
GENERATING RANDOM ELEMENTS
OF FINITE DISTRIBUTIVE LATTICES

JAMES PROPP

Abstract. This survey article describes a method for choosing
uniformly at random from any finite set whose objects can be
viewed as constituting a distributive lattice. The method is based
on ideas of the author and David Wilson for using “coupling from
the past” to remove initialization bias from Monte Carlo random-
ization. The article describes several applications to specific kinds
of combinatorial objects such as tilings, constrained lattice paths,
and alternating-sign matrices.

This article is dedicated to Herbert Wilf
in honor of his sixty-fifth birthday.

1. Introduction

Herb Wilf, in addition to having done important work on problems
related to counting combinatorial objects, has also done pioneering re-
search on algorithms for generating combinatorial objects “at random”
(that is, generating an element of a finite combinatorial set so that each
element has the same probability of being generated as any other); see
[CW], [DW], [GNW1], [GNW2], [NW1], [NW2], [NW3], [NW4], [W1],
[W2] and [W3] for fruits of this research.

This survey article describes a recent advance in the area of random
generation, with applications to plane partitions, domino tilings, alter-
nating sign matrices, and many other sorts of combinatorial objects.
The algorithm is of the “random walk” or “Monte Carlo” variety, but
unlike many such algorithms it does not have any initialization bias.
The heart of the algorithm is the method of coupling from the past ex-
plored by David Wilson and myself in a joint article [PW]. For the sake
of readability and motivation, I will start by focusing on the application
of our method to plane partitions.

Date: March 3, 1997.
During the conduct of the research that led to this article, the author was sup-

ported by NSA grant MDA904-92-H-3060, NSF grant DMS 9206374 and a grant
from the MIT Class of 1922.

1

2 JAMES PROPP

A beautiful formula of MacMahon [M] says that the number of plane
partitions of n with at most a rows, at most b columns, and no part
exceeding c (hereafter to be called “(a, b, c)-partitions”) is given by

a−1∏
i=0

b−1∏
j=0

c−1∏
k=0

i+ j + k + 2

i+ j + k + 1

(see [A] and [S] for definitions of ordinary partitions and plane parti-
tions, and section 2 of [CLP] for a fairly simple self-contained proof of
MacMahon’s formula).

Note that in the case c = 1, a plane partition with no part exceeding
1 can be read as the Ferrers diagram of an ordinary partition, and
MacMahon’s formula devolves into the assertion that the number of
ordinary partitions of n with at most a parts and no part exceeding b
is given by the binomial coefficient (a+b)!

a!b!
. Indeed, it is easy to see that

such partitions correspond to lattice paths of length a+ b joining (0, a)
to (b, 0), or equivalently, combinations of a + b elements taken a at a
time. In view of these correspondences, it is easy to generate a random
(a, b, 1)-partition.

Just as a lattice path in the a by b rectangle is a 1-complex (made
up of edges in a 2-dimensional grid) with prescribed boundary (namely
the pair of points (0, a) and (b, 0)), an (a, b, c)-partition corresponds
to a 2-complex (made up of square 2-cells in a 3-dimensional grid)
whose boundary is a particular non-planar hexagon (namely the one
that goes from (a, 0, 0) to (a, b, 0) to (0, b, 0) to (0, b, c) to (0, 0, c) to
(a, 0, c) to (a, 0, 0) in cyclic order). In the former case, one requires
that the lattice path should have (minimal) length a + b; in the latter
case, one requires that the surface spanning the hexagon should have
(minimal) area ab+ bc+ ac.

In this paper I will describe an algorithm for generating a random
(a, b, c)-partition with a, b, c arbitrary. This algorithm was used to gen-
erate Figure 1, which shows a random (32, 32, 32)-partition, or rather
the spanning surface that it determines, viewed from a point on the
ray x = y = z > 0; the three different orientations of grid-squares in 3-
space are seen in projection as three different orientations of rhombuses
in 2-space. It should be stressed that the size of the plane partition
(that is, the sum of the parts) was not specified in advance; it is a
random variable with expected value (32)3/2.

