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ABSTRACT:   It is a little-known fact that M. C. Escher posed and answered some combinatorial questions about
patterns produced in an algorithmic way.  We report on his explorations, indicate how close he came to the correct
solutions, and pose an analogous problem in 3 dimensions.

In the years 1938-1942, the Dutch graphic artist M. C. Escher developed what he called his
"layman's theory" on regular division of the plane by congruent shapes.  During this time he also
experimented with making repeating patterns with decorated squares by using combinatorial
algorithms.   The general scheme is easy to describe.  Take a square and place inside it some
design; we call such a one-square design a motif.  Then put together four copies of the decorated
square to form a 2x2 square array.  The individual decorated squares in the array can be in any
aspect, that is, each can be any rotated or reflected copy of the original square.  Finally, take the
2x2 array (which we call a translation block) and translate it repeatedly in the directions
perpendicular to the sides of the squares to fill the plane with a pattern.

The process can be easily carried out.  In his article "Potato Printing, a Game for Winter
Evenings," Escher's eldest son George describes how this can be a pleasurable game with
children or grandchildren.  (He and his brothers played the game with his father.)  Two pieces of
cut potato can serve as the medium on which to carve the motif and its reflected image, and then
these potato stamps are inked and used to produce a pattern according to the rules of the game.
Escher himself used various means to produce patterns in this algorithmic way.  He made quick
sketches of square arrays of patterns in his copybooks, he stamped out patterns with carved
wooden stamps,  and he decorated small square wooden tiles (like Scrabble pieces) and then
assembled them into patterns.

Escher's sketchbooks show his attempts to design a suitable motif to use for such a pattern—a
single design that was uncomplicated, yet whose repeated copies would produce interesting
patterns of ribbons that would connect and weave together.  The first motif he chose was very
simple, yet effective.  In it, three bands cross each other in a square.  Two of them connnect a
corner to the midpoint of the opposite side and the third crosses these, connecting midpoints of
two adjacent sides.  Small pieces of bands occupy the two remaining corners.
Every corner and every midpoint of the square is touched by this motif.

Escher carved two wooden stamps with this motif, mirror images of each other,

and used them to experiment, stamping out patches of patterns.  His sketchbooks

are splotched with these, filling blank spaces on pages alongside rough ideas and

preliminary drawings for some of his graphic works and periodic drawings.  His

many experimental stamped pattterns show no particular methodical approach—
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no doubt he was at first interested only in seeing the visual effects of various choices for the 2x2

translation block.  At some point Escher asked himself the question:

   How many different patterns can be made with a single motif, following the rules of the game?

In order to try to answer the question, he restricted the rules of choice for the four aspects of the

motif that make up the 2x2 translation block.  (Definition:  Two motifs have the same aspect if

and only if they are congruent under a translation.)  He considered two separate cases:

(1)  The four choices that make up the translation block are each a direct (translated or

rotated) image of the original motif.  Only one wooden stamp is needed to produce the pattern.

(2)  Two of the choices for the translation block are direct images of the original motif

and two are opposite (reflected) images.  Additionally, one of the following restrictions also

applies:

(2A)  the two direct images have the same aspect and the two reflected images

have the same aspect

(2B)  the two direct images have different aspects and the two reflected images

have different aspects.

Escher set out in his usual methodical manner to answer his question.  Each pattern could be

associated to a translation block that generated it.  In order to codify his findings, he represented

each of these 2x2 blocks by a square array of four numbers—each number represented the aspect

of the motif in the corresponding square of the translation block.   The square array of four

numbers provided a signature for the pattern generated by that translation block.  The four

rotation aspects of the motif gotten by turning it 90� three successive times were represented by

the numbers 1, 2, 3, 4 and the reflections of these (across a horizontal line) were 1, 2, 3, 4 .

Sometimes Escher chose his basic 90� rotation to be clockwise, sometimes counterclockwise.

Figure 1 shows three different motifs that Escher used to generate patterns according to his rules,

together with one particular translation block and the patterns generated by that block for each of

the three motifs.  The first motif is just a segment that joins a vertex of the square to a midpoint

of an opposite side, while the second is a v of two segments that join the center of the square to

the midpoint and a vertex of one side.  These could be quickly drawn to sketch up patterns. For

each of these motifs, Escher used a clockwise turn to obtain the successive rotated aspects. The

third motif was stamped from a carved wooden block and the patterns hand-colored. This motif

was  turned counterclockwise to obtain the successive rotated aspects. In our figures, we

represent the four rotation aspects of each motif by A, B, C, D instead of Escher's 1, 2, 3, 4.
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A B C D
FIGURE 1.  A, B, C, D name the 
four rotated aspects of each of three  
motifs used by Escher.  The 2x2 
translation block below produces 
the patterns shown on this page. 

