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Abstract. We study sums of the form
∑
ζ R(ζ), where R is a rational function

and the sum is over all nth roots of unity ζ (often with ζ = 1 excluded). We call
these generalized Dedekind sums, since the most well-known sums of this form are
Dedekind sums. We discuss three methods for evaluating such sums: The method of
factorization applies if we have an explicit formula for

∏
ζ(1− xR(ζ)). Multisection

can be used to evaluate some simple, but important sums. Finally, the method of
partial fractions reduces the evaluation of arbitrary generalized Dedekind sums to
those of a very simple form.

1. Introduction.
Given a rational function R(x), we consider the problem of evaluating the sum∑

ζ

R(ζ)

over all nth roots of unity ζ (often with ζ = 1 excluded.) Such problems arise in
several areas of mathematics, such as number theory and topology, and this work
was originally motivated by a question from Larry Smith [9] regarding sums of this
form that arose in his work on stable homotopy theory [8].

Although there is a large literature on special instances of such sums, there does
not seem to have been any discussion of the general problem. Since the special
cases that have been studied are usually called Dedekind sums, we call the sums
considered here generalized Dedekind sums. For a comprehensive account of the
classical theory of Dedekind sums, see Rademacher and Grosswald [7]. An elegant
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treatment of an important generalization of the classical Dedekind sum has been
given by Zagier [11].

In this paper we discuss three methods, all using generating functions, for study-
ing such sums. The first method is factorization: If we have an “explicit” formula
for the product P (x) =

∏
j(1− αjx), then we can use it to study the sums

∑
j α

k
j .

We apply this in the case in which αj is R(ζj) for some rational function R, where
ζj is an nth root of unity.

The second method is multisection: If R(x) =
∑
k rkx

k then
∑
ζn=1 R(ζx) =

n
∑

k rnkx
nk. If R is rational and we have an explicit formula for

∑
k rnkx

nk, then
we have evaluated

∑
ζn=1R(ζx), and we can set x = 1 (sometimes after subtracting

the ζ = 1 term) to evaluate
∑
ζn=1R(ζ) or

∑
ζn=1
ζ 6=1

R(ζ).

The third, and most powerful, method is partial fractions: Since any rational
function is a linear combination of rational functions of the form (x − α)−i, the
general problem may be reduced to the case of this particular form, which can
be solved by either of the first two methods or by a further application of partial
fractions. Partial fractions can also be used to derive “reciprocity theorems” which
are important in the theory of classical Dedekind sums.

2. Factorization.
Let P (x) be a polynomial and suppose that

P (x) =
∏
j

(1− αjx).

Then

− logP (x) =

∞∑
k=1

(∑
j

αkj

)
xk

k
. (2.1)

Thus if for some rational function R, αj is R(ζj), where ζj is a root of unity, and
if we know P (x) explicitly, then we have a generating function for

∑
j R(ζj)

k.

The simplest interesting example comes from

zn − 1 =
∏
ζn=1

(z − ζ). (2.2)

Setting z = x+ α in (2.2) gives

(x+ α)n − 1 =
∏
ζn=1

(
x− (ζ − α)

)
.

Dividing each side by its constant term we get

(α+ x)n − 1

αn − 1
=
∏
ζn=1

(
1−

x

ζ − α

)
.
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Then applying (2.1), we have

log
αn − 1

(α+ x)n − 1
=
∞∑
k=1

(∑
ζn=1

1

(ζ − α)k

)
xk

k
. (2.3)

Extracting the coefficients of x and x2 in (2.3) gives

∑
ζn=1

1

ζ − α
= −n

αn−1

αn − 1
(2.4)

∑
ζn=1

1

(ζ − α)2
= n

αn−2(αn + n− 1)

(αn − 1)2
. (2.5)

Similarly, we may start from

zn − 1

z − 1
=
∏
ζn=1
ζ 6=1

(z − ζ). (2.6)

Setting z = x+ 1 in (2.6) gives

(1 + x)n − 1

x
=
∏
ζn=1
ζ 6=1

(
x− (ζ − 1)

)
.

Dividing each side by its constant term we get

(1 + x)n − 1

nx
=
∏
ζn=1
ζ 6=1

(
1−

x

ζ − 1

)
.