Note the non-homogeneity of the picture: there is an approximately
circular central region in which rhombuses of different orientations are
mixed together, surrounded by six regions in which rhombuses of a
single orientation predominate. As is shown in [CLP], in a certain

RANDOM ELEMENTS OF FINITE DISTRIBUTIVE LATTICES 3

strong probabilistic sense the boundary of the central region does in-
deed converge to a perfect circle when n is large. This fact was first
conjectured on the basis of pictures like Figure 1, and all known proofs
depend on steps whose clearest motivation comes from “knowing the
answer in advance”. Thus we see that there are phenomena pertaining
to random (a, b, c)-partitions that would not have been easy to divine
by pure theory, and that an algorithm for generating such plane parti-
tions randomly can be a valuable tool for discovering and investigating
such phenomena experimentally.

A random lozenge tiling of a 32, 32, 32 hexagon.

In part 2 of this paper, I will show that this problem, along with
several others, is a special case of the problem of choosing a random
element of a finite distributive lattice. In part 3, I will describe an
algorithm that allows one to solve this problem. Like the well-known
folk-algorithm for generating a random element of a 3-element set via
independent tosses of an unbiased coin, this algorithm runs in finite
expected time, even though it can take arbitrarily long to return an
answer. I conclude in part 4 with some open questions.

4 JAMES PROPP

2. Distributive lattices

The 3-dimensional Ferrers diagram associated with an (a, b, c)-parti-
tion is just an order ideal of the poset obtained as the product of
chains of cardinalities a, b and c. Writing such chains as a, b and c,
respectively, and using J(·) to represent the lattice of order ideals of a
finite poset (ordered by inclusion), we see that what we are effectively
trying to do is generate a random element of the distributive lattice
J(a × b × c). (See [S] for definitions of posets, order ideals, lattices,
and distributive lattices, and for the fact that every finite distributive
lattice can be represented as J(P) for some finite poset P .)

Here is another way to view this ordering. Consider a hexagon whose
internal angles all measure 60 degrees and whose sides in cyclic order
have lengths a, b, c, a, b, c, respectively, and dissect it into 2ab+2ac+2bc
unit equilateral triangles. Create a graph G whose vertices correspond
to these triangles, where two vertices of G are adjacent if and only if the
corresponding triangles in the dissection share an edge. (G is called a
“honeycomb graph” for obvious reasons.) Then each (a, b, c)-partition
corresponds to a tiling of the aforementioned hexagon by rhombuses of
side length 1 (each composed of two equilateral triangles joined edge
to edge), and each of these tilings in turn corresponds to a perfect
matching of G, that is, to a subset of the edges of G in which each
vertex of G appears just once. It is shown in [P] (which was inspired
by earlier work of Conway and Lagarias [CL] and Thurston [T]) that
the perfect matchings of any bipartite planar graph can be given the
structure of a distributive lattice. In the case of the honeycomb-graph
G described above, one obtains the same distributive lattice structure
J(a×b×c) as before. If instead one allows graphs G that are subgraphs
of a square grid, one is able to put a distributive lattice structure on the
set of all tilings of a connected subset of the square grid by dominos.
(These special cases are discussed in [T].)

More generally (again see [P]), if G is any bipartite planar graph,
and d(·) is any function from the vertex set of G to the non-negative
integers, then the set of d-factors of G (defined as the set of subgraphs
of G in which vertex v has degree d(v) for all vertices v) can be given the
structure of a distributive lattice (outside of the trivial case in which
no d-factors exist).

Another class of examples of distributive lattices in combinatorics
comes from constrained lattice paths. For instance, lattice paths of
length 2n that go from (0, n) to (n, 0) without straying outside of the
triangle with vertices (0, 0), (n, 0) and (n, 0) are a standard incarnation

RANDOM ELEMENTS OF FINITE DISTRIBUTIVE LATTICES 5

of the “Catalan objects”. More generally, we can consider all minimal-
length lattice paths that go from one fixed lattice point to another
without straying outside some fixed convex region. Assuming that
the set of such lattice paths is non-empty, it is easy to show that the
set of all such lattice paths is a distributive lattice, with the ordering
being defined by inclusion of the associated Ferrers diagrams. One can
also extend this approach to the lattice paths enumerated by trinomial
coefficients (with step-vectors (1, 1), (1, 0), and (1,−1)).

A further example is provided by the alternating sign matrices in-
troduced by Mills, Robbins, and Rumsey [MRR]. One can transform
each n by n alternating sign matrix into an n + 1 by n + 1 array of
numbers in such a fashion that if one takes the component-wise mini-
mum (or component-wise maximum) of any two such arrays, one gets
another array associated with an n by n alternating sign matrix. In
this fashion, the set of alternating sign matrices of fixed size becomes
a distributive lattice. (See [EKLP] for a more detailed discussion of
this.)