A D

CB
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At first it may seem as if Escher's question (how many patterns are there?) can be answered by

simply multiplying the number of possibilities for each square in the translation block.  Yet

symmetries relate the different aspects of the motif in a translation block and each pattern has

additional periodic symmetry induced by the repeated horizontal and vertical translations of the

translation block.  These symmetries add a geometric layer of complexity to the combinatorial

scheme.

Escher's Case (1)

We first consider Escher's case (1), in which the four choices that make up the

translation block are each a direct image of the original motif. Here there are four

possible rotation aspects of the motif for each of the four squares in the translation

block, so there are 44 = 256 different signatures for patterns that can be produced.  Each

square array of four letters that is a signature will be represented as a string of four

letters by listing the letters from left to right as they appear in clockwise order in the square

array, beginning with the upper left corner.  Thus the signature for the square array at the right

(and in Figure 1) is ADCB.

 We will say that two signatures are equivalent if they produce the same pattern. (Two patterns

are the same if one can be made to coincide with the other by an isometry.)  Since patterns are

not changed by rotation, repeated 90� rotations of the translation block of a pattern produces four

translation blocks for that pattern, and the four corresponding signatures are equivalent. When

the translation block is rotated 90�, each motif in it changes its aspect as it is moved to the next

position in the block. In our example in Figure 1, a 90� clockwise rotation of either of the first

two motifs (or a 90� counterclockwise rotation of the third motif) sends A to B, B to C, C to D,

and D to A. Thus under successive 90� clockwise rotations of the block, the signature ADCB for

the first pattern is equivalent to the signatures CBAD, ADCB, and CBAD.  The fact that the

second two signatures are repeats of the first two reflects the fact that this translation block has

180� (2-fold) rotation symmetry.  A translation block with 90� (4-fold) rotation symmetry will

have only one signature under rotation (for example, ABCD). A translation block with no

rotation symmetry will always have four equivalent signatures produced by rotating the block

(for example, the block with signature AABB has equivalent signatures CBBC, DDCC and

DAAD).  But there is still more to consider.

If a pattern is held in a fixed position, there are four distinct translation blocks that produce it

(their  signatures may or may not differ).  This is most easily seen by looking at a pattern of

A  D 
B  C
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letters generated according to Escher's rule of translating the 2x2 block.  The translation block

with signature PQSR produces a pattern with alternating rows P Q P Q . . .  and R S R S  . . .  as

shown below.  The same pattern can be generated by a translation block whose upper left corner

is P, or Q, or R, or S:

For Escher's patterns, the letters P, Q, R, S in the above array are replaced by various rotated

aspects of the motif, represented by the letters A, B, C, D.  In this case, some of the four

translation blocks outlined may be the same, depending on whether or not there are repeated

aspects of the motif that are interchanged by the permutations that correspond to moving the

block to a new position.  Moving the translation block horizontally one motif unit corresponds to

the permutation that interchanges the columns of that block; thus it also rearranges the order of

the letters in the signature string by the permutation (12)(34).  Moving the block vertically one

unit interchanges rows of the block, which corresponds to reordering the signature string by the

permutation (14)(23).  Moving the block diagonally (a composition of moving vertically one unit

and horizontally one unit) interchanges the pairs of diagonal elements of the block, which

corresponds to reordering the signature string by the permutation (13)(24).  It is easy to see that

the four possible translation blocks for a pattern gotten by these moves may all have the same

signature (eg., AAAA), or there may be two signatures (e.g., AABB, BBAA), or four signatures

(e.g., AAAB, AABA, ABAA, BAAA).

Each of Escher's patterns has at least one signature that begins with the letter A, since rotating

and translating the translation block will always give at least one block with its upper left corner

occupied by a motif with aspect A.  Since there are four aspects of the motif possible for each of

the other three squares in the block, there are at most 43 = 64 different patterns.  But we know, in

fact, that there are far fewer than 64 since many patterns will have as many as four signatures

that begin with the letter A.  So the final answer to the question "How many different patterns are

there?," even in case (1), is not obvious.