Now let
gk(n) =

∑
ζn=1
ζ 6=1

(ζ − 1)−k.

Using the facts that if ζ = e2πij/n, where i =
√
−1, then

1

(ζ − 1)k
=

ζ−k/2

(ζ1/2 − ζ−1/2)k
=

(
1

2i

)k cos πjk
n
− i sin πjk

n

sink πj
n

,

and that gk(n) is real, we obtain trigonometric formulas for gk(n): If k is even,

gk(n) =
(−1)k/2

2k

n−1∑
j=1

cos
πjk

n
csck

πj

n
,
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and if k is odd,

gk(n) =
(−1)(k−1)/2

2k

n−1∑
j=1

sin
πjk

n
csck

πj

n
.

By (2.1),
∞∑
k=1

gk(n)
xk

k
= log

nx

(1 + x)n − 1
. (2.7)

From (2.7), we can easily compute the first few values of gk(n):

g1(n) = −(n− 1)/2

g2(n) = −(n− 1)(n− 5)/12,

g3(n) = (n− 1)(n− 3)/8.

g4(n) = (n− 1)(n3 + n2 − 109n+ 251)/720

g5(n) = −(n− 1)(n− 5)(n2 + 6n− 19)/288

g6(n) = −(n− 1)(2n5 + 2n4 − 355n3 − 355n2 + 11153n− 19087)/60480

The problem of showing that gk(n) =
∑

ζn=1
ζ 6=1

(ζ − 1)−k is a polynomial in n of

degree at most k with rational coefficients was proposed by Duran [5]. This result
follows easily from (2.7), but we can say much more about these polynomials.

First we recall that the unsigned Stirling numbers of the first kind
[
n
k

]
are defined

by (
log(1 + x)

)k
k!

=
∞∑
n=k

(−1)n−k
[
n

k

]
xn

n!

and the Bernoulli numbers Bn are defined by

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
.

It is well known that B1 = −1/2, and for n > 1 Bn is zero if and only if n is odd.

Theorem 2.1. For k ≥ 1,

gk(n) = (−1)k
n− 1

2
−

1

(k − 1)!

k∑
j=2

(−1)k−j
[
k

j

]
Bj
j

(nj − 1).

Proof. Let us set x = ey − 1, so that y = log(1 + x). Then by (2.7),

∞∑
k=1

gk(n)
xk

k
= − log

eny − 1

n(ey − 1)
= log

ny

eny − 1
− log

y

ey − 1
.
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Since

d

du
log

u

eu − 1
=

1

u

(
−

u

eu − 1
+ 1− u

)
= −

1

2
−
∞∑
j=1

Bj+1

j + 1

uj

j!
,

we have
∞∑
k=1

gk(n)
xk

k
= −

ny

2
−
∞∑
j=2

Bj
j

(ny)j

j!
+
y

2
+
∞∑
j=2

Bj
j

yj

j!

= −
(n− 1)

2
y −

∞∑
j=2

Bj
j

(nj − 1)
yj

j!
. (2.8)

Now
yj

j!
=
∞∑
k=j

(−1)k−j
[
k

j

]
xk

k!
,

so it follows from (2.8) that

gk(n) = (−1)k
n− 1

2
−

1

(k − 1)!

k∑
j=2

(−1)k−j
[
k

j

]
Bj
j

(nj − 1). ¤

By taking n→ 0 in (2.7), we find that

∞∑
k=1

gk(0)
xk

k
= log

x

log(1 + x)
.

Differentiating this formula with respect to x then multiplying by x, we obtain

∞∑
k=1

gk(0)xk = 1−
x

(1 + x) log(1 + x)
.

Thus gk(0) = −Nk/k!, where the Nörlund numbers Nk are defined by

x

(1 + x) log(1 + x)
=

∞∑
k=0

Nk
xk

k!

(see Howard [6]). So the formula for gk(n) given by Theorem 2.1 may be restated
as

gk(n) = −
Nk

k!
+ (−1)k

n

2
−

1

(k − 1)!

k∑
j=2

(−1)k−j
[
k

j

]
Bj

j
nj . (2.9)

Since
[
k
k

]
= 1 and

[
k
k−1

]
=
(
k
2

)
, for k ≥ 2 the leading term of gk(n) is −(Bk/k!)nk

for k even and
(
k/2(k − 1)!