A final situation I will mention in which a non-obvious distributive
lattice structure exists is the set of independent sets in a bipartite graph
G. (This lattice structure has been noticed in the literature several
times independently.) Here is the way to see it: If we color the vertices
of G black and white and write every independent set S as SB ∪ SW
where the vertices in SB and SW are black and white respectively,
then we may define the meet and join of SB ∪ SW and TB ∪ TW as
(SB ∪ TB) ∪ (SW ∩ TW) and (SB ∩ TB) ∪ (SW ∪ TW), respectively.

We recall here that every finite distributive lattice admits a unique
representation (up to isomorphism) as J(P), for P some finite poset
(which in fact is easily constructible from the lattice as the sub-poset
of join-irreducibles). In each of the cases described above, the bijection
between the combinatorial objects described and order ideals of an
associated poset P is easily implemented on a computer. Thus, if we
can solve the problem of generating a random element of J(P) for an
arbitrary finite poset P , we will have solved the problem of generating
random d-factors of bipartite planar graphs, the problem of generating
random independent sets in a general bipartite graph, and many other
problems as well.

3. The algorithm

In this section I describe a Monte Carlo approach to sampling from
the uniform distribution on the set J(P), using a Markov chain whose
state are the elements of J(P) and whose steady state distribution is
the uniform distribution on J(P). If one merely simulated this Markov

6 JAMES PROPP

chain for a large but finite number of steps in the ordinary way, one
would have a distribution that was close to the steady-state (uniform)
distribution, but there would be some residual error (“initialization
bias”). Later in this section I will explain how one can get rid of
this bias by effectively simulating the Markov chain for infinitely many
steps, from time minus infinity to time zero (the method of coupling
from the past).

It is natural to make J(P) into a graph H by declaring two order
ideals to be adjacent iff their symmetric difference consists of exactly
one element of P . It is easy to show that this graph is connected.
Moreover, we can associate with each element x of P a randomization
move that preserves the uniform distribution on J(P) (the probability
distribution that assigns each order ideal probability 1/|J(P)|): Given
an order ideal I , toss a fair coin, and if the coin comes up heads (resp.
tails), replace I by I ∪ {x} (resp., I \ {x}), unless the resulting subset
of P is not an order ideal, in which case leave I alone.

If one performs an infinite sequence of such randomization moves
in which each new randomization site x is chosen independently from
the uniform distribution on P (or more generally from any probability
distribution that assigns positive probability to each element of P),
then this process is simply a stationary Markov chain whose state space
is the set of order ideals of P ; standard ideas from the theory of Markov
chains guarantee that the probability of any particular order ideal being
the current order ideal converges to 1/|J(P)| as time goes to infinity.

This Markov chain gives us a way, in principle, of generating a ran-
dom element of J(P) that is as close to unbiased as we like (i.e., whose
governing distribution is as close to uniform as we like). However, in
the absence of estimates of the mixing time of the Markov chain, it is
not clear for how long a time the chain must be run in order to drive
the bias below some predetermined amount deemed acceptable. More-
over, we seek a way of generating samples that has no bias when truly
random bits are used.

Fortunately, there is a way around this problem. The Markov chain
that we have described is monotone in the sense that if we were to
run two instantiations of it in parallel, using the same randomization
sites and the same coin-tosses in both runs but starting from different
initial order ideals I1 and I2, then, provided I1 ⊇ I2, the order ideals
I ′1 and I ′2 that result after n steps of joint randomization must satisfy
the relation I ′1 ⊇ I ′2. In particular, if we had chosen I1 and I2 to be the
empty order ideal 0̂ = ∅ and the full order ideal 1̂ = P , respectively,
and if we find after n steps that I ′1 and I ′2 are equal (call their common
value I ′), then every run of the Markov chain for n steps using those

RANDOM ELEMENTS OF FINITE DISTRIBUTIVE LATTICES 7

randomization sites and coin-tosses will put us in state I ′, regardless
of the initial state I ; all such histories are “squeezed” between the 0̂-
history and the 1̂-history, and since these coalesce over the course of
the simulation, so must all histories.