The correct answer is 23 different patterns, and Escher found the answer by a process of

methodical checking.  He filled pages of his sketchbooks with quickly-drawn patterns of simple

motifs generated by various signatures.  Each time he found a pattern that had already been

drawn, he crossed it out and noted the additional signature for it.  In 1942 he made a chart

summarizing his results and accompanied it by a display of sketches of all 23 patterns for the
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first two motifs in Figure 1.  In Figure 2, we display all 23 patterns made with Escher's simple

line segment motif.  Next to each pattern are all its signatures that begin with the letter A.  Note

that the signatures are positioned around each pattern so that in order to see a corresponding

translation block with a particular signature, you must turn the page so that the letters are upright.

This display gives a visual proof that there are 23 different patterns, since all 64 signatures that

begin with the letter A are accounted for.

In addition to his inventory of pencil-sketched patterns, Escher made stamped, hand-colored

patterns of all 23 types for the third motif of Figure 1 and collected these in a small binder that is

dated V-'42.

FIGURE 2(a).  The segment motif is rotated clockwise 90� three times successively to obtain its
four rotated aspects A, B, C, D.  Figure 2(b) shows that exactly 23 different patterns are possible
according to Escher's case (1) scheme.  Each pattern is determined by one or more translation
blocks of the type shown below, in which aspect A is in the upper left corner.  Each different
translation block corresponds to a signature of the form AXYZ, in which X, Y, Z are chosen
from A, B, C, D (with repetitions allowed).  In the sample pattern below, which has four
equivalent signatures, each of the four different translation blocks that generate it are displayed;
they are also outlined in the pattern.  Turn the page so that signatures are upright to view the
translation block with A in the upper left corner.  In the display in Figure 2(b), each translation
block has been repeated 3 times horizontally and 3 times vertically to produce the patches of
patterns.

A             B            C             D

X

YZ

AXYZ

Translation  
 block 

Signature

     
AABC

AACB

AACB = AABC
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ACAC
12

ABAB
11

AADC = AACD
10

AADB = AABD
9

AACB = AABC

8
AADD

7

AACC
6

AABB 

5
AAAD = AADA = ADAA

4

AAAC = AACA = ACAA
3

AAAB = AABA = ABAA
2

AAAA

1

FIGURE 2(b)  .  The 23 pattern types for Escher's scheme with direct images only. 
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FIGURE 2(b), continued.  The 23 pattern types for Escher's scheme with direct images only.

ADCB
23

ACDB
22

ABDC
21

ABCD
20

ACDA = ADCA
19

ABDA = ADBA
18

ABCA = ACBA
17

ACCA
16

ACAD = ADAC
15

ABAD = ADAB
14

ABAC = ACAB

13
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Our display and signatures in Figure 2 are not exactly as Escher made them; we have drawn

these so that every pattern has in its upper left corner a motif in aspect A.  It is perhaps

interesting to see how Escher methodically recorded his combinatorial considerations (which he

calls his "Scheme") that gives his evidence that there are exactly 23 patterns. His scheme

considers four cases for the translation block in which the four copies of the motif can have

various aspects:

case A)  motif in one aspect only,

case B)  motif in two aspects,

case C) motif in three aspects,

case D) motif in four aspects.

Recall that he labeled the four rotated aspects of a motif as 1, 2, 3, 4 (whereas we have used A,

B, C, D; these letters should not be confused with his use of the letters to label his cases).  For

each case, there are subcases, according to which aspects are used.  For example, in case Aa he

lists the signature 1111, and records its pattern as number 1 (of the 23 patterns); he does not

bother to record the other equivalent signatures for this case.  In Figure 3 we replicate Escher's

summary chart that indicates what cases he considered and those signatures that he found to be

superfluous.  He drew a line through any signatures that produced an earlier pattern, and until he

apparently grew tired at the middle of case Cb, he identified the equivalent pattern by its

number.  Case Ba consists of all signatures that use aspects l and 2, case Bb those that use

aspects 1 and 3, case Bc those that use aspects 1 and 4, case Bd those that use aspects 2 and 3,

and case Be those that use aspects 3 and 4.  Escher omits the case that uses aspects 2 and 4; it is

most likely that he realized that this case would be redundant with case Bb, just as cases Bd and

Be are redundant with case Ba, with the equivalence induced by rotations of the translation

block.  Case Ca consists of all signatures that use aspects 1, 2, and 3, case Cb consists of those

that use aspects 2, 3, and 4, and for cases Cc and Cd (presumably those signatures that use

aspects 1, 3, and 4 or aspects 1, 2, and 4), he simply writes "none."   Having noticed the

redundancy of case Cb with Ca, he no doubt realized the remaining cases were also redundant.

We need to note that Escher's signatures in Figure 3 record the aspects of the motifs in a

translation block in the following order:  top left, top right, bottom left, bottom right.  (This

differs from our signature convention of recording aspects in clockwise order, beginning with the

top left corner.)
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FIGURE 3.  Escher's scheme that found the 23 patterns for his case (1).