)
Bk−1n

k−1 for k odd. Moreover, gk(n) − (−1)kn/2
contains only even powers of n.

It is clear that gk(1) = 0 for every k, so gk(n) is divisible by n − 1. Empirical
evidence suggests that other than the fact that g2(n) is divisible by n − 5, the
only other factorization of the polynomials gk(n) over the rationals is given by the
following result.
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Proposition 2.2. If k is odd, then as a polynomial in n, gk(n) is divisible by n−d
for every positive divisor d of k.

Proof. We shall show that if d is a positive divisor of k then gk(d) = 0.
Let ξ be a primitive dth root of unity, where d is odd. We want to show that if

q is odd then
d−1∑
j=1

(ξj − 1)−dq = 0.

Let A be the sum in question. Then for any integer l,

A = ξ−dqlA =
d−1∑
j=1

(ξj+l − ξl)−dq.

Thus

dA =
d−1∑
l=0

ξ−dqlA =
∑

0≤l,m≤d−1
l6=m

(ξm − ξl)−dq.

Interchanging m and l in the last sum multiplies each term by (−1)dq = −1 and
also permutes the terms in the sum. Thus dA = −dA, so A = 0. ¤

As another example of the method of factorization, set z = (1 + x)/(1 − x) in
(2.6). Then we have (

1 + x

1− x

)n
− 1

2x/(1− x)
=
∏
ζn=1
ζ 6=1

(
1 + x

1− x
− ζ

)
.

Multiplying both sides by (1− x)n−1, dividing each side by its constant term, and
simplifying, we get

(1 + x)n − (1− x)n

2nx
=
∏
ζn=1
ζ 6=1

(
1−

ζ + 1

ζ − 1
x

)
.

As before, we get

log
2nx

(1 + x)n − (1− x)n
=
∞∑
k=1

[∑
ζn=1
ζ 6=1

(
ζ + 1

ζ − 1

)k]
xk

k
.

If we set

qk(n) =
∑
ζn=1
ζ 6=1

(
ζ + 1

ζ − 1

)k
,
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then qk(n) is 0 for k odd, and the first few values for even k, computed from this
generating function, are

q2(n) = −
1

3
(n− 1)(n− 2)

q4(n) =
1

45
(n− 1)(n− 2)(n2 + 3n− 13)

q6(n) = −
1

945
(n− 1)(n− 2)(2n4 + 6n3 − 28n2 − 96n+ 251)

We also have a simple trigonometric formula:

qk(n) = (−1)k/2
n−1∑
j=1

cotk
πj

n
, k even.

It may be noted that qk(n) is a special case of the “higher-dimensional Dedekind
sums” studied by Zagier [11].

A more difficult application of factorization is a result of Stanley [10]:

Theorem 2.3. Let

Sk(n) =
∑
ζn=1
ζ 6=1

|1− ζ|−2k
.

Then
∞∑
k=1

4kSk(n)x2k = 1−
nx cot(n sin−1 x)
√

1− x2
.

Proof. First note that since |1− ζ|−2 = 1/(1− ζ)(1− ζ−1) = −ζ/(1− ζ)2, we have

Sk(n) =
∑
ζn=1
ζ 6=1

|1− ζ|−2k =
∑
ζn=1
ζ 6=1

(−ζ)k

(1− ζ)2k
=
n−1∑
j=1

(
1

2
csc

πj

n

)2k

.

Now since
d

dx
log sin(n sin−1 x) =

n cot(n sin−1 x)
√

1− x2
,

we have

1−
nx cot(n sin−1 x)
√

1− x2
= −x

d

dx

[
log

sin(n sin−1 x)

x

]
.

So to prove Stanley’s formula we must show that

log
sin(n sin−1 x)

Cx
= −

∞∑
k=1

4kSk(n)
x2k

2k
= −

∞∑
k=1

(n−1∑
j=1

csc2k πj

n

)
x2k

2k
(2.10)
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where logC is an appropriate constant of integration. Since sin(n sin−1 x)/Cx must
have constant term 1, C must be n. Then multiplying both sides of (2.10) by 2 and
exponentiating, we see that the identity to be proved is

(
sin(n sin−1 x)

nx

)2

=
n−1∏
j=1

(
1− x2 csc2 πj

n

)
. (2.11)

The right side of (2.11) is a polynomial in x whose degree, constant terms, and
roots are easily determined; so it is sufficient to show that these are the same for
the left side. There is a complication due to the multiplicity 2 of most of the roots,
which leads us to consider separately the cases n even and n odd.

