pair of paths (p; : : : ; r), (q; : : : ; r). Sincethe computation of each path takes a number of operations in order of the pathcardinality, the family F(C) can be listed in O(n jF(C)j ).So, the generation of CR from subset CR \ C 0I is performed in O(n jCRj) operations(including cycle enumeration).Note that the use of prototypes substantially optimizes the generation of CR: ifa cycle prototype is relevant, this implies that all cycles of the corresponding familyare relevant. Therefore, the number of cycle relevance checks is polynomial since itis in O(jC 0I j) instead of O(jCRj).7 Computation of the number of relevant cycles7.1 Size of CRUsing cycle families to describe CR provides a polynomial time algorithm to computethe size of this set without generating all cycles. This is particularly interesting forreal-world problems to determine whether the number of relevant cycles is polynomialor not.To perform this computation we may evaluate the number of shortest paths fromr to any vertex x, which passe only throught vertices in Vr. This number is denotedby  r(x). Of course,  r(r) = 1.In algorithm 1, we compute, for each vertex y in Vr, the set S of all the verticesz in Vr such that there is a shortest path from r to y which ends in the edge (z; y).Then, one can easily prove that: 8y 2 Vr;  r(y) = Xz2S r(z)This result gives an e�cient method to compute the function  r if the vertices inVr are processed according to a topological sort4 of the graph Dr.4In a graph without directed cycles, a topological sort is an ordering on the vertices such that :if there is a directed edge from x to y then x is greater than y.



the electronic journal of combinatorics 4 (1997), #R9 13pqr ya 44312111 1 11 11 2 2 22 2 6Figure 4: Since  r(p) = 4 and  r(q) = 6, cycle family F(Crp;q) (corresponding to cycleCrp;q in solid lines), contains 24 relevant cycles.Denote by Crp;q a cycle created from vertices r, p and q (and eventually x) accordingto the previous notations.If Crp;q belongs to CR \ C 0I , then the number of relevant cycles in family F(Crp;q)is equal to  r(p) �  r(q) (see Figure 4). Consequently,jCRj = XCrp;q 2CR \C0I  r(p) �  r(q)7.2 Number of relevant cycles including a given vertexDetermination of the union of all the minimum cycle bases as a polynomial number ofcycle prototypes has still another interest. It provides a way of calculating, in polyno-mial time, the number of relevant cycles of a given weight which include each vertex.For example, in Figure 4, vertex a belongs to two 4-edge relevant cycles, one 6-edgecycle and twelve 13-edge ones. This knowledge can be useful to distinguish verticesaccording to their membership to more or less complex cyclic structures. For exam-ple, in organic chemistry this can help for taxonomy purposes in the determinationof nomenclature names.Let us consider a cycle family F(Crp;q). Denote by #in(y;F(Crp;q)) the numberof cycles in F(Crp;q) which include vertex y. Assume that vertex y belongs to path(r; ::; q). De�ne �r(y; q) to be the number of shortest paths from y to q which areincluded in Dr. For example, in Figure 4, �r(y; q) = 3.We can determine �r(y; q) using a topological sort, in the same way as for thedetermination of  r. This search needs O(m) operations. Since there are at mostO(m2) families, the global complexity is O(m3).Then, one can easily prove the following result:#in(y;F(Crp;q)) =  r(y)� �r(y; q)�  r(p)In Figure 4, for vertex y, #in(y;F(Crp;q)) = 2 � 3� 4 = 24.
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