Case     signature   pattern no� Case     signature    pattern no� Case     signature    pattern no�

Aa  l  l  l  l      1 Bd 2 2 2 3          = 2 Ca 3 3 1 2       17

Ba 1 1 1 2      2 2 2 3 3           = 4 3 3 2 1          = 17

1 1 2 1        = 2 2 3 2 3           = 3 3 1 2 3       18

1 2 1 1        = 2 2 3 3 1           = 5 3 1 3 2       19

2 1 1 1        = 2 3 3 3 2           = 6 3 2 1 3          = 18

1 1 2 2      3 Be 3 3 3 4           = 2 3 2 3 1          = 19

1 2 1 2      4 3 3 4 4           = 3 Cb 2 2 3 4          = 12

1 2 2 1      5 3 4 3 4           = 4 2 3 2 4         = 11

2 2 2 1      6 3 4 4 3           = 5 2 3 4 2          = 13

2 2 1 2       = 6 4 4 4 3           = 6 3 3 2 4          = 15

2 1 2 2       = 6 Ca 1 1 2 3       11 3 2 3 4          = 14

1 2 2 2       = 6 1 1 3 2          = 11 3 2 4 3

Bb 1 1 1 3      7 1 2 1 3       12 4 4 2 3

1 1 3 3       8 1 2 3 1       13 4 2 3 4

1 3 1 3     9 1 3 1 2          = 12 4 2 4 3

1 3 3 1    10 1 3 2 1          = 12 Cc       none

3 3 3 1       = 7 2 2 1 3       14 Cd       none

Bc 1 1 1 4       = 6 2 2 3 1          = 14 Da 1 2 3 4       20

1 1 4 4        = 4 2 1 2 3       15 1 2 4 3       21

1 4 1 4       = 3 2 1 3 2       16 1 3 2 4       22

1 4 4 1       = 5 2 3 1 2          = 16 1 4 2 3       23

4 4 4 1       = 2 2 3 2 1          = 15

For case (1), although there are a large number of signatures to consider, an exhaustive search by
hand such as that done by Escher is feasible and should lead to the correct answer of 23 distinct
patterns.  But this problem, as well as Escher's case (2) and more general problems of this nature,
are more easily handled by a clever application of counting such as Burnside's Lemma (or Pólya
counting) that takes into account the action of a group that induces the equivalence classes of
signatures for the patterns (see [deB64]).

We have already discussed for case (1) the rotation and translation symmetries that can produce
equivalent signatures for a given pattern.  We denote by C4 the group generated by the cyclic
permutation r that changes each letter in a signature by the permutation (ABCD) and then moves
the new letter one position to the right (and the last letter to first); the permutations in this group
are induced by rotations of the translation block.  Thus C4 = {r, r2, r3, r4 = e}.  We denote by K4

the group of products of disjoint transpositions of the set {1, 2, 3, 4}; these permutations
correspond to the horizontal, vertical, and diagonal translations of the translation block that
generates a given pattern.  Thus the elements of K4 are k0 = e, k1 = (12)(34), k2 = (14)(23), and
k3 = (13)(24).  Products of elements in C4 and K4 generate a group H that acts on signatures to
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produce equivalent signatures.  Although in general, elements of C4 do not commute with those
of K4, it is straightforward to show that C4 normalizes K4.  Since�K4 �C4 = e, H is the semidirect
product K4C4  and has order 16.  If we think of a signature as four ordered cells, each occupied
by a letter chosen from the set {A, B, C, D}, then an element  kjri � H acts on the signature as
follows:  ri transforms the letter in each cell to a new letter and moves it i cells clockwise, then kj

permutes the ordering of the occupied cells, not changing the letters in them.

To compute the number of equivalence classes of signatures using Burnside's lemma, we first
need to determine how many signatures are fixed by the permutations in H.  If X denotes an
aspect of a motif in a translation block, let X', X", X"' denote the successive aspects of the motif
after a clockwise rotation of 90�, 180�, 270�, respectively.  We demonstrate how to find
signatures fixed by the element k3r of H.   First, k3r(PQRS) = k3(S'P'Q'R') = Q'R'S'P', so if the
signature is to be fixed, then S = P', R = S' = P", Q = R' = P"'.  Thus k3r fixes only the signature

PP"'P"P'.
The following chart summarizes all the signatures fixed by non-identity elements of H and those
elements (other than e) that fix them:

     SIGNATURE IS FIXED BY ELEMENT(S) OF H
PPQQ k1
PQQP k2
PQPQ k3
PP'P"P"' r
PQP"Q" r2

PP"'P"P' r3, k3r, k3r3

PQQ"P" k1r2

PP"Q"Q k2r2

From this list, since there are four choices for each distinct letter in a fixed signature PQRS, we
have the following summary of numbers of signatures fixed by elements of H:

ELEMENT OF H      e r    r2     r3    k1    k2    k3    k3r    k1r2    k2r2    k3r3

NO. FIXED SIGNATURES     256   4    16    4    16    16    16      4      16      16       4

If, for each h �H, �(h) denotes the number of signatures that h fixes, then Burnside's lemma
gives the number of equivalence classes of signatures as \f(1,|H|)·h�H �(h) .  Thus the number of

equivalence classes (and so the number of different patterns) for Escher's case (1) is

 \f(1,16)(256 + 6.16 + 4.4) = \f(1,16)(368) = 23.

Escher's Case (2)

The Burnside counting technique can also be employed to determine the number of equivalence
classes of signatures for Escher's case (2).  For this case, letters in a signature for a translation
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block can represent any of the eight direct and reflected aspects of a motif (with Escher's
restrictions) and the group G that produces equvalent signatures is generated by the elements of
H together with permutations that are induced by a reflection of the pattern.  G will be the
semidirect product K4D4, where D4 is the symmetry group of the square; |G| = 32.  This

technique of counting gives an answer to the question "how many patterns are there?", but does
not produce a list of the signatures in each class.  [Remark:  A referee for this paper has indicated
that it might be interesting to see if there is a Pólya-type pattern inventory approach that can be
taken that will produce a list of signatures, sorted into equivalence classes.  The paper [deB64]
develops a theory of two-part permutations, but that theory does not seem to directly apply here.]
To actually produce a list of signatures in each equivalence class, a computer program that
performs permutations on the signatures and sorts them into equivalence classes is most helpful.
Also, computer programs can be written to produce the representative patterns for each
equivalence class.

At least two persons who read my brief description of Escher's combinatorial pattern game in
Visions of Symmetry  [Sch90] wrote computer programs to calculate all the equivalence classes
of signatures in cases (1) and (2) (both with and without Escher's restrictions).   In January 1990,
Eric Hanson, then a graduate student at the University of Wisconsin, sent me the results of his
computer program that sorted into equivalence classes all signatures for an unrestricted version
of Escher's case (2), in which the translation block contains two direct and two reflected aspects
of the motif.  For this case, there are 6.(4.4)(4.4) = 1536 different signatures (6 ways to place two
direct and two reflected motifs in a translation block, and 4 choices for each motif) and he found
67 different equivalence classes.  With Escher's additional restrictions, there are 49 different
equivalence classes.   At the San Antonio MAA-AMS meeting in January 1993, Dan Davis of
the mathematics department at Kingsborough Community College presented the results of his
computer programs for Escher's case (1), listing the signatures in each equivalence class and
displaying his original patterns for this case.  Later he pursued the case in which the four
positions of a translation block can be filled by any of the eight aspects (rotated and reflected) of
a single motif.  For this unrestricted case, there are 84 = 4096 signatures; he found 154
equivalence classes.  He also confirmed Hanson's results for the two versions of Escher's case
(2).  He has produced a listing of the signatures in each of the 154 equivalence classes, and also
produced the pattern for each class with an original motif composed of circular arcs (see [Da97]).

After hearing my presentation at the combinatorics conference to honor Herb Wilf in June, 1996,
Stan Wagon got interested in the problem of using Mathematica to automate the process of
producing patterns according to Escher's algorithm.  He has produced, along with Rick Mabry, a
program that takes a motif (which can be Escher's motif of bands) and a signature, and produces
the pattern determined by that signature.   See [MWS97].
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How well did Escher do in his attempt to find all distinct patterns for his case (2)?  For his case
(2A), in which two identical direct aspects and two identical reflected aspects of the motif make
up the translation block, there are 6.4.4 = 96 different signatures.  For his case (2B), in which two
different direct aspects and two different reflected aspects of the motif make up the translation
block, there are 6.(4.3)(4.3) = 864 different signatures to consider.  In addition to the much larger
number of signatures to be considered for case (2), there is greater difficulty in recognizing when
two patterns are the same—our eyes don't readily discern the coincidence of two patterns when
one pattern is the rotated, shifted, and reflected version of the other!   Yet Escher's careful work,
in which he considered the combinatorial possibilities for signatures and drew and compared
patterns, brought him very close to the correct answer.  His careful inventory stops short of
completion; in fact, there are indications in his summary sheet of patterns that he intended to
check more cases, but these spaces remain blank.  His son George has remarked that Escher
simply grew bored (and no doubt tired) with the lengthy search.