First we examine the roots of the right side of (2.11). The right side of (2.11)
vanishes for

x = ± sin
πj

n
, j = 1, 2, . . . , n− 1,

but since sin πj
n

= sin π(n−j)
n

, each ± sin πj
n

with 1 ≤ j < n/2 appears twice as a
root. Moreover, if n is even then each of ± sin π

2 = ±1 appears once as a root. This
takes care of all 2n− 2 roots.

Next we consider the left side of (2.10). It is easy to prove (e.g., by induction)
that if n is odd then sinnθ is a polynomial of degree n in sin θ and if n is even then
sinnθ/cos θ is a polynomial of degree n− 1 in sin θ.

Thus

sin(n sin−1 x) =

{
Pn(x), if n is odd
√

1− x2Qn−1(x), if n is even,

where Pm(x) and Qm(x) are polynomials in x of degree m.1 If x = ± sin πj
n

for

some integer j, then sin(n sin−1 x) = 0. Thus if n is odd,

(
sin(n sin−1 x)

nx

)2

(2.12)

is a polynomial of degree 2n− 2 with constant term 1 and with roots ± sin πj
n

for
j = 1, 2, . . . , (n − 1)/2, each with multiplicity (at least) 2; if n is even then (2.12)

is a polynomial of degree 2n− 2 with constant term 1 and with roots ± sin πj
n

for
j = 1, 2, . . . , n/2 − 1, each with multiplicity (at least) 2 and with roots ±1 each
of multiplicity (at least) 1. These facts are sufficient to establish (2.11), and thus
Stanley’s formula. ¤

It is also possible to give an explicit formula, analogous to Theorem 2.1, for the
coefficients of S2k(n) in terms of Bernoulli numbers and central factorial numbers.

1It can be shown that for n odd, Pn(x) = (−1)(n−1)/2Tn(x) and for n even, Qn−1(x) =

(−1)(n/2)−1Un−1(x), where Tn(x) and Un−1(x) are the Chebyshev polynomials of the first and
second kinds, defined by cosnθ = Tn(cos θ) and sinnθ = Un−1(cos θ) sin θ.
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3. Multisection.
Let R(x) be a rational function of x. Then R has a Laurent series expansion

R(x) =
∞∑
i=N

rix
i

By n-section of R(x) we mean the extraction of the sum of the terms rixi in which
i is divisible by n. It is well-known (and easy to prove) that∑

ζn=1

R(ζx) = n
∑
k

rnkx
nk. (3.1)

In some cases, we have an explicit formula for ri that we can use, with the help of
(3.1), to evaluate

∑
ζn=1R(ζx).

We note that the method of multisection is closely related to the invariant theory
method used by Stanley [10] to evaluate some generalized Dedekind sums.

As a simple example of this approach, take R(x) = x/(1− x− x2) =
∑∞
i=0 Fix

i,
the generating function for the Fibonacci numbers. It is well known that Fi =
(αi − βi)/(α− β), where α, β = (1±

√
5)/2, so we have

∞∑
k=0

Fnkx
nk =

∞∑
k=0

αnk − βnk

α− β
xnk

=
1

α − β

(
1

1− αnxn
−

1

1− βnxn

)
=

1

α − β

(
(αn − βn)xn

1− (αn + βn)xn + (αβ)nx2n

)
=

Fnx
n

1− Lnxn + (−1)nx2n

where Ln = αn + βn is the nth Lucas number. Thus∑
ζn=1

ζx

1− ζx− (ζx)2
=

nFnx
n

1− Lnxn + (−1)nx2n
. (3.2)

Although we proved (3.2) under the assumption that x is an indeterminate, since
both sides are rational functions of x, (3.2) must also hold as an identity of rational
functions. Thus we may set x = 1 in (3.2) to obtain∑

ζn=1

ζ

1− ζ − ζ2
=

nFn

1 + (−1)n − Ln
. (3.3)

Note that as a consequence of (3.3) we have the curious formula

lim
n→∞

1

n

∑
ζn=1

1

1− ζ − ζ2
= −

1
√

5
.