It turns out that for most of the examples that arise in practice, this
kind of coalescence occurs fairly quickly. This gives us a way of doing
a kind of “backwards simulation” of the Markov chain that effectively
lets us run the chain for a huge number of steps without (usually)
having to perform anywhere near the number of steps required in a
straightforward simulation. Say, for instance, that we want to run the
Markov chain on the state-space J(P) for one million steps, starting
from initial state I∗, using random updates from time −1, 000, 000 to
time 0 (we will see shortly why it is convenient to index time in this
way). Suppose that our Markov chain is sufficiently rapidly mixing
that over the course of a thousand steps, it’s fairly likely for the initial
states 0̂ and 1̂ to lead to the same final state when evolved in tandem.
If we simulate the Markov chain from time−1000 to time 0, using both
0̂ and 1̂ as initial states (let us call this “phase one” of our backwards
simulation), and we indeed find that both histories coalesce at some
state I ′ at time 0, then we do not need to run the full simulation
from one million steps in the past, for we can already be sure that
such a simulation would have given us I ′ as our sample. Indeed, in
this case we do not even have to choose what the randomization sites
and coin-tosses before time −1000 are, since they do not enter into
the simulation. In the unlikely event that the two histories that were
started at time −1000 do not coalesce by time 0, then we could go
back and do an honest simulation for a million steps, starting from I∗

at time −1, 000, 000 (let us call this “phase two”). In this way we can
simulate the behavior of a million-step random walk using (most of the
time) only about two thousand simulation steps. Note however that
if one wishes to avoid introducing bias into one’s sample, it is crucial
that one use the same randomization sites and coin-tosses from time
−1000 onward during the long, “honest” run (phase two) as one did
during the short preliminary run (phase one).

If one wants to simulate a billion steps of random walk, one can mod-
ify phase two of the preceding algorithm by running the million-step
simulation (in the rare case where one thousand steps do not suffice)
using 0̂ and 1̂ as starting states, rather than I∗. Only in the incred-
ibly rare case where this million-step simulation fails to coalesce by
time zero would one need to resort to a billion-step simulation starting

8 JAMES PROPP

from I∗ (“phase three”), being careful once more to use the already-
determined randomization sites and coin-tosses from time −1, 000, 000
to time 0.

Note that the numbers one million and one billion enter into these
procedures in the form of bounds on how far back into the past one is
willing to go before one “honestly” uses I∗ as the starting state rather
than trying to be clever by starting from 0̂ and 1̂ and hoping that they
will coalesce by time 0. Suppose that one removes this upper bound on
how far into the past one is willing to go: if coalescence fails, one goes
back into the past 1000 times as far as one just did and tries again.
Then one can show that with probability 1 the desired coalescence will
eventually occur (where our notion of “eventuality” goes backward in
time rather than forward), and that the sample returned is effectively a
sample “generated by a run of length infinity” — that is, an absolutely
unbiased sample. This is David Wilson’s method of coupling from the
past.

It cannot be overemphasized that the idea of progressing backwards
into the past is an indispensable feature of the algorithm. In particular,
if one were simply to run the Markov chain forwards from initial states
0̂ and 1̂ in tandem until the histories coalesced and then to output as
one’s sample the coalescent state, one would in general get a biased
sample. In contrast, samples generated via coupling from the past are
entirely free of bias, to the extent that the coin-tosses used are random.

The version of the algorithm discussed above can be improved upon;
for instance, it is much better to go progressively 1, 2, 4, 8, ... steps into
the past rather than 103, 106, 109, ... steps. Moreover, the algorithm
can be generalized so as to apply to interesting situations in statistical
mechanics where the desired distribution is not uniform, but is the
Boltzmann distribution for some non-constant energy function on the
configuration space. All of these developments are described more fully
in [PW].

Here, we content ourselves with showing that the expected running
time is finite, in the case where there exists a finite L and a positive ε
such that over the course of any time interval of length L in the simula-
tion, the conditional probability of coalescence occurring, given initial
states 0̂ and 1̂, is at least ε. (This holds for all the interesting appli-
cations; in each case, it suffices to find an L such that the probability
of going from 0̂ to 1̂ in L steps, conditional upon starting in state 0̂,
is positive, though the L one gets from this approach is much, much
larger than the typical time-scale over which coalescence occurs.) To
prove the claim, note that over the course of kL consecutive steps, di-
vided into k blocks of length L, the only way in which coalescence could

RANDOM ELEMENTS OF FINITE DISTRIBUTIVE LATTICES 9

fail to occur is if all k blocks are “non-coalescing”; yet independence
of the coin-tosses tells us that this is an event of probability at most
(1− ε)n. As n gets large, this probability shrinks to zero exponentially,
implying our claim on the finiteness of expected running time.