For his case (2A),  he was completely accurate:  he found all ten distinct patterns (and numbered
them 1–10).  For his case (2B), he found 37 patterns (and numbered them 11–47).  The correct
answer for case (2B) is 39 patterns.  Among the 37 patterns that he found, two are the same, but
Escher did not recognize this. He sketched the patterns for his summary of case (2B) using the
simple line segment motif, and his patterns numbered 27 and 37 in that inventory are not on the
same page.  This may have contributed to his not noticing that they were the same.  In Figure 4
below we show the two different signatures for these patterns and how the sketched patterns
look.  This example illustrates the difficulty in deciding by visual inspection alone whether
patterns are the same or different.  In Figure 4 and subsequent figures in which we show patterns
with a motif in both direct and reflected aspects,  labels A, B, C, D represent the four rotated
aspects of the motif (as before) and a, b, c, d are their respective reflections in a horizontal line.

O

x

The patterns below are the same. The one 
on the left can be transformed into the one 
on the right by performing a 90Þ counter- 
clockwise rotation about O, then a reflection 
in the horizontal line through O, and finally 
a translation that takes O to X.

A b 
B d

A C 
a d

A         B          C         D

   a          b          c          d

FIGURE 4. The patterns for signatures AbdB and ACda that Escher did not realize were
equivalent.
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In Figure 5, we display all 49 patterns for Escher's cases (2A) and (2B), using his 1938 motif of

crossing bands.  Note that he rotated this motif counterclockwise to obtain the four rotated

aspects A, B, C, D.  Patterns 1–10 are those for case (2A) and are displayed as Figure 5(a) on the

next two pages.  Patterns 11–49 are those for case (2B), and are displayed as Figure 5(b) at the

end of this article.  The three patterns that Escher missed entirely are numbers 42, 48, and 49 in

this display.   In Figure 5, we have listed only one signature for each pattern, and that signature

always begins with aspect A.  (In Escher's own inventory of patterns for case (2), he always

began his signatures with aspect 1.  The order in which patterns appear in our display is not

exactly the same as Escher's.)  In Figure 5(c), we provide a table that gives the number of

signatures in each equivalence class of signatures associated to a pattern, as well as the symmetry

group of each pattern.  The notation for the symmetry groups in the table is that used by the

International Union of Crystallography; see [Sch78].

The table makes clear the relationship between the richness of the symmetry group of a pattern

and the size of its equivalence class of signatures.  Those patterns generated only by translations

(type p1) have the largest equivalence classes, while those generated by translations and one

other symmetry (p2, pg, pm, cm) have equivalence classes half that size, and those generated by

translations and two other symmetries (pgg, pmg, pmm) have equivalence classes one-fourth that

size.  The number of elements in the equivalence classes for patterns 1-10 (Escher's case (1)) is

half the number in equivalence classes with the same symmetry group for patterns 11-49 because

patterns 1-10, with two pairs of repeated aspects of the motif, have the property that the
translation block is invariant under a permutation in the group K4 that does not add to the overall

symmetry of the pattern.  This invariance only affects the period of the pattern.  For example, the

signature AAbb is invariant under the permutation that interchanges columns of the translation

block, but the periodic pattern has only translation symmetry (group p1).  The period of the

pattern in the horizontal direction is half the length of the translation block, while its period in

the vertical direction is the length of the translation block.
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FIGURE 5(a). Escher's case (2A).   His case (2B) is in FIGURE 5(b) at the end of this article.

43

21

A a 
a A

A A 
a a

A a 
A a

A A 
b b

Case (2A).  The ten patterns whose translation block has two direct aspects and two 
reflected aspects of the above motif and in addition, the two direct aspects are the same 
and the two reflected aspects are the same.

 A  

a

 Escher's 1938 motif for 
stamped patterns. 
 
Motif A is rotated 90Þ 
counterclockwise to 
obtain the four direct  
aspects A, B, C, D; 
reflecting each of these  
in its bottom edge gives 
the four reflected aspects 
a, b, c, d.

B C D

b c d
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FIGURE 5(a) continued.