Next we apply multisection to prove a simple but fundamental and important
result.
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Theorem 3.1. Let r be an integer with 1 ≤ r ≤ n. Then if x 6= y,

∑
ζn=1

ζr

x− yζ
= n

xr−1yn−r

xn − yn
. (3.4)

Proof. Since both sides are homogeneous of degree −1 in x and y, it is sufficient
to prove the case in which x = 1. Moreover, since both sides are rational functions
of x and y, we may assume that y is an indeterminate, so that the left side can be
expanded as a power series in y. Then since n-secting yr/(1− y) = yr + yr+1 + · · ·
yields yn + y2n + · · · = yn/(1− yn), we obtain

∑
ζn=1

(yζ)r

1− yζ
=

nyn

1− yn
,

and this is equivalent to the formula to be proved. ¤

Note that since the sum on the left side of (3.4) depends only on the congruence
class of r modulo n, Theorem 3.1 can be used to evaluate this sum for all r. In
particular, the case r = n is equivalent to (2.4).

Corollary 3.2. If 1 ≤ r ≤ n then

∑
ζn=1
ζ 6=1

ζr

1− ζ
= r −

n− 1

2
. (3.5)

Proof. By Theorem 3.1,

∑
ζn=1
ζ 6=1

ζr

1− yζ
= n

yn−r

1− yn
−

1

1− y
.

The corollary follows by taking the limit as y → 1. ¤

Our next corollary generalizes (2.3) and (2.7).

Corollary 3.3. If 1 ≤ r ≤ n then

∞∑
k=1

uk−1
∑
ζn=1

ζr

(x− yζ)k
= n

(x− u)r−1yn−r

(x− u)n − yn
(3.6)

and
∞∑
k=1

uk−1
∑
ζn=1
ζ 6=1

ζr

(1− ζ)k
=

1

u
+ n

(1− u)r−1

(1− u)n − 1
. (3.7)
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Proof. We have

∞∑
k=1

uk−1
∑
ζn=1

ζr

(x− yζ)k
=
∑
ζn=1

ζr
∞∑
k=1

uk−1

(x− yζ)k
=
∑
ζn=1

ζr

x− u− yζ

= n
(x− u)n−r

′−1yr
′

(x− u)n − yn
,

which proves (3.6). To prove (3.7), subtract from (3.6) its specialization at n = 1
(and r = 1), and then set x = y = 1. ¤

In particular, it follows from Corollary 3.3 that∑
ζn=1

ζr

(x− yζ)2
= n

xr−2yn−r
(
(n+ 1− r)xn + (r − 1)yn

)
(xn − yn)2

, (3.8)

which can also be obtained by differentiating (3.4) with respect to x. The case
r = n of (3.8) is equivalent to (2.5).

If we take r = 1 in (3.7), we get

∞∑
k=1

uk−1
∑
ζn=1
ζ 6=1

ζ

(1− ζ)k
=

1

u
+

n

(1− u)n − 1
. (3.9)

L. Carlitz [3, 4] has studied the “degenerate Bernoulli numbers” βk(λ) defined by

∞∑
k=0

βk(λ)
uk

k!
=

u

(1 + λu)1/λ − 1
. (3.10)

Comparing (3.9) with (3.10), we see that∑
ζn=1
ζ 6=1

ζ

(1− ζ)k
=

(−1)k−1

k!
nkβk(1/n). (3.11)

More generally, Carlitz [4, Section 5] considered “degenerate Bernoulli polynomials”
βk(λ, z) defined by

∞∑
k=0

βk(λ, z)
uk

k!
=

u(1 + λu)z/λ

(1 + λu)1/λ − 1
. (3.12)

Taking r = s + 1 in (3.7), where 0 ≤ s ≤ n − 1, and comparing with (3.12) gives
the following result:

Corollary 3.4. For 0 ≤ s ≤ n− 1,∑
ζn=1
ζ 6=1

ζs+1

(1− ζ)k
=

(−1)k−1

k!
nkβk(1/n, s/n). ¤
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4. Partial Fractions.
We have already seen, at least implicitly, some examples of partial fraction ex-

pansions: the logarithmic derivatives of the factorizations in section 2 are partial
fraction expansions, and Theorem 3.1 may be viewed as a partial fraction expan-
sion. Since any rational function of ζ can be expressed as polynomial plus a linear
combination of rational functions of the form (1 − αζ)−k, and we know how to
evaluate

∑
ζn=1(1− αζ)−k, we can in principle evaluate any generalized Dedekind

sum by partial fractions.
As a first application of this method, we consider an American Mathematical

Monthly problem proposed by P. E. Bjørstad and H. Fettis [1] and solved by H.-J.
Seiffert: to find a “closed algebraic expression” for the sum

SN =
N−1∑
k=1

sin2 kπ
N(

1− 2a cos kπ
N

+ a2
)2 .

We give a simpler derivation of Seiffert’s formula:

Proposition 4.1.

SN =
N

2(1− a2N )

(
1 + a2N−2

1− a2
− 2N

a2N−2

1− a2N

)
.

Proof. To evaluate SN , we first express it as a generalized Dedekind sum. We note
that the summand is an even function of k that vanishes when k is divisible by N .
Thus

SN =
1

2

N−1∑
k=−N

sin2 kπ
N(

1− 2a cos kπ
N

+ a2
)2 .

Expressing the trigonometric functions in terms of roots of unity, we have

SN = −
1

8

∑
ζ2N=1

(ζ − ζ−1)2

[(1− aζ)(1− aζ−1)]2
.

Now for any integer n, let us set

Tn =
∑
ζn=1

(ζ − ζ−1)2

[(1− aζ)(1− aζ−1)]2
,

so that SN = −T2N/8.
We have the partial fraction expansion

(ζ − ζ−1)2

[(1− aζ)(1− aζ−1)]2
=

1

a2
−

2

a2(1− a2)(1− aζ)

+
1

a2(1− aζ)2
+

2

(1− a2)(1− ζ/a)
+

1

a2(1− ζ/a)2
.

Summing over ζn − 1, applying formulas (3.4) and (3.8), and simplifying yields

Tn = −
2n

1− an

(
1 + an−2

1− a2
− n

an−2

1− an

)
and the theorem follows. ¤

We now give one of the many possible generalizations of Proposition 4.1.
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Theorem 4.2. Let

Pn(k, l, r) =
∑
ζn=1

ζr

(1− aζ)k(1− aζ−1)l
.

Then if 1 ≤ r ≤ n− 1,

∞∑
k,l=0

Pn(k, l, r)xkyl =
n

(1− x)(1− y)− a2

(
x(1− x− a2)

(1− x)r−1an−r

(1− x)n − an

+ y(1− y − a2)
(1− y)n−r−1ar

(1− y)n − an

)
,

and

∞∑
k,l=0

Pn(k, l, 0)xkyl = n+
n

(1− x)(1− y)− a2

(
x(1− x− a2)

(1− x)n−1

(1− x)n − an

+ y(1− y − a2)
(1− y)n−1

(1− y)n − an
− xy

)
,

Proof. We have

∞∑
k,l=0

Pn(k, l, r)xkyl =

∞∑
k,l=0

xkyl
∑
ζn=1

ζr

(1− aζ)k(1− aζ−1)l

=
∑
ζn=1

ζr
∑
k,l

xkyl

(1− aζ)k(1− aζ−1)l
.

Then

∞∑
k,l=0

xkyl

(1− aζ)k(1− aζ−1)l
=

(
1−

x

1− aζ

)−1(
1−

y

1− aζ−1

)−1

= 1 +
1

(1− x)(1− y)− a2

(
x(1− x− a2)

1− x− aζ
+
y(1− y − a2)

1− y − aζ−1
− xy

)
.

Now multiply each side by ζr and sum over all ζ with ζn = 1. The sum can be
evaluated by Theorem 3.1, using the fact that

∑
ζn=1

ζr

1− y − aζ−1
=
∑
ζn=1

ζ−r

1− y − aζ
=
∑
ζn=1

ζn−r

1− y − aζ
. ¤

Next we show how Stanley’s formula (Theorem 2.3) can be proved by partial
fractions. Although the proof we gave earlier suggested that this result depends on



the electronic journal of combinatorics 4 (no. 2) (1997), #R11 14

a very special factorization, the proof we give now shows that Stanley’s formula is
an instance (though an especially nice one) of a much more general phenomenon.