The algorithm described above is not always efficient; indeed, in
[PW] Wilson and I describe a case in which the modified Monte Carlo
algorithm takes exponentially long, even though a direct algorithm for
constructing a random order ideal is quite easy to fashion (see the
Cautionary Note at the end of section 3.2 in [PW]). However, as a
practical matter the modified Monte Carlo algorithm is quite efficient
for many sorts of combinatorial objects that arise naturally, such as
those mentioned in Section 2.

Three final points on implementation deserve note.
First, the algorithm remains valid if instead of choosing randomiza-

tion sites in accordance with some fixed distribution on P one chooses
randomization sites according to some other scheme, provided that two
conditions are satisfied: the choice of randomization sites should not be
affected by the outcomes of the coin flips, and it must be the case that
with probability 1 each element of P gets chosen as a randomization site
infinitely often. Under these hypotheses, the (non-stationary) Markov
chain on J(P) has the uniform distribution as its unique steady-state
measure, and the method of coupling from the past will get you there
with a finite amount of simulation (with probability 1). For instance,
one may rotate among all the elements of P in some fixed order, rather
than choosing the randomization sites randomly. In this way one re-
duces the amount of information that the algorithm needs to save.

Second, if one is using pseudo-random bits given by some trusted
pseudo-random number generator (as I imagine most users of this al-
gorithm will do), then, though it is often necessary to reuse bits, it is
not necessary to save them all. One can for instance save only seeds
that will enable one to re-create the formerly used bits when they are
needed again.

Third, it should be borne in mind that the output of the Monte
Carlo method is likely to be somewhat correlated to its running-time.
If one were to use the method to generate N samples, where N was
determined on-the-fly rather than chosen in advance, then one might
be contaminating one’s samples with bias. The scrupulous investigator
may therefore wish to commit to a certain value of N ahead of time,
based on a preliminary investigation of how long it is likely to take to
run the procedure N times.

10 JAMES PROPP

4. Open problems

Another sort of scheme for randomly generating an order ideal of a
finite poset P is the recursive approach in which one decides whether
or not to include x in the random order ideal by tossing a coin whose
bias corresponds to the ratio of the cardinalities of two distributive
lattices, namely, the lattice of order ideals of P containing x and the
lattice of order ideals of P not containing x. This method (like coupling
from the past) will not always be fast, since the problem of counting
antichains (and hence, equivalently, order ideals) in a finite partially
ordered set is #P-complete (see [PB]). Yet another approach would
be one along the lines of recent work of Flajolet, Zimmermann, and
van Cutsem (see [FZC1] and [FZC2]), who have already created Maple
software that (suitably instructed) can create random plane partitions
of the sort shown in Figure 1. Which way is “best”? (Or rather: are
there features of a lattice that might dictate when one or another of
these approaches will do best?)

In the case of planar graphs G that are not bipartite, it is still possi-
ble to generate random perfect matchings of G efficiently: The method
of Kasteleyn [K] allows one to write the number of perfect match-
ings as a Pfaffian. By calculating the ratio of two such Pfaffians, one
can determine the exact proportion of matchings of G that contain a
given edge, and one can accordingly make an unbiased decision as to
whether or not to include this edge in the matching. Applying this
recursively, one can generate a random matching of G. Surprisingly,
Wilson [Wi] showed that it is possible to randomly generate perfect
matchings within a constant multiple of the time needed to compute
just one Pfaffian; using sparse linear algebra, this time is O(n3/2) arith-
metic operations, or O(n5/2 log2 n log logn) bit operations. In the case
where G is bipartite, a specialized version of the Pfaffian method (the
permanent-determinant method) applies in much the same way; but in
this situation one can also apply the Markov chain algorithm described
in this paper. Can the method of this paper be extended to apply in the
non-bipartite case?

If one uses a biased coin in place of a fair one, one can devise an
algorithm in which the probability of a particular order ideal I being
generated is proportional to q|I|, where |I | is the cardinality of I and q
is any positive real number. That is, we can generate a random element
of a distributive lattice so that all the elements of rank k in the lattice
have individual probability proportional to qk of being picked. We
might try to choose q so as to maximize the collective probability of
the elements of rank k, but even using this optimal q we might have

RANDOM ELEMENTS OF FINITE DISTRIBUTIVE LATTICES 11

to run the biased procedure many times before we obtain a sample
in rank k. Note, however, that the resulting sample will be governed
by a uniform distribution on the kth rank of the lattice. Is there an
efficient procedure for selecting an element in a particular rank of a
finite distributive lattice? Note that work of Flajolet, Zimmermann
and van Cutsem ([FZC2]) provides a solution in some cases.