A d 
d A

A A 
d d

A c 
A c

A c 
c A

A A 
c c

A b 
b A

5 6

7 8

9 10
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Escher's Other Experiments

Escher carried out several other experiments in producing patterns by his algorithm and variants
of it.  He sought to make patterns in which ribbons were continuous strands, weaving in and out,
or in which they formed closed loops, tying together other strands.  For this he used his original
1938 motif, but now made the bars into ribbons that wove over and under each other.  He carved
the original motif in two direct aspects:  the 'under-over' relations between the strands on the
second square were the reverse of those on the first.  These he labeled  1 and 1a.  He also carved
wooden squares that gave the reflected aspects of these two, labeling the reflection of 1 and 1a in
a horizontal line as 1 and 1a.  As with the 1938 motif (Figure 5), he rotated the motifs in aspects
1 and 1a counterclockwise to produce the rotated aspects 2, 3, 4, and 2a, 3a, 4a. Reflections of
these in a horizontal line were labeled with underlines.

Using the four carved stamps, Escher hand-printed at least 21 different patterns, coloring in the
ribbons.  One of his designs has been recreated in Figure 6.  Escher's son George informed me
that his father made up these colored woven patterns with the intention of having the tiles
produced by tile-makers.  Although he showed them to tile manufacturers, he was unsuccessful
in having any of the tiles produced.  Several of these sample patterns were displayed in an
exhibit in 1942, for which Escher made a poster explaining (and illustrating) the 16 different
aspects in which motifs can appear.  There is no evidence that Escher attempted to enumerate the
possible patterns for this more complex case.  For this case, not only is the number of choices for
each tile in the 2x2 translation block increased from eight to sixteen, but in addition to rotation,
reflection, and translation symmetries of the pattern, there is an under-over symmetry to
consider.

The Mathematica program written by Wagon and Mabry (mentioned earlier) has an option in
which the user can ask for the Escher motif of ribbons to be colored in the manner Escher
required: ribbons are to be colored as continuous strands, crossing ribbons of different strands
are to have different colors, and a minimum number of colors are to be used [MWS97].

Escher experimented with other algorithms to produce patterns.  He used translation blocks that
were rectangular and, as with the 2x2 squares, translated them in directions parallel to the sides
of the block.  He also used a translation block that was a row of four or more squares and
translated it in a diagonal direction (a composition of one vertical and one horizontal move).
Several of his woven ribbon patterns were produced this way.  Two of these patterns can be
found in [Ern76] and six more in [Sch90].  In the display of his patterns on page 49 of [Sch90],
all of the signatures are wrong!  (The signatures there belong to a different poster with a display
of six of Escher's ribbon patterns.)  This will be corrected in new printings of my book, but I
would also like to correct them here. The correct signatures, displayed in the same order in which
the patterns appear, can be found in the reference for [Sch90], on page 23 of this article.
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In 1943, Escher made a variant of the woven ribbon motif, this time making the strands look like

yarn or cord, curving as they wove.   As with the ribbon motifs, four different aspects were

carved, and many patterns were stamped out, creating designs that strongly resemble knitting or

crocheting.  Several were hand-colored.  They were collected in a binder dated IV '43. Escher at

least considered making periodic plane patterns based on the honeycomb tiling by a regular

hexagon. He carved a motif of crossing bands on a hexagonal tile, but it is not known if he

produced patterns with it.  (Illustrations of the 'knitting' patterns and the hexagonal motif can be

found in [Sch90].)  Of course it is possible also to create algorithms for periodic plane patterns

that begin with an equilateral triangle containing a motif.  Escher did investigate some tilings of

the plane by triangles and create patterns by decorating the triangles, but these were not

equilateral triangles.  His focus of that investigation was not patterns, but rather the number of

different ways in which a triangle could tile the plane in a "regular" way, that is, in which every

triangle was surrounded in the same way.

A Challenge

Escher's algorithm for plane patterns based on translating a 2x2 block of squares naturally

suggests an analogous approach to generating three-dimensional patterns.  Begin with a unit cube

and put an asymmetric motif inside it-- call this a caged motif.  Now build a 2x2x2 cube with

eight copies of the caged motif, where the copies can appear in any direct or reflected aspect; call

this a supercube.  Now translate the supercube repeatedly in the three directions given by its

edges to produce a periodic three-dimensional pattern.  In Figure 7 we show two examples of

such patterns.  Here, the caged motif is a cube with three bars inside it, a bit reminiscent of

Escher's 1938 motif of bars in a square.  In the first pattern, all eight copies of the caged motif in

the supercube are in the same aspect; this is the simplest of all such 3-D patterns, and is the

analog of the plane pattern with signature AAAA.  In the second pattern, the supercube is made

up of four direct copies of the caged motif, all in the same aspect, and four inverted copies of the

motif, all in the same aspect, arranged so that adjacent motifs in the supercube are always in

opposite aspects.  (An inverted copy of the motif is gotten by performing a central inversion on

the motif.)  Thus this 3-D pattern is the analog of the plane pattern whose signature is ACAC.
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Motif of three bars in cube        Supercube of eight copies of motif
           (here all in the same aspect)