To prove Stanley’s formula we must evaluate

∞∑
k=1

4kSk(n)x2k =
∞∑
k=1

(2x)2k
∑
ζn=1
ζ 6=1

(−ζ)k

(1− ζ)2k
= −

∑
ζn=1
ζ 6=1

4x2ζ

(1− ζ)2 + 4x2ζ
.

We proceed by expanding

−
4x2ζ

(1− ζ)2 + 4x2ζ
(4.1)

in partial fractions. Factoring the denominator of (4.1), we find that

(1− ζ)2 + 4x2ζ = (1−Aζ)(1−Bζ),

where A = 1−2x2 + 2ix
√

1− x2 and B = 1− 2x2−2ix
√

1− x2, and we obtain the
partial fraction expansion

−
4x2ζ

(1− ζ)2 + 4x2ζ
=

ix
√

1− x2

(
1

1−Aζ
−

1

1−Bζ

)
.

Summing over ζn = 1 yields

−
∑
ζn=1

4x2ζ

(1− ζ)2 + 4x2ζ
=

nix
√

1− x2

(
1

1−An
−

1

1−Bn

)
.

Since AB = 1, we have

1

1−An
−

1

1−Bn
=

1

1−An
−

An

An − 1
=

1 +An

1−An
,

and thus

−
∑
ζn=1

4x2ζ

(1− ζ)2 + 4x2ζ
=

nix
√

1− x2

1 +An

1−An
. (4.2)

Since evaluating (4.1) at ζ = 1 yields −1, we subtract −1 from both sides of (4.2)
to obtain

∞∑
k=1

4kSk(n)x2k = −
∑
ζn=1
ζ 6=1

4x2ζ

(1− ζ)2 + 4x2ζ

= 1 +
nix

√
1− x2

1 + (1− 2x2 + 2ix
√

1− x2)n

1− (1− 2x2 + 2ix
√

1− x2)n
. (4.3)

To see that (4.3) really is equivalent to Theorem 2.3, we make the substitution
x = sin θ, which takes A to cos 2θ + i sin 2θ = e2iθ. Then (4.3) becomes

∞∑
k=1

4kSk(n) sin2k θ = 1 + ni tan θ
1 + e2iθn

1− e2iθn
,

from which the equivalence is clear.
We can apply the same approach to

∑∞
k=1 x

k
∑

ζn=1 R(ζ)k in the general case.
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Theorem 4.3. Let R(ζ) be a rational function defined for every root of unity ζ.
Then

∞∑
k=1

xk
∑
ζn=1

R(ζ)k = nT (x) + n
∑
j

Nj(x)

1−Dj(x)n
, (4.4)

where T (x) is a rational function of the form ax/(b+ cx) and Nj(x) and Dj(x) are
algebraic functions, with Dj(x) 6= 0.

Proof. Let R(ζ) = P (ζ)/Q(ζ), for relatively prime polynomials P and Q. Then

∞∑
k=1

xk
∑
ζn=1

R(ζ)k =
∑
ζn=1

xR(ζ)

1− xR(ζ)
=
∑
ζn=1

xP (ζ)

Q(ζ)− xP (ζ)
.

Now Q(ζ) − xP (ζ) may be factored as C(x)
∏
j

(
1 − Dj(x)ζ

)
for some algebraic

functions C(x) and Dj(x), and it is not difficult to show that the Dj must be distinct
(since Q(ζ)− xP (ζ) is irreducible over C(x)[ζ]). Thus xP (ζ)/

(
Q(ζ)− xP (ζ)

)
has

a partial fraction decomposition

xP (ζ)

Q(ζ)− xP (ζ)
= T (x) +

∑
j

Nj(x)

1−Dj(x)ζ
,

where the Nj(x) and Dj(x) are algebraic functions of x, and T (x) is a rational
function of x. More precisely T (x) is 0 if the degree of P is less than that of Q,
T (x) is −1 if the degree of P is greater, and if P and Q have the same degree, with
leading coefficients p and q, then T (x) = px/(q − px). Summing over ζn = 1 yields