Lastly: To what extent can the method of coupling from the past be
extended to sampling from more general partially ordered sets, such as
modular lattices or lattices in general? For an example of an application
of the method to a special kind of non-distributive lattice, see the
paragraphs in subsection 3.3 of [PW] that treat permutations.

I thank the referee for many helpful comments.

References

[A] G. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
[CW] E. Calabi and H. Wilf, The sequential and random selection of subspaces

over a finite field, J. Combinatorial Theory 22 (1977), 107–109.
[CL] H. Conway and J. Lagarias, Tilings with polyominoes and combinatorial

group theory, J. Combin. Theory A 53 (1990), 183–208.
[CLP] H. Cohn, M. Larsen and J. Propp, The Shape of a Typical Boxed Plane

Partition, preprint, 1996.
[DW] J. Dixon and H. Wilf, The random selection of unlabeled graphs, J. Al-

gorithms 4 (1983), 205–213.
[EKLP] N. Elkies, G. Kuperberg, M. Larsen and J. Propp, Alternating Sign Ma-

trices and Domino Tilings, J. Alg Combinatorics 1 (1992), 111–132 and
219–234.

[FZC1] P. Flajolet, P. Zimmermann and B. van Cutsem, A calculus for the ran-
dom generation of labelled combinatorial structures, Theoret. Comput.
Sci. 132 (1994), 1–35.

[FZC2] P. Flajolet, P. Zimmermann and B. van Cutsem, A calculus of random
generation: unlabelled structures, preprint, 1996.

[GNW1] C. Greene, H. Nijenhuis and H. Wilf, A probabilistic proof of a formula
for the number of Young Tableaux of a given shape, Adv. in Math. 31
(1979), 104–109.

[GNW2] C. Greene, A. Nijenhuis and H. Wilf, Another probabilistic method in the
theory of Young Tableaux, J. Combinatorial Theory 37 (1984), 127–135.

[K] P.W. Kasteleyn, The statistics of dimers on a lattice, I. The number of
dimer arrangements on a quadratic lattice, Physica 27, 1209–1225 (1961).

[M] P.A. MacMahon, Combinatory Analysis, Cambridge University Press,
1915–16 (reprinted by Chelsea Publishing Company, New York, 1960).

[MRR] W. Mills, D. Robbins, and H. Rumsey, Jr., Alternating sign matrices and
descending plane partitions, J. Comb. Theory A 34 (1983), 340–359.

[NW1] A. Nijenhuis and H. Wilf, A method and two algorithms in the theory of
partitions, J. Combinatorial Theory 18 (1975), 219–222.

12 JAMES PROPP

[NW2] A. Nijenhuis and H. Wilf, Combinatorial Algorithms, Academic Press,
1975.

[NW3] A. Nijenhuis and H. Wilf, Combinatorial Algorithms for Computers and
Calculators (second edition of [NW2]), Academic Press, New York, 1978.

[NW4] A. Nijenhuis and H. Wilf, The enumeration of connected graphs and linked
diagrams, J. Combinatorial Theory 27 (1979), 356–359.

[P] J. Propp, Lattice structure for orientations of graphs, preprint, 1993.
[PB] J. Provan and M. Ball, The complexity of counting cuts and of computing

the probability that a graph is connected, SIAM J. Comput. 12 (1983),
777–788.

[PW] J. Propp and D. Wilson, Exact sampling with coupled Markov chains and
applications to statistical mechanics, Random Structure and Algorithms,
to appear.

[S] R. Stanley, Enumerative Combinatorics I, Wadsworth, 1986.
[T] W. Thurston, Conway’s tiling groups, American Mathematical Monthly

97 (1990), 757–773.
[W1] H. Wilf, A unified setting for sequencing, ranking and random selection

of combinatorial objects, Adv. in Math. 24 (1977), 281–291.
[W2] H. Wilf, A unified setting for selection algorithms, II, Annals of Dis-

crete Mathematics 2: Algorithmic aspects of combinatorics, North Hol-
land (1978), 135–148.

[W3] H. Wilf, The uniform selection of free trees, J. Algorithms 2 (1981), 204–
207.

[Wi] D. Wilson, Determinant algorithms for random planar structures, to ap-
pear in the published abstracts of the 1997 ACM-SIAM Symposium on
Discrete Algorithms.

Department of Mathematics, MIT

E-mail address: propp@math.mit.edu