Pattern with eight translated copies of the supercube

FIGURE 7(a)
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  Motif of three bars in cube (left) and      Supercubewith four copies of motif alternating
  its image under central inversion (right)      with four copies of inverted motif (adjacent 

                 motifs have opposite aspects)    
                         

      
          Pattern with eight translated copies of the supercube

                     FIGURE 7(b)
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Of course, we ask Escher's question:  How many different 3-D patterns are possible, using this

algorithm?  Even if we add restrictions, as Escher did for the planar case, the combinatorial

stakes have just escalated astronomically.  Since the rotation group of the cube has order 24,

there are 24 different direct aspects of the caged motif, and another 24 reflected aspects.  If each

of the 24 direct aspects of the motif is assigned a label (such as A, B, . . . , W, X) and the image

of each of these under a central inversion is assigned a companion label (a, b, . . . , w, x), then a

signature can be assigned to each translation block in a manner similar to the two-dimensional

case. There are 248 signatures for translation blocks having only direct aspects of the motif, and

488 signatures if both direct and reflected aspects are allowed.  Each translation block has 24

rotated positions (and 48 images if reflections are also allowed); each of these produces a

signature for the same pattern.  (As in the two-dimensional case, we say that two patterns are the

same if there is an isometry that maps the one onto the other.)  Additional signatures for a pattern

are produced by the eight different translation blocks that correspond to having one of the eight

caged motifs in a specified corner of the block.

Thank you Escher, for a tantalizing problem.  We leave its solution to the reader.
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FIGURE 5(b).  The 39 patterns for Escher's case (2B), numbered 11–49.
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b a

A B 
c a
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d a

A B  
a b
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c b

A B 
d b
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15 16
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A B 
a c
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a d
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28

A C 
b d
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a c
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d b
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c a

A C 
d a

A C 
b c



THE ELECTRONIC JOURNAL OF COMBINATORICS 4 (NO.2) (1997), # R17                                                  27

A D 
b d
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A a 
d C
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d B
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40

A a 
d D
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A b 
c B
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a B
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d B
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A b 
d C
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A b 
a C
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C c

41
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49

A c 
C a

4847

A c 
a C

A c 
d B
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FIGURE 5(c).  For each of the 49 patterns for Escher's case (2), the table below lists one

signature for the pattern that begins with aspect A, the number of equivalent signatures for that

pattern, and the symmetry group of the pattern.  The notation for the symmetry groups in the

table is that used by the International Union of Crystallography; see [Sch78].

               EQUIVALENT   SYMMETRY              EQUIVALENT
SYMMETRY
PATTERN    SIGNATURE    SIGNATURES   GROUP                 PATTERN    SIGNATURE    SIGNATURES   GROUP

     1      AAaa      8         pm    26      ACca    8       pmg

     2      AaAa      8         cm    27      ACcb   32       p1

     3      AaaA      8         pg    28      ACdb   16       p2

     4      AAbb     16         p1    29      ADad   16       pg

     5      AbAb      8         pg    30      ADbc   16       pg

     6      AAcc      8         pg    31      ADbd   32       p1

     7      AcAc      8         cm    32      ADcb   16       pg

     8      AccA      8         pm         33      ADda   16       pm

     9      AAdd     16         p1    34      ADdb   32       p1

    10     AdAd      8         pg    35      AaBb   16       pg

    11     ABab     16         pg      36      AaBc   32       p1

    12     ABac     32         p1    37      AaBd   32       p1

    13     ABad     32         p1    38      AaCc    8       pgg

    14     ABba     16         pm    39      AaCd   32       p1

    15     ABbc     32         p1    40      AaDd   16       pg

    16     ABbd     32         p1    41      AacC    8       pgg

    17     ABca     32         p1    42      AbBa   16       pm

    18     ABcb      32         p1    43      AbBc   32       p1

    19     ABcd     16         pg    44      AbBd   32       p1

    20     ABda     32         p1    45      AbCa   32       p1

    21     ABdb     32         p1    46      AbCd   16       p2

    22     ABdc     16         pg    47      AcBd   16       pm

    23     ACac      8         pgg    48      AcCa    8       pmm

    24     ACad     32         p1    49      AcaC    8       pmg

    25     ACbd     16         p2

 