∞∑
k=1

xk
∑
ζn=1

R(ζ)k = nT (x) + n
∑
j

Nj(x)

1−Dj(x)n
. ¤

A similar result holds for
∑∞

k=1 x
k
∑

ζn=1
ζ 6=1

R(ζ)k: the right side of (4.4) is modi-

fied by subtracting xP (1)/
(
Q(1)−xP (1)

)
, which is always well-defined even if R(1)

is not. Usually when ζ = 1 is omitted from the sum it is because Q(1) = 0, and in
this case xP (1)/

(
Q(1)− xP (1)

)
= −1, as in our second proof of Stanley’s formula.

Finally, we give an example of a “reciprocity theorem.”

Theorem 4.4. Let m and n be relatively prime and suppose that 0 ≤ r < m+ n.
Then

1

m

∑
ζm=1
ζ 6=1

ζr+1

(ζn − 1)(ζ − 1)
+

1

n

∑
ηn=1
η 6=1

ηr+1

(ηm − 1)(η − 1)

= −
1

12

(
m

n
+
n

m
+

1

mn

)
+

1

4

(
1

m
+

1

n
− 1

)
+
r

2

(
1

m
+

1

n
−

1

mn

)
−

r2

2mn
.
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Proof. First we find the partial fraction expansion of xr/(xm−1)(xn−1), which is
a proper rational function since r < m+n. If ζm = 1 but ζ 6= 1, then the coefficient
of 1/(x− ζ) in the partial fraction expansion is

ζr

ζn − 1
lim
x→ζ

x− ζ

xm − 1
=

ζr

ζn − 1
·

1

mζm−1
=

ζr+1

m(ζn − 1)
.

The coefficent of 1/(x − η), where ηn = 1 but η 6= 1, is computed similarly. The
coefficients of 1/(x−1)2 and 1/(x−1) in the partial fraction expansion are the same
as the coefficients of 1/(x−1)2 and 1/(x−1) in the expansion of xr/(xm−1)(xn−1)
as a Laurent series in powers of x− 1. To compute these coefficients, let us make
the substitution x = z + 1, so z = x− 1. Then

1

xm − 1
=

1

(1 + z)m − 1
=

1

mz +
(
m
2

)
z2

=
1

mz
−
m− 1

2m
+ positive powers of z,

and similarly for 1/(xn − 1). So

xr

(xm − 1)(xn − 1)
= (1 + z)r

(
1

mz
−
m− 1

2m
+ · · ·

)(
1

nz
−
n− 1

2n
+ · · ·

)
=

1

mnz2
−
m+ n− 2r − 2

2mnz
+ nonnegative powers of z.

(Alternatively, we can compute the needed terms of the Laurent series directly with
Maple or some other computer algebra system.)

Thus the partial fraction expansion of xr/(xm − 1)(xn − 1) is

xr

(xm − 1)(xn − 1)
=

1

mn(x− 1)2
−
m+ n− 2r − 2

2mn(x− 1)

+
∑
ζm=1
ζ 6=1

ζr+1

m(ζn − 1)(x− ζ)
+
∑
ηn=1
η 6=1

ηr+1

n(ηm − 1)(x− η)
.

Now subtract the terms in negative powers of x− 1 from both sides, and take the
limit as x→ 1. We obtain

1

12

(
m

n
+
n

m
+

1

mn

)
+

1

4

(
1−

1

m
−

1

n

)
+
r

2

(
1

mn
−

1

m
−

1

n

)
+

r2

2mn

=
∑
ζm=1
ζ 6=1

ζr+1

m(ζn − 1)(1− ζ)
+
∑
ηn=1
η 6=1

ηr+1

n(ηm − 1)(1− η)
. ¤

The reciprocity theorem for the classical Dedekind sum is easily derived from the
case r = 0 of Theorem 4.4 (see [7, Chapter 2]). Carlitz [2] has given a proof related
to this one, but based on the partial fraction expansion of (x−1)/(xm−1)(xn−1),
which he derives from the Lagrange interpolation formula. See also Zagier [11] for
a far-reaching generalization proved using residues (which for rational functions are
equivalent to partial fraction expansion).
